

US009743887B2

(12) United States Patent Al-Ali et al.

(54) PULSE OXIMETER ACCESS APPARATUS AND METHOD

(71) Applicant: **MASIMO CORPORATION**, Irvine, CA (US)

(72) Inventors: Ammar Al-Ali, Tustin, CA (US); Ronald Coverston, Portola Hills, CA (US); Massi E. Kiani, Laguna Niguel,

CA (US)

(73) Assignee: MASIMO CORPORATION, Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: **14/790,454**

(22) Filed: Jul. 2, 2015

(65) **Prior Publication Data**

US 2015/0374298 A1 Dec. 31, 2015

Related U.S. Application Data

- (63) Continuation of application No. 12/360,830, filed on Jan. 27, 2009, now Pat. No. 9,072,474, which is a continuation of application No. 10/981,186, filed on Nov. 4, 2004, now Pat. No. 7,483,729.
- (60) Provisional application No. 60/517,954, filed on Nov. 5, 2003.
- (51) **Int. Cl.**A61B 5/1455 (2006.01)

 A61B 5/00 (2006.01)
- (52) U.S. Cl.

CPC *A61B 5/7221* (2013.01); *A61B 5/14551* (2013.01); *A61B 5/7271* (2013.01); *A61B* 2560/0266 (2013.01); *A61B* 2560/0475

(10) Patent No.: US 9,743,887 B2

(45) **Date of Patent:** *Aug. 29, 2017

(2013.01); A61B 2562/08 (2013.01); A61B 2562/221 (2013.01); A61B 2562/222 (2013.01)

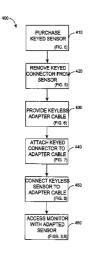
(58) Field of Classification Search

CPC A61B 5/1455; A61B 5/14551; A61B 5/14552; A61B 2560/0266; A61B 2562/08; A61B 2562/222

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

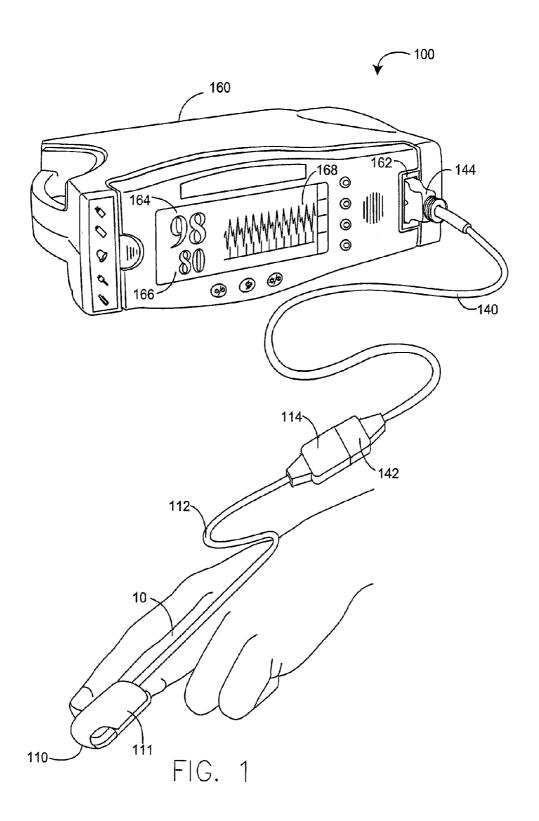

4,960,128 A	10/1990	Gordon et al.
4,964,408 A		Hink et al.
5,041,187 A	8/1991	Hink et al.
5,069,213 A	12/1991	Polczynski
5,163,438 A		Gordon et al.
5,337,744 A	8/1994	Branigan
5,341,805 A	8/1994	Stavridi et al.
	(Con	tinued)

Primary Examiner — Eric Winakur (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear LLP

(57) ABSTRACT

Access is provided to certain pulse oximetry systems utilizing a keyed sensor and a corresponding locked sensor port of a restricted access monitor. In such systems, the keyed sensor has a key comprising a memory element, and the monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port, and the memory reader is able to retrieve predetermined data from the memory element. The monitor is accessed by providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.

6 Claims, 6 Drawing Sheets



US 9,743,887 B2Page 2

(56)	Referen	nces Cited	6,349,22 6,360,11			Kiani et al. Diab et al.
U.\$	S. PATENT	DOCUMENTS	6,368,28	3 B1	4/2002	Xu et al.
D252 105 G	12/1004	G 1	6,371,92 6,377,82		4/2002 4/2002	Caro et al.
D353,195 S D353,196 S		Savage et al. Savage et al.	6,388,24			Schulz et al.
5,377,676 A	1/1995	Vari et al.	6,397,09			Diab et al.
D359,546 S		Savage et al. Mathews	6,430,52 6,463,31	эві 1 В1	8/2002 10/2002	Weber et al. Diab
5,431,170 A D361,840 S		Savage et al.	6,470,19	9 B1	10/2002	Kopotic et al.
D362,063 S	9/1995	Savage et al.	6,490,46 6,501,97			Fein et al. Diab et al.
5,452,717 A D363,120 S		Branigan et al. Savage et al.	6,505,05			Kollias et al.
5,456,252 A	10/1995	Vari et al.	6,515,27		2/2003	
5,482,036 A		Diab et al.	6,519,48 6,525,38		2/2003 2/2003	Parker Mills et al.
5,490,505 A 5,494,043 A		Diab et al. O—Sullivan et al.	6,526,30	0 B1	2/2003	Kiani et al.
5,533,511 A		Kaspari et al.	6,541,756 6,542,76			Schulz et al. Al-Ali et al.
5,561,275 A 5,562,002 A	10/1996	Savage et al.	6,580,08			Schulz et al.
5,590,649 A		Caro et al.	6,584,336			Ali et al.
5,602,924 A 5,632,272 A		Durand et al. Diab et al.	6,595,316 6,597,93			Cybulski et al. Tian et al.
5,638,816 A		Kiani-Azarbayjany et al.	6,597,93	3 B2	7/2003	Kiani et al.
5,638,818 A	6/1997	Diab et al.	6,606,51 6,632,18			Ali et al. Flaherty et al.
5,645,440 A 5,660,567 A		Tobler et al. Nierlich et al.	6,639,66			Trepagnier
5,685,299 A	11/1997	Diab et al.	6,640,11		10/2003	
5,720,293 A D393,830 S		Quinn et al.	6,643,53 6,650,91			Diab et al. Diab et al.
5,743,262 A		Tobler et al. Lepper, Jr. et al.	6,654,62	4 B2	11/2003	Diab et al.
5,758,644 A	6/1998	Diab et al.	6,658,276 6,661,16			Kianl et al. Lanzo et al.
5,760,910 A 5,769,785 A		Lepper, Jr. et al. Diab et al.	6,671,53			Al-Ali et al.
5,782,757 A	7/1998	Diab et al.	6,678,54			Diab et al.
5,785,659 A 5,791,347 A		Caro et al.	6,684,09 6,684,09		1/2004	Ali et al. Parker
5,807,247 A		Flaherty et al. Merchant et al.	6,697,65	6 B1	2/2004	Al-Ali
5,810,734 A		Caro et al.	6,697,65 6,697,65		2/2004 2/2004	Shehada et al.
5,823,950 A 5,830,131 A		Diab et al. Caro et al.	RE38,47			Diab et al.
5,833,618 A	11/1998	Caro et al.	6,699,19			Diab et al.
5,860,919 A 5,890,929 A		Kiani-Azarbayjany et al. Mills et al.	6,708,04 6,714,80			Berson et al. Al-Ali et al.
5,904,654 A		Wohltmann et al.	RE38,49		4/2004	Diab et al.
5,919,134 A	7/1999		6,721,58 6,721,58		4/2004 4/2004	Trepagnier et al.
5,934,925 A 5,940,182 A		Tobler et al. Lepper, Jr. et al.	6,725,07		4/2004	
5,995,855 A	11/1999	Kiani et al.	6,728,56 6,735,45		4/2004 5/2004	Kollias et al.
5,997,343 A 6,002,952 A		Mills et al. Diab et al.	6,745,06			Diab et al.
6,011,986 A	1/2000	Diab et al.	6,760,60		7/2004	Al-Ali
6,027,452 A 6,036,642 A		Flaherty et al. Diab et al.	6,770,02 6,771,99			Ali et al. Kiani et al.
6,045,509 A		Caro et al.	6,792,30	0 B1	9/2004	Diab et al.
6,067,462 A		Diab et al.	6,813,51 6,816,74		11/2004 11/2004	Diab et al.
6,081,735 A 6,088,607 A		Diab et al. Diab et al.	6,822,56		11/2004	
6,110,522 A	8/2000	Lepper, Jr. et al.	6,826,419 6,830,71			Diab et al. Mills et al.
6,124,597 A 6,144,868 A	9/2000 11/2000	Shehada Parker	6,850,78			Weber et al.
6,151,516 A	11/2000	Kiani-Azarbayjany et al.	6,850,78		2/2005	
6,152,754 A		Gerhardt et al.	6,852,08 6,861,63		3/2005	Caro et al. Al-Ali
6,157,850 A 6,165,005 A		Diab et al. Mills et al.	6,898,45	2 B2	5/2005	Al-Ali et al.
6,184,521 B1		Coffin, IV et al.	6,920,34 6,931,26			Al-Ali et al. Kiani-Azarbayjany et al.
6,206,830 B1 6,229,856 B1		Diab et al. Diab et al.	6,934,57			Kiani et al.
6,232,609 B1	5/2001	Snyder et al.	6,939,30			Flaherty et al.
6,236,872 B1 6,241,683 B1		Diab et al. Macklem et al.	6,943,34 6,950,68		9/2005	Coffin IV
6,256,523 B1	7/2001	Diab et al.	6,961,59	8 B2	11/2005	Diab
6,263,222 B1	7/2001	Diab et al.	6,970,79		11/2005	
6,278,522 B1 6,280,213 B1		Lepper, Jr. et al. Tobler et al.	6,979,81 6,985,76		1/2005	Al-Ali Mason et al.
6,285,896 B1		Tobler et al.	6,993,37			Kiani et al.
6,321,100 B1	11/2001	Parker	6,996,42			Ali et al.
6,334,065 B1 6,343,224 B1		Al-Ali et al. Parker	6,999,90 7,003,33			Weber et al. Weber et al.
0,545,224 B1	1/2002	1 alkei	7,003,33	о D Z	2/2000	WOODI Et al.

US 9,743,887 B2 Page 3

(56)	Refer	ences Cited	7,274,955 B2	9/2007	Kiani et al.
()			D554,263 S	10/2007	Al-Ali
	U.S. PATEN	T DOCUMENTS	7,280,858 B2	10/2007	Al-Ali et al.
			7,289,835 B2	10/2007	Mansfield et al.
	7,003,339 B2 2/200	6 Diab et al.	7,292,883 B2	11/2007	De Felice et al.
		6 Dalke et al.	7,295,866 B2		Al-Ali
	· · · · ·	6 Ali et al.	7,328,053 B1		Diab et al.
	, ,	6 Al-Ali	7,332,784 B2		Mills et al.
	7,030,749 B2 4/200	6 Al-Ali	7,340,287 B2		Mason et al.
	7,039,449 B2 5/200	6 Al-Ali	7,341,559 B2		Schulz et al.
	7,041,060 B2 5/200	6 Flaherty et al.	7,343,186 B2		Lamego et al.
	7,044,918 B2 5/200	6 Diab	D566,282 S		Al-Ali et al.
	7,067,893 B2 6/200	6 Mills et al.	7,355,512 B1		Al-Ali
	7,096,052 B2 8/200	6 Mason et al.	7,371,981 B2		Abdul-Hafiz
	7,096,054 B2 8/200	6 Abdul-Hafiz et al.	7,373,193 B2	5/2008	Al-Ali et al.
	7,132,641 B2 11/200	6 Schulz et al.	7,373,194 B2	5/2008	Weber et al.
	7,142,901 B2 11/200	6 Kiani et al.	7,376,453 B1	5/2008	Diab et al.
		6 Diab	7,377,794 B2	5/2008	Al-Ali et al.
	, ,	7 Al-Ali	7,377,899 B2	5/2008	Weber et al.
		7 Al-Ali	7,383,070 B2	6/2008	Diab et al.
		7 Diab	7.415.297 B2	8/2008	Al-Ali et al.
	7,215,986 B2 5/200		7.428.432 B2	9/2008	Ali et al.
		7 Diab	7,438,683 B2		Al-Ali et al.
		7 Al-Ali et al.	7,440,787 B2		Diab
	7,225,007 B2 5/200		7,454,240 B2		Diab et al.
	RE39,672 E 6/200		7,467,002 B2		Weber et al.
	7,239,905 B2 7/200		7,469,157 B2		Diab et al.
	. ,	7 Parker	7,471,969 B2		Diab et al.
	7,254,431 B2 8/200		7,471,909 B2 7,471,971 B2		Diab et al.
	7,254,433 B2 8/200		7,471,971 B2 7,483,729 B2		Al-Ali et al.
	7,254,434 B2 8/200		/ /		
	7,272,425 B2 9/200	7 Al-Ali	7,483,730 B2	1/2009	Diab et al.

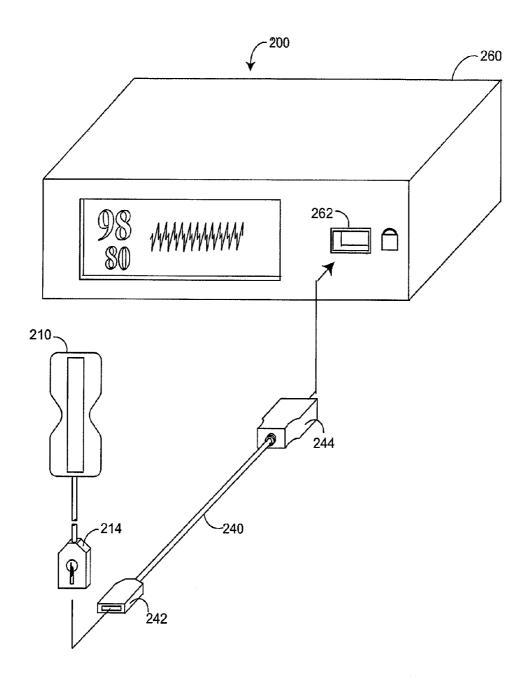
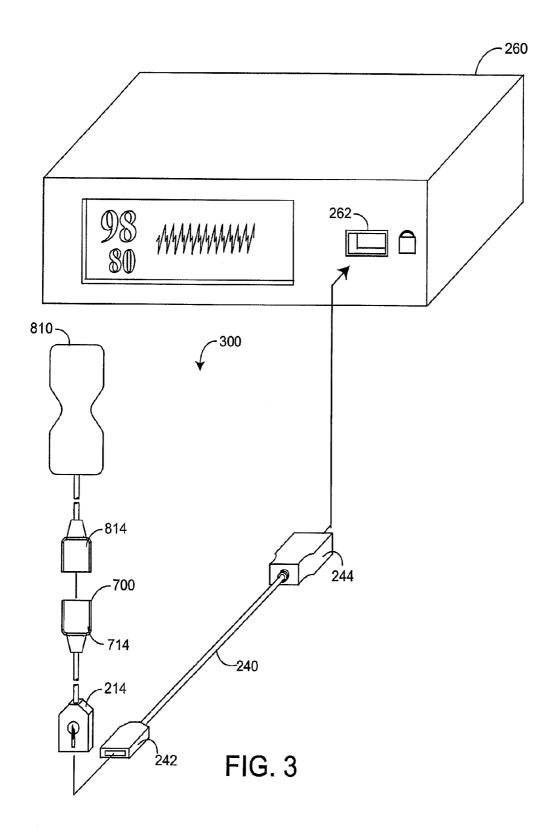
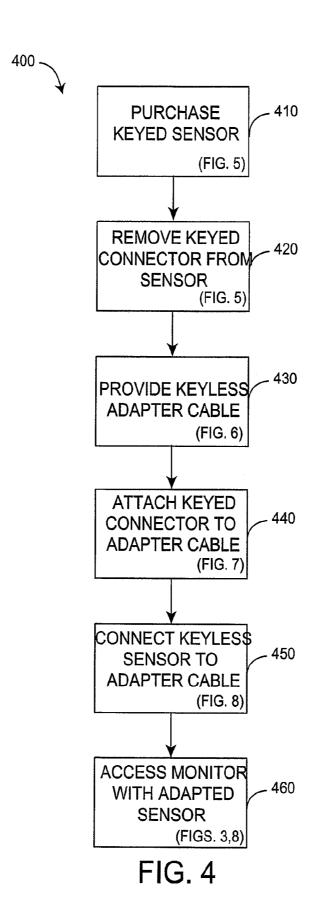
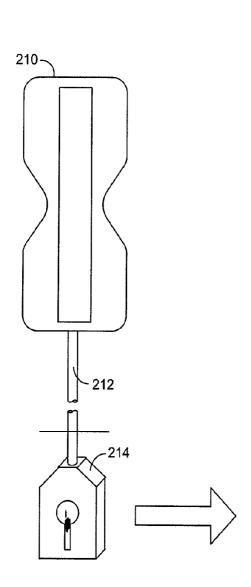





FIG. 2

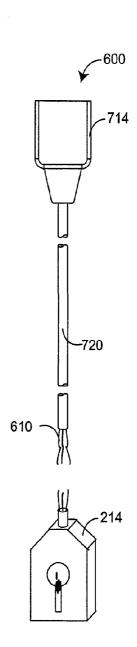
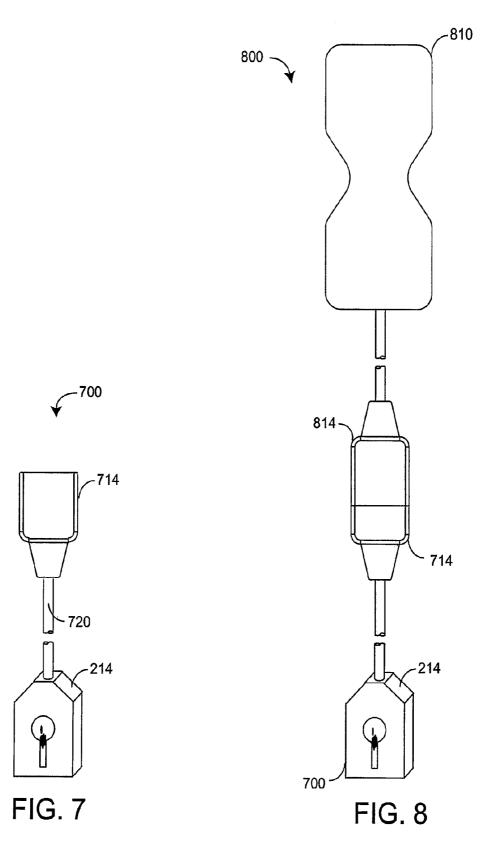



FIG. 5

FIG. 6

1

PULSE OXIMETER ACCESS APPARATUS AND METHOD

REFERENCE TO RELATED APPLICATION

The present application claims priority benefit under 35 U.S.C. §120 to, and is a continuation of U.S. patent application Ser. No. 12/360,830, filed Jan. 27, 2009 entitled "Pulse Oximeter Access Apparatus and Method," which claims priority benefit under 35 U.S.C. §120 to, and is a continuation of U.S. patent application Ser. No. 10/981,186, filed Nov. 4, 2004 entitled "Pulse Oximeter Access Apparatus and Method," now U.S. Pat. No. 7,482,729, which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 60/517,954, filed Nov. 5, 2003, 15 entitled "Pulse Oximeter Access Apparatus and Method." The present application also incorporates the foregoing disclosures herein by reference.

BACKGROUND OF THE INVENTION

Pulse oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care units, general wards and home care by providing early detection of decreases in the arterial oxygen 25 supply, reducing the risk of accidental death and injury. FIG. 1 illustrates a pulse oximetry system 100 having a sensor 110 applied to a patient 10, a monitor 160, and a patient cable 140 connecting the sensor 110 and the monitor 160. The sensor 110 has a sensor body 111 that houses emitters and a 30 detector and is attached to a patient at a selected fleshy medium site, such as a fingertip or ear lobe. The emitters are positioned to project light of at least two wavelengths through the blood vessels and capillaries of the fleshy medium. The detector is positioned so as to detect the 35 emitted light after absorption by the fleshy medium, including hemoglobin and other constituents of pulsatile blood flowing within the fleshy medium, and generate at least first and second intensity signals in response. The sensor 110 has a patient cable connector 114 and may have an integrated 40 sensor cable 112. The sensor 110 may be a disposable adhesive sensor for use on a single patient or a reusable clip-on sensor for use on multiple patients.

As shown in FIG. 1, the monitor 160, which may be a standalone device or may be incorporated as a module or 45 built-in portion of a multiparameter patient monitoring system, computes at least one physiological parameter responsive to magnitudes of the intensity signals. A monitor 160 typically provides a numerical readout of the patient's oxygen saturation 164, a numerical readout of pulse rate 50 166, and a display the patient's plethysmograph 168, which provides a visual display of the patient's pulse contour and pulse rate. The monitor 160 has a sensor port 162 that transmits emitter drive signals to the sensor 110 and receives the detector intensity signals from the sensor 110. The 55 patient cable 140 provides the electrical and mechanical connection and communications link between the sensor port 162 and the sensor 110. The patient cable 140 has a sensor connector 142 that connects to the patient cable connector 114 and a monitor connector 144 that connects to 60 the sensor port 162.

SUMMARY OF THE INVENTION

Pulse oximeters have gained rapid acceptance in a wide 65 variety of medical applications, including surgical wards, intensive care units, general wards and home care by pro-

2

viding early detection of decreases in the arterial oxygen supply, reducing the risk of accidental death and injury. FIG. 1 illustrates a pulse oximetry system 100 having a sensor 110 applied to a patient 10, a monitor 160, and a patient cable 140 connecting the sensor 110 and the monitor 160. The sensor 110 has a sensor body 111 that houses emitters and a detector and is attached to a patient at a selected fleshy medium site, such as a fingertip or ear lobe. The emitters are positioned to project light of at least two wavelengths through the blood vessels and capillaries of the fleshy medium. The detector is positioned so as to detect the emitted light after absorption by the fleshy medium, including hemoglobin and other constituents of pulsatile blood flowing within the fleshy medium, and generate at least first and second intensity signals in response. The sensor 110 has a patient cable connector 114 and may have an integrated sensor cable 112. The sensor 110 may be a disposable adhesive sensor for use on a single patient or a reusable 20 clip-on sensor for use on multiple patients.

As shown in FIG. 1, the monitor 160, which may be a standalone device or may be incorporated as a module or built-in portion of a multiparameter patient monitoring system, computes at least one physiological parameter responsive to magnitudes of the intensity signals. A monitor 160 typically provides a numerical readout of the patient's oxygen saturation 164, a numerical readout of pulse rate 166, and a display the patient's plethysmograph 168, which provides a visual display of the patient's pulse contour and pulse rate. The monitor 160 has a sensor port 162 that transmits emitter drive signals to the sensor 110 and receives the detector intensity signals from the sensor 110. The patient cable 140 provides the electrical and mechanical connection and communications link between the sensor port 162 and the sensor 110. The patient cable 140 has a sensor connector 142 that connects to the patient cable connector 114 and a monitor connector 144 that connects to the sensor port 162.

SUMMARY OF THE INVENTION

FIG. 2 illustrates a restricted access pulse oximetry system 200 having a keyed sensor 210 and a restricted access monitor 260. The keyed sensor 210 and restricted access monitor 260 are designed so that the monitor 260 will only function with a specific sensor or family of sensors from a specific manufacturer or licensed vendors. Upon power up, the sensor port 262 is locked. That is, the monitor 260 will not function until it reads the correct information from the sensor port 262. In particular, a patient cable connector 214 has a memory device. The memory device and the data stored in the memory device act as a key. The sensor port 262 and a memory reader in the monitor associated with the sensor port 262 act as a lock. When the keyed patient cable connector 214 is in communications with the locked sensor port 262 via a patient cable 240, the memory reader can access the data stored in the memory device. If the stored data matches predetermined access data, the monitor unlocks the sensor port 262, i.e. properly functions with a sensor attached to the sensor port 262. A memory device commonly used for storing manufacturer and product information is the DS2502 from Dallas Semiconductor, which has a 1 kbit memory that is accessed through a single pin that provides data input, data output and power. Once the sensor port 262 is unlocked, the sensor 210, patient cable 240, sensor port 262 and monitor 260 function as described with respect to FIG. 1, above.

3

One aspect of a pulse oximeter access method is used in conjunction with a pulse oximetry system comprising a keyed sensor and a corresponding locked sensor port of a restricted access monitor. The keyed sensor has a key comprising a memory element. The monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port and the memory reader is able to retrieve predetermined data from the memory element. The access method comprises the steps of providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.

Another aspect of a pulse oximeter access apparatus comprises a sensor having emitters adapted to transmit light of at least first and second wavelengths into a fleshy medium and a light sensitive detector adapted to generate at least first and second intensity signals by detecting the light after absorption by constituents of pulsatile blood flowing within 20 the fleshy medium. A monitor is configured to non-invasively measure one or more physiological parameters responsive to magnitudes of the intensity signals. A key contains access information. A sensor port is configured to communicate emitter drive signals from the monitor to the 25 sensor, intensity signals from the sensor to the monitor, and the access information from the key to the monitor. A lock associated with the sensor port is adapted to read the access information from the key and to enable the monitor to provide measurements of the physiological parameters in 30 response to the access information. An adapter cable containing the key is configured to provide a communications link between the sensor and the sensor port.

A further aspect of a pulse oximeter access apparatus comprises a sensor means for providing a physiological ³⁵ signal to a monitor and a key means for providing access to a locked sensor port portion of the monitor. An adapter cable means containing the key means provides communications between the sensor and the sensor port.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a prior art pulse oximetry system;

FIG. 2 is a perspective view of a prior art pulse oximetry 45 system having a restricted access monitor with a locked sensor port;

FIG. 3 is a perspective view of a pulse oximeter access apparatus;

FIG. 4 is a flow diagram of a pulse oximeter access 50 method:

FIGS. **5-6** are perspective views of a keyed sensor and a keyless adapter cable, respectively, illustrating lock removal and reattachment; and

FIGS. **7-8** are perspective views of a keyed adapter cable 55 and an attached keyless sensor, respectively.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 3 illustrates a pulse oximeter access apparatus 300 having a keyless sensor 810, a keyed adapter cable 700 and a patient cable 240 that advantageously interconnect so as to allow the keyless sensor 810 to function with a restricted access monitor 260 having a locked sensor port 262. The 65 keyed adapter cable 700 has a keyed connector 214 at one end, which mates with a sensor connector 242 of a patient

4

cable 240, and a sensor connector 714 at the opposite end, which mates with a patient cable connector 814 of the keyless sensor 810. The monitor connector 244 mates with the sensor port 262, providing communications between the keyless sensor 810 and the sensor port 262 and between a memory element in the keyed connector 214 and a memory reader within the monitor 260. The sensor connector 714 of the keyed adapter cable 700 can be any of a number of connectors that mate with any of a number of patient cable connectors 814. Further, a family of keyed adapter cables 700 can be configured, each with a different sensor connector 714 compatible with a different keyless sensor 810 or family of keyless sensors 810.

FIG. 4 illustrates a pulse oximeter access method 400 for 15 creating and utilizing a keyed adapter cable 700 (FIGS. 3, 7). In an initial step, a sensor port key is provided by purchasing 410 a keyed sensor configured for a particular restricted access monitor 260 (FIG. 2) and removing 420 the associated keyed connector 214 (FIG. 2), as described in further detail with respect to FIG. 5, below. Further steps include providing 430 a keyless adapter cable 600 (FIG. 6), and attaching 440 the keyed connector 214 (FIG. 2) to one end to make the keyed adapter cable 700 (FIG. 7), as described in further detail with respect to FIGS. 6-7, below. Additional steps include connecting 450 a keyless sensor 810 (FIG. 8) to the keyed adapter cable, and accessing 460 the restricted access monitor with the resulting adapted sensor 800 (FIG. 8), as described in further detail with respect to FIG. 3, above, and FIG. 8, below.

FIGS. 5-6 illustrate obtaining a sensor key from a keyed sensor 210 (FIG. 5) and using the key in the construction of a keyed adapter cable 700 (FIG. 7). As shown in FIG. 5, the keyed connector 214 is removed from a keyed sensor 210, such as by cutting the sensor cable 212 so as to leave sufficient wire for reattachment. As shown in FIG. 6, a keyless adapter cable 600 is provided having a cable 720 with a sensor connector 714 attached to a first end and with unconnected wires 610 at a second end. The removed keyed connector 214 is spliced or otherwise attached to the second end by any of various well-known methods, such as soldering or crimping followed by heat-shrink insulation to name a few techniques.

Construction of a keyed adapter cable 700 (FIG. 7) is described above with respect to removal and reattachment of a keyed connector 214. In an alternative embodiment, the key or memory element itself is removed from the keyed connector 214 of a keyed sensor 210 (FIG. 5) and embedded into or otherwise integrated into or incorporated with either one or both connectors of an otherwise keyless adapter cable 600 to construct the keyed adapter cable 700 (FIG. 7). In yet another embodiment, an equivalent memory element is purchased, developed or otherwise obtained and programmed with access data compatible with the memory element of the keyed sensor 210 (FIG. 5) and embedded into or otherwise integrated into or incorporated with either one or both connectors of an otherwise keyless adapter cable 600 to construct the keyed adapter cable 700 (FIG. 7).

FIG. 7 illustrates a keyed adapter cable 700 having a sensor connector 714, a keyed connector 214 and a cable 720 interconnecting the sensor connector 714 and keyed connector 214. The sensor connector 714 is configured to connect to a sensor patient cable connector 814 (FIG. 8), and the keyed connector 214 is configured to connect to a patient cable sensor connector 242 (FIG. 3). The keyed connector 214 has a memory element that is readable by a restricted access monitor 260 (FIG. 3) so as to unlock a locked sensor port 262 (FIG. 3), as described above.

5

FIG. 8 illustrates an adapted sensor 800 having a keyed adapter cable 700 attached to a keyless sensor 810. The sensor connector 714 of the keyed adapter cable 700 is mated to the patient cable connector 814 of the keyless sensor 810. The resulting adapted sensor 800 is configured 5 to function with a restricted access monitor 260 (FIG. 3) in an equivalent manner as a keyed sensor 210 (FIG. 2). In particular, the keyed connector 214 mates with a patient cable 240 (FIG. 3), which mates with a locked sensor port 262 (FIG. 3) of a restricted access monitor 260 (FIG. 3) so 10 that monitor 260 (FIG. 3) functions with the keyless sensor **810**, as described above with respect to FIG. **3**.

A keyed adapter cable is described above with respect to an adapter between a keyless sensor 810 and a patient cable **240** (FIG. 3). Such an embodiment is particularly advanta- 15 geous for utilization of a keyed connector 214 removed from a keyed sensor 210 (FIG. 5). In an alternative embodiment, the patient cable 240 (FIG. 3) itself is utilized as a keyed adapter cable between a keyless sensor 810 and a locked sensor port 262 (FIG. 3). In particular, a memory element 20 containing access data is removed from a keyed sensor 210 (FIG. 5) or a memory element is purchased, developed or otherwise obtained and programmed with compatible access data. The memory element is embedded into or otherwise integrated into or incorporated with either one or both 25 connectors of an otherwise keyless patient cable 240 (FIG. 3) to construct a keyed adapter cable.

A pulse oximeter access apparatus and method has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

What is claimed is:

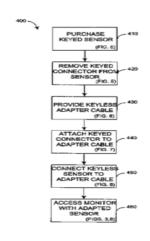
unlocked, the patient monitor system comprising a patient monitor and considered locked because the patient monitor is configured to process signals only from authorized noninvasive sensors during normal operation, the patient monitor system behaving as if unlocked because the patient 40 monitor, opposite to its configuration, processes signals from unauthorized noninvasive sensors during normal operation, the patient monitor system comprising:

a patient monitor including an input configured to receive signals responsive to light attenuated by body tissue of 45 a patient, said input also configured to receive predetermined access information, and a signal processor responsive to said signals and said predetermined access information from said input, said signal processor configured to process said predetermined access 50 information to determine whether to process said sig6

an accessory comprising a memory and one of a cable or a connector, said memory previously non-removably incorporated into a first noninvasive optical sensor so that removal significantly damages said first noninvasive optical sensor, said memory storing said predetermined access information and incorporated into said accessory subsequent to removal of said memory from said first noninvasive optical sensor by significantly damaging said first noninvasive optical sensor, said memory and said first noninvasive optical sensor having a one-to-one association with one another, said accessory configured to communicate said predetermined access information to said patient monitor through said input without said first noninvasive optical sensor, said accessory and said memory together having a one-to-many association with a plurality of noninvasive optical sensors; and

a second noninvasive optical sensor comprising a light detector configured to communicate an output signal to said input,

wherein in response to receiving said predetermined access information from said accessory through said input, said signal processor is configured to determine to process said output signal from said second noninvasive optical sensor during normal operation and subsequently process said output signal during normal operation.


- 2. The patient monitor system of claim 1, wherein said accessory comprises said cable.
- 3. The patient monitor system of claim 1, wherein said accessory comprises said connector.
- 4. The patient monitor system of claim 1, wherein prior to 1. A patient monitor system that is locked behaving as if 35 removal of said memory from said first noninvasive optical sensor, said memory communicated said predetermined access information to another patient monitor to unlock processing by said another patient monitor and enable patient monitoring with said another patient monitor using said first noninvasive optical sensor.
 - 5. The patient monitor system of claim 1, wherein in response to not receiving said predetermined access information from said accessory through said input, said signal processor is configured to determine not to process said output signal from said second noninvasive optical sensor during normal operation and subsequently not process said output signal during normal operation.
 - 6. The patient monitor system of claim 1, wherein said second noninvasive optical sensor is configured to communicate said output signal to said input through said accessory.

专利名称(译)	脉搏血氧计接入设备和方法		
公开(公告)号	<u>US9743887</u>	公开(公告)日	2017-08-29
申请号	US14/790454	申请日	2015-07-02
[标]申请(专利权)人(译)	梅西莫股份有限公司		
申请(专利权)人(译)	Masimo公司		
当前申请(专利权)人(译)	Masimo公司		
[标]发明人	AL ALI AMMAR COVERSTON RONALD KIANI MASSI E		
发明人	AL-ALI, AMMAR COVERSTON, RONALD KIANI, MASSI E.		
IPC分类号	A61B5/1455 A61B5/00		
CPC分类号	A61B5/7221 A61B5/14551 A61B5/7271 A61B2560/0266 A61B2560/0475 A61B2562/08 A61B2562/221 A61B2562/222		
代理机构(译)	KNOBBE, MARTENS, 奥尔森&BEAR LLP		
优先权	10/981186 2009-01-27 US 60/517954 2003-11-05 US		
其他公开文献	US20150374298A1		
外部链接	Espacenet USPTO		

摘要(译)

利用键控传感器和受限访问监视器的相应锁定传感器端口,为某些脉搏血氧测量系统提供访问。在这样的系统中,键控传感器具有包括存储元件的键,并且监视器具有与传感器端口相关联的存储器读取器。监视器被配置为仅在键与锁定的传感器端口通信时起作用,并且存储器读取器能够从存储器元件检索预定数据。通过提供与键控传感器分开的钥匙,将钥匙集成到适配器电缆中,并在传感器端口和未键控的传感器之间连接适配器电缆,使监视器与无键传感器一起工作,即可访问监视器。

