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7) ABSTRACT

Systems and methods are disclosed for determining indi-
vidual-specific blood flow characteristics. One method
includes acquiring, for each of a plurality of individuals,
individual-specific anatomic data and blood flow character-
istics of at least part of the individual’s vascular system;
executing a machine learning algorithm on the individual-
specific anatomic data and blood flow characteristics for
each of the plurality of individuals; relating, based on the
executed machine learning algorithm, each individual’s
individual-specific anatomic data to functional estimates of
blood flow characteristics; acquiring, for an individual and
individual-specific anatomic data of at least part of the
individual’s vascular system; and for at least one point in the
individual’s individual-specific anatomic data, determining
a blood flow characteristic of the individual, using relations
from the step of relating individual-specific anatomic data to
functional estimates of blood flow characteristics.
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SYSTEMS AND METHODS FOR
ESTIMATING ISCHEMIA AND BLOOD
FLOW CHARACTERISTICS FROM VESSEL
GEOMETRY AND PHYSIOLOGY

RELATED APPLICATION

[0001] This application claims priority to U.S. Provisional
Application Nos. 61/700,213 filed Sep. 12, 2012, and
61/793,673, filed Mar. 15, 2013, the entire disclosures of
which are hereby incorporated by reference in their entire-
ties.

FIELD OF THE INVENTION

[0002] Various embodiments of the present disclosure
relate generally to medical imaging and related methods.
More specifically, particular embodiments of the present
disclosure relate to systems and methods for estimating
patient-specific blood flow characteristics from vessel
geometry and physiology.

[0003] In addition, embodiments of the present disclosure
relate to rapid estimation of Ischemia, blood flow, fractional
flow reserve (FFR), or other metrics derived from patient-
specific anatomy and characteristics to aid physicians in the
diagnosis, management, and treatment of cardiovascular
diseases.

BACKGROUND

[0004] Cardiovascular diseases are the leading cause of
death in the industrialized world and contribute to roughly a
third of global deaths. The predominant form of acquired
cardiovascular disease, atherosclerosis, results from the
chronic buildup of fatty material in the inner layer of the
arteries supplying the heart, brain, kidneys, digestive sys-
tem, and lower extremities. Progressive coronary artery
disease restricts blood flow to the heart, presenting as chest
pain during physical exertion, referred to as chronic stable
angina, or when the patient is at rest, known as unstable
angina. More severe manifestation of disease may lead to
myocardial infarction, or heart attack. Patients presenting
with chest pain are usually subject to a range of currently
available noninvasive tests, including ECG, treadmill tests,
SPECT, PET, and CT—none of which measure blood flow
and provide only anatomic information or indirect indica-
tions of disease. Due to the lack of accurate functional
information provided by current noninvasive tests, many
patients require invasive catheter procedures to assess coro-
nary blood flow. There is a pressing need for a noninvasive
means to quantify blood flow in the human coronary arteries
to assess the functional significance of diffuse and focal
coronary artery disease. Additionally, there is a need to
achieve rapid assessment of blood flow to enable use in
emergency rooms, in-patient treatment, and onsite hospital
use. In addition to non-invasive use, there is a need within
invasive imaging, such as coronary angiography, to quickly
estimate functional metrics without the need for pressure or
flow wires or special medication. Such a technology is also
applicable to preventing, diagnosing, managing and treating
disease in other portions of the cardiovascular system
including the arteries of the neck, e.g. the carotid arteries, the
arteries in the head, e.g. the cerebral arteries, the arteries in
the abdomen, e.g. the abdominal aorta and its branches, the
arteries in legs, e.g. the femoral and popliteal arteries.
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[0005] A functional assessment of arterial capacity is
important for treatment planning to address patient needs.
Recent studies have demonstrated that hemodynamic char-
acteristics, such as Fractional Flow Reserve (FFR), are
important indicators to determine the optimal treatment for
a patient with arterial disease. Conventional assessments of
these hemodynamic characteristics use invasive catheteriza-
tions to directly measure blood flow characteristics, such as
pressure and flow velocity. However, despite the important
clinical information that is gathered, these invasive mea-
surement techniques present severe risks to the patient and
significant costs to the healthcare system.

[0006] To address the risks and costs associated with
invasive measurement, a new generation of noninvasive
tests have been developed to assess blood flow characteris-
tics. These noninvasive tests use patient imaging (such as
computed tomography (CT)) to determine a patient-specific
geometric model of the blood vessels and this model is used
computationally to simulate the blood flow using computa-
tional fluid dynamics (CFD) with appropriate physiological
boundary conditions and parameters. Examples of inputs to
these patient-specific boundary conditions include the
patient’s blood pressure, blood viscosity and the expected
demand of blood from the supplied tissue (derived from
scaling laws and a mass estimation of the supplied tissue
from the patient imaging). Although these simulation-based
estimations of blood flow characteristics have demonstrated
a level of fidelity comparable to direct (invasive) measure-
ments of the same quantity of interest, physical simulations
demand a substantial computational burden that can make
these virtual, noninvasive tests difficult to execute in a
real-time clinical environment. Consequently, the present
disclosure describes new approaches for performing rapid,
noninvasive estimations of blood flow characteristics that
are computationally inexpensive.

SUMMARY

[0007] Systems and methods are disclosed for deriving a
patient-specific geometric model of a patient’s blood ves-
sels, and combining this geometry with the patient-specific
physiological information and boundary conditions. Com-
bined, these data may be used to estimate the patient’s blood
flow characteristics and predict clinically relevant quantities
of interest (e.g., FFR). The presently disclosed systems and
methods offer advantages over physics-based simulation of
blood flow to compute the quantity of interest, such as by
instead using machine learning to predict the results of a
physics-based simulation. In one embodiment, disclosed
systems and methods involve two phases: first, a training
phase in which a machine learning system is trained to
predict one or more blood flow characteristics; and second,
a production phase in which the machine learning system is
used to produce one or more blood flow characteristics and
clinically relevant quantities of interest. In the case of
predicting multiple blood flow characteristics, this machine
learning system can be applied for each blood flow charac-
teristic and quantity of interest.

[0008] According to one embodiment, a method is dis-
closed for determining individual-specific blood flow char-
acteristics. The method includes acquiring, for each of a
plurality of individuals, individual-specific anatomic data
and blood flow characteristics of at least part of the indi-
vidual’s vascular system; executing a machine learning
algorithm on the individual-specific anatomic data and blood
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flow characteristics for each of the plurality of individuals;
relating, based on the executed machine learning algorithm,
each individual’s individual-specific anatomic data to func-
tional estimates of blood flow characteristics; acquiring, for
an individual, individual-specific anatomic data of at least
part of the individual’s vascular system; and for at least one
point in the individual’s individual-specific anatomic data,
determining a blood flow characteristic of the individual,
using relations from the step of relating individual-specific
anatomic data to functional estimates of blood flow charac-
teristics.

[0009] According to one embodiment, a system is dis-
closed for determining individual-specific blood flow char-
acteristics. The system includes a data storage device storing
instructions for estimating individual-specific blood flow
characteristics; and a processor configured to execute the
instructions to perform a method including the steps of:
acquiring, for each of a plurality of individuals, individual-
specific anatomic data and blood flow characteristics of at
least part of the individual’s vascular system; executing a
machine learning algorithm on the individual-specific ana-
tomic data and blood flow characteristics for each of the
plurality of individuals; relating, based on the executed
machine learning algorithm, each individual’s individual-
specific anatomic data to functional estimates of blood flow
characteristics; acquiring, for an individual, individual-spe-
cific anatomic data of at least part of the individual’s
vascular system; and for at least one point in the individual’s
individual-specific anatomic data, determining a blood flow
characteristic of the individual, using relations from the step
of relating individual-specific anatomic data to functional
estimates of blood flow characteristics.

[0010] According to one embodiment, a non-transitory
computer-readable medium storing instructions that, when
executed by a computer, cause the computer to perform a
method including: acquiring, for each of a plurality of
individuals, individual-specific anatomic data and blood
flow characteristics of at least part of the individual’s
vascular system; executing a machine learning algorithm on
the individual-specific anatomic data and blood flow char-
acteristics for each of the plurality of individuals; relating,
based on the executed machine learning algorithm, each
individual’s individual-specific anatomic data to functional
estimates of blood flow characteristics; acquiring, for an
individual, individual-specific anatomic data of at least part
of the individual’s vascular system; and for at least one point
in the Individual’s individual-specific anatomic data, deter-
mining a blood flow characteristic of the individual, using
relations from the step of relating individual-specific ana-
tomic data to functional estimates of blood flow character-
istics.

[0011] Additional objects and advantages of the disclosed
embodiments will be set forth in part in the description that
follows, and in part will be apparent from the description, or
may be learned by practice of the disclosed embodiments.
The objects and advantages of the disclosed embodiments
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims.

[0012] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the disclosed embodiments, as claimed.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
various exemplary embodiments and together with the
description, serve to explain the principles of the disclosed
embodiments.

[0014] FIG. 1 is a block diagram of an exemplary system
and network for estimating patient-specific blood flow char-
acteristics from vessel geometry and physiological informa-
tion, according to an exemplary embodiment of the present
disclosure.

[0015] FIG. 2 is a block diagram of an exemplary method
for estimating patient-specific blood flow characteristics
from vessel geometry and physiological information,
according to an exemplary embodiment of the present
disclosure.

DESCRIPTION OF THE EMBODIMENTS

[0016] Reference will now be made in detail to the exem-
plary embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts.

[0017] The present disclosure describes certain principles
and embodiments for providing advantages over physics-
based simulation of blood flow to compute patient-specific
blood flow characteristics and clinically relevant quantities
of interest. Namely, the presently disclosed systems and
methods may incorporate machine learning techniques to
predict the results of a physics-based simulation. For
example, the present disclosure describes an exemplary, less
processing-intensive technique, which may involve model-
ing the fractional flow reserve (FFR) as a function of a
patient’s vascular cross-sectional area, diseased length, and
boundary conditions. The cross-sectional area may be cal-
culated based on lumen segment and plaque segment,
among other things. The diseased length may be calculated
based on plaque segment and stenosis location, among other
things. The boundary conditions may reflect patient-specific
physiology, such as coronary flow (estimated from myocar-
dial mass), outlet area, and hyperemic assumptions, to
reflect that different patients have different geometry and
physiologic responses.

[0018] Inoneembodiment, fractional flow reserve may be
modeled as a function of a patient’s boundary conditions
(f(BCs)), and a function of a patient’s vascular geometry
(g(areaReductions)). Although the patient’s geometry may
be described as a function of “areaReductions,” it should be
appreciated that this term refers, not just to changes in
patient’s vascular cross-sectional area, but to any physical or
geometric characteristics affecting a patient’s blood flow. In
one embodiment, FFR can be predicted by optimizing the
functions “f” and “g” such that the difference between the
estimated FFR (FFR 7 s.ummerav) and the measured FFR
(mFFR) is minimized. In other words, machine learning
techniques can be used to solve for the functions that cause
the estimated FFR to approximate the measured FFR. In one
embodiment, the measured FFR may be calculated by tra-
ditional catheterized methods or by modern, computational
fluid dynamics (CFD) techniques. In one embodiment, one
or more machine learning algorithms may be used to opti-
mize the functions of boundary conditions and patient
geometry for hundreds or even thousands of patients, such
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that estimates for FFR can reliably approximate measured
FFR values. Thus, FFR values calculated by CFD tech-
niques can be valuable for training the machine learning
algorithms.

[0019] Referring now to the figures, FIG. 1 depicts a block
diagram of an exemplary system and network for estimating
patient-specific blood flow characteristics from vessel
geometry and physiological information. Specifically, FIG.
1 depicts a plurality of physicians 102 and third party
providers 104, any of whom may be connected to an
electronic network 100, such as the Internet, through one or
more computers, servers, and/or handheld mobile devices.
Physicians 102 and/or third party providers 104 may create
or otherwise obtain images of one or more patients’ cardiac
and/or vascular systems. The physicians 102 and/or third
party providers 104 may also obtain any combination of
patient-specific information, such as age, medical history,
blood pressure, blood viscosity, etc. Physicians 102 and/or
third party providers 104 may transmit the cardiac/vascular
images and/or patient-specific information to server systems
106 over the electronic network 100. Server systems 106
may include storage devices for storing images and data
received from physicians 102 and/or third party providers
104. Sever systems 106 may also include processing devices
for processing images and data stored in the storage devices.
[0020] FIG. 2 is a block diagram of an exemplary method
for estimating patient-specific blood flow characteristics
from vessel geometry and physiological information,
according to an exemplary embodiment of the present
disclosure. The method of FIG. 2 may be performed by
server systems 106, based on information received from
physicians 102 and/or third party providers 104 over elec-
tronic network 100.

[0021] In one embodiment, the method of FIG. 2 may
include a training method 202, for training one or more
machine learning algorithms based on numerous patients’
blood flow characteristic estimates, and a production method
204 for using the machine learning algorithm results to
predict a particular patient’s blood flow characteristics.
[0022] In one embodiment, training method 202 may be
performed based on FFR estimates generating using CFD
techniques for hundreds of patients. Training method 202
may involve acquiring, for each of a plurality of individuals,
e.g., in digital format: (a) a patient-specific geometric model,
(b) one or more measured or estimated physiological param-
eters, and (c) values of blood flow characteristics. Training
method 202 may then involve, for one or more points in each
patient’s model, creating a feature vector of the patients’
physiological parameters and associating the feature vector
with the values of blood flow characteristics. For example,
training method 202 may associate an estimated FFR with
every point in a patient’s geometric model. Training method
202 may then train a machine learning algorithm (e.g., using
processing devices of server systems 106) to predict blood
flow characteristics at each point of a geometric model,
based on the feature vectors and blood flow characteristics.
Training method 202 may then save the results of the
machine learning algorithm, including feature weights, in a
storage device of server systems 106. The stored feature
weights may define the extent to which patient features or
geometry are predictive of certain blood flow characteristics.
[0023] In one embodiment, the production method 204
may involve estimating FFR values for a particular patient,
based on results of executing training method 202. In one
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embodiment, production method 204 may include acquiring,
e.g. in digital format: (a) a patient-specific geometric model,
and (b) one or more measured or estimated physiological
parameters. For multiple points in the patient’s geometric
model, production method 204 may involve creating a
feature vector of the physiological parameters used in the
training mode. Production method 204 may then use saved
results of the machine learning algorithm to produce esti-
mates of the patient’s blood flow characteristics for each
point in the patient-specific geometric model. Finally, pro-
duction method 204 may include saving the results of the
machine learning algorithm, including predicted blood flow
characteristics, to a storage device of server systems 106.
[0024] Described below are general and specific exem-
plary embodiments for implementing a training mode and a
production mode of machine learning for predicting patient-
specific blood flow characteristics, e.g. using server systems
106 based on images and data received from physicians 102
and/or third party providers 104 over electronic network
100.

GENERAL EMBODIMENT

[0025] In a general embodiment, server systems 106 may
perform a training mode based on images and data received
from physicians 102 and/or third party providers 104 over
electronic network 100. Specifically, for one or more
patients, server systems 106 may acquire a digital represen-
tation (e.g., the memory or digital storage [e.g., hard drive,
network drive] of a computational device such as a com-
puter, laptop, DSP, server, etc.) of the following items: (a) a
patient-specific model of the geometry for one or more of the
patient’s blood vessels; (b) a list of one or more measured or
estimated physiological or phenotypic parameters of the
patient; and/or (¢) measurements, estimations or simulated
values of all blood flow characteristic being targeted for
prediction. In one embodiment, the patient-specific model of
the geometry may be represented by a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). In one embodiment, the list of one or more
measured or estimated physiological or phenotypic param-
eters of the patient may include blood pressure, blood
viscosity, patient age, patient gender, mass of the supplied
tissue, etc. These patient-specific parameters may be global
(e.g., blood pressure) or local (e.g., estimated density of the
vessel wall at a particular location).

[0026] For every point in the patient-specific geometric
model for which there is a measured, estimated or simulated
value of the blood flow characteristic, server systems 106
may then create a feature vector for that point. The feature
vector may be a numerical description of the patient-specific
geometry at that point and estimates of physiological or
phenotypic parameters of the patient. The feature vector may
contain both global and local physiological or phenotypic
parameters, where: for global parameters, all points have the
same numerical value; and for local parameters, the value(s)
may change at different points in the feature vector. Server
systems 106 may then associate this feature vector with the
measured, estimated or simulated value of the blood flow
characteristic at this point.

[0027] Server systems 106 may then train a machine
learning algorithm to predict the blood flow characteristics
at the points from the feature vectors at the points. Examples
of machine learning algorithms that can perform this task are
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support vector machines (SVMs), multi-layer perceptrons
(MLPs), and multivariate regression (MVR) (e.g., weighted
linear or logistic regression). Server systems 106 may then
save the results of the machine learning algorithm (e.g.,
feature weights) to a digital representation (e.g., the memory
or digital storage [e.g., hard drive, network drive] of a
computational device such as a computer, laptop, DSP,
server, etc.).

[0028] Also in a general embodiment, server systems 106
may perform a production mode based on images and data
received from physicians 102 and/or third party providers
104 over electronic network 100. For a patient on whom a
blood flow analysis is to be performed, server systems 106
may acquire a digital representation (e.g., the memory or
digital storage [e.g., hard drive, network drive] of a com-
putational device such as a computer, laptop. DSP, server,
etc.) of (a) a patient-specific model of the geometry for one
or more of the patient’s blood vessels; and (b) a list of one
or more estimates of physiological or phenotypic parameters
of the patient. In one embodiment, the patient-specific model
of the geometry for one or more of the patient’s blood
vessels may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). The list of one or more estimates of physi-
ological or phenotypic parameters of the patient, may
include blood pressure, blood viscosity, patient age, patient
gender, the mass of the supplied tissue, etc. These param-
eters may be global (e.g., blood pressure) or local (e.g.,
estimated density of the vessel wall at a location). This list
of parameters must be the same as the list used in the training
mode.

[0029] For every point in the patient-specific geometric
model, server systems 106 may create a feature vector that
consists of a numerical description of the geometry and
estimates of physiological or phenotypic parameters of the
patient. Global physiological or phenotypic parameters can
be used in the feature vector of all points and local physi-
ological or phenotypic parameters can change in the feature
vector of different points. These feature vectors may repre-
sent the same parameters used in the training mode, Server
systems 106 may then use the saved results of the machine
learning algorithm produced in the training mode (e.g.,
feature weights) to produce estimates of the blood flow
characteristics at each point in the patient-specific geometric
model. These estimates may be produced using the same
machine learning algorithm technique used in the training
mode (e.g., the SVM, MLP, MVR technique). Server sys-
tems 106 may also save the predicted blood flow character-
istics for each point to a digital representation (e.g., the
memory or digital storage [e.g., hard drive, network drive]
of a computational device such as a computer, laptop, DSP,
server, etc.).

EXEMPLARY EMBODIMENT

[0030] In one exemplary embodiment, server systems 106
may perform a training mode based on images and data
received from physicians 102 and/or third party providers
104 over electronic network 100. Specifically, for one or
more patients, server systems 106 may acquire a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.) of (a) a patient-specific
model of the geometry for the patient’s ascending aorta and
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coronary artery tree; (b) a list of measured or estimated
physiological or phenotypic parameters of the patient; and
(¢) measurements of the FFR when available.

[0031] In one embodiment, the patient-specific model of
the geometry for the patient’s ascending aorta and coronary
artery tree may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). This model may be derived by performing a
cardiac CT imaging study of the patient during the end
diastole phase of the cardiac cycle. The resulting CT images
may then be segmented manually or automatically to iden-
tify voxels belonging to the aorta and to the lumen of the
coronary arteries. Once all relevant voxels are identified, the
geometric model can be derived (e.g., using marching
cubes).

[0032] In one embodiment, the list of measured or esti-
mated physiological or phenotypic parameters of the patient
may be obtained and may include: (i) systolic and diastolic
blood pressures; (ii) heart rate; (iii) hematocrit level; (iv)
patient age, gender, height, weight, general health status
(presence or absence of diabetes, current medications); (v)
lifestyle characteristics: smoker/non-smoker; and/or (vi)
myocardial mass (may be derived by segmenting the myo-
cardium obtained during the CT imaging study and then
calculating the volume in the image; the mass is then
computed using the computed volume and an estimated
density (1.05 g/mL) of the myocardial mass.

[0033] Inone embodiment, measurements of the FFR may
be obtained when available. If the measured FFR value is
not available at a given spatial location in the patient-
specific geometric model, then a numerically computed
value of the FFR at the point may be used. The numerically
computed values may be obtained from a previous CFD
simulation using the same geometric model and patient-
specific boundary conditions derived from the physiological
and phenotypic parameters listed above.

[0034] For every point in the patient-specific geometric
model for which there is a measured, estimated or simulated
value of the blood flow characteristics, server systems 106
may create a feature vector for that point that contains a
numerical description of physiological or phenotypic param-
eters of the patient and a description of the local geometry.
Specifically the feature vector may contain: (i) systolic and
diastolic blood pressures; (ii) heart rate; (iii) blood propet-
ties including: plasma, red blood cells (erythrocytes), hema-
tocrit, white blood cells (leukocytes) and platelets (throm-
bocytes), viscosity, yield stress; (iv) patient age, gender,
height, weight, etc.; (v) diseases: presence or absence of
diabetes, myocardial infarction, malignant and rheumatic
conditions, peripheral vascular conditions, etc.; (vi) lifestyle
characteristics: presence or absence of current medications/
drugs, smoker/non-smoker; (vii) characteristics of the aortic
geometry (Cross-sectional area of the aortic inlet and outlet,
Surface area and volume of the aorta, Minimum, maximum,
and average cross-sectional area, etc.); (viii) characteristics
of the coronary branch geometry; and (ix) one or more
feature sets.

[0035] In one embodiment, the characteristics of the coro-
nary branch geometry may include: (i) volumes of the aorta
upstream/downstream of the coronary branch point; (ii)
cross-sectional area of the coronary/aorta bifurcation point,
i.e., inlet to the coronary branch; (iii) total number of vessel
bifurcations, and the number of upstream/downstream ves-
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sel bifurcations; (iv) average, minimum, and maximum
upstream/downstream cross-sectional areas; (v) distances
(along the vessel centerline) to the centerline point of
minimum and maximum upstream/downstream cross-sec-
tional areas; (vi) cross-sectional of and distance (along the
vessel centerline) to the nearest upstream/downstream ves-
sel bifurcation: (vii) cross-sectional area of and distance
(along the vessel centerline) to the nearest coronary outlet
and aortic inlet/outlet; (viii) cross-sectional areas and dis-
tances (along the vessel centerline) to the downstream
coronary outlets with the smallest/largest cross-sectional
areas; (ix) upstream/downstream volumes of the coronary
vessels; and (x) upstream/downstream volume fractions of
the coronary vessel with a cross-sectional area below a
user-specified tolerance.

[0036] In one embodiment, a first feature set may define
cross-sectional area features, such as a cross-sectional lumen
area along the coronary centerline, a powered cross-sec-
tional lumen area, a ratio of lumen cross-sectional area with
respect to the main ostia (LM, RCA), a powered ratio of
lumen cross-sectional area with respect to the main ostia, a
degree of tapering in cross-sectional lumen area along the
centerline, locations of stenotic lesions, lengths of stenotic
lesions, location and number of lesions corresponding to
50%, 75%, 90% area reduction, distance from stenotic
lesion to the main ostia, and/or irregularity (or circularity) of
cross-sectional lumen boundary.

[0037] In one embodiment, the cross-sectional lumen area
along the coronary centerline may be calculated by extract-
ing a centerline from constructed geometry, smoothing the
centerline if necessary, and computing cross-sectional area
at each centerline point and map it to corresponding surface
and volume mesh points. In one embodiment, the powered
cross-sectional lumen area can be determined from various
source of scaling laws. In one embodiment, the ratio of
lumen cross-sectional area with respect to the main ostia
(LM, RCA) can be calculated by measuring cross-sectional
area at the LM ostium, normalizing cross-sectional area of
the left coronary by LM ostium area, measuring cross-
sectional area at the RCA ostium, and normalizing cross-
sectional area of the right coronary by RCA ostium area. In
one embodiment, the powered ratio of lumen cross-sectional
area with respect to the main ostia can be determined from
various source of scaling laws. In one embodiment, the
degree of tapering in cross-sectional lumen area along the
centerline can be calculated by sampling centerline points
within a certain interval (e.g., twice the diameter of the
vessel) and compute a slope of linearly-fitted cross-sectional
area. In one embodiment, the location of stenotic lesions can
be calculated by detecting minima of cross-sectional area
curve, detecting locations where first derivative of area
curve is zero and second derivative is positive, and com-
puting distance (parametric arc length of centerline) from
the main ostium. In one embodiment, the lengths of stenotic
lesions can be calculated by computing the proximal and
distal locations from the stenotic lesion, where cross-sec-
tional area is recovered.

[0038] In one embodiment, another feature set may
include intensity features that define, for example, intensity
change along the centerline (slope of linearly-fitted intensity
variation). In one embodiment, another feature set may
include surface features that define, for example, 3D surface
curvature of geometry (Gaussian, maximum, minimum,
mean). In one embodiment, another feature set may include
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volume features that define, for example, a ratio of total
coronary volume compared to myocardial volume. In one
embodiment, another feature set may include centerline
features that define, for example, curvature (bending) of
coronary centerline, e.g., by computing Frenet curvature:

”
|

_lpxp
Ip'P

where p is coordinate of centerline
[0039] or by computing an inverse of the radius of cir-
cumscribed circle along the centerline points. Curvature
(bending) of coronary centerline may also be calculated
based on tortuosity (non-planarity) of coronary centerline,
e.g., by computing Frenet torsion:

//l

|p/ Xp /p///
Sl xp

where p is coordinate of centerline

[0040] In one embodiment, another feature set may
include a SYNTAX scoring feature, including, for example,
an existence of aorto ostial lesion, detection of a lesion
located at the origin of the coronary from the aorta; and/or
dominance (left or right).

[0041] In one embodiment, another feature set may
include a simplified physics feature, e.g., including a frac-
tional flow reserve value derived from Hagen-Poisseille flow
assumption (Resistance~Area™). For example, in one
embodiment, server systems 106 may compute the cross-
sectional area of the origin (LM ostium or RCA ostium) of
the coronary from the aorta (A,) with aortic pressure (P);
compute cross-sectional area of coronary vessel (A,) at each
sampled interval (L,); determine the amount of coronary
flow in each segment of vessel using resistance boundary
condition under hyperemic assumption (Q,); estimate resis-
tance at each sampled location (R))

SﬂL;
Ri=o " +Bi,

where:

[0042] Nominal value p=dynamic viscosity of blood,
a~1.0, §,=0, y~=2.0 (Hagen-Poisseille).

[0043] Server systems 106 may estimate pressure drop
(AP,) as AP~QR, and compute FFR at each sampled loca-
tion as

Po- ) AP

FFR; =
Py

Locations of cross-sectional area minima or intervals
smaller than vessel radius may be used for sampling loca-
tions. Server systems 106 may interpolate FFR along the
centerline using FFR,, project FFR values to 3D surface
mesh node, and vary o, p,, v, and obtain new sets of FFR
estimation as necessary for training, such as by using the
feature sets defined above to perturb parameters where ., f;
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can be a function of the diseased length, degree of stenosis
and tapering ratio to account for tapered vessel: and Q, can
be determined by summing distributed flow of each outlet on
the basis of the same scaling law as the resistance boundary
condition (outlet resistanceccoutlet area™'-**). However, a
new scaling law and hyperemic assumption can be adopted,
and this feature vector may be associated with the measure-
ment or simulated value of the FFR at that point. Server
systems 106 may also train a linear SVM to predict the blood
flow characteristics at the points from the feature vectors at
the points; and save the results of the SVM as a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

[0044] In an exemplary production mode, servers systems
106 may, for a target patient, acquire in digital representation
(e.g., the memory or digital storage (e.g., hard drive, net-
work drive) of a computational device such as a computer,
laptop, DSP, server, etc.): (a) a patient-specific model of the
geometry for the patient’s ascending aorta and coronary
artery tree; and (b) a list of physiological and phenotypic
parameters of the patient obtained during training mode. In
one embodiment, the patient-specific model of the geometry
for the patient’s ascending aorta and coronary artery tree
may be represented as a list of points in space (possibly with
a list of neighbors for each point) in which the space can be
mapped to spatial units between points (e.g., millimeters).
This model may be derived by performing a cardiac CT
imaging of the patient in the end diastole phase of the
cardiac cycle. This image then may be segmented manually
or automatically to identify voxels belonging to the aorta
and the lumen of the coronary arteries. Once the voxels are
identified, the geometric model can be derived (e.g., using
marching cubes). The process for generating the patient-
specific model of the geometry may be the same as in the
training mode. For every point in the patient-specific geo-
metric model, the server systems 106 may create a feature
vector for that point that consists of a numerical description
of the geometry at that point and estimates of physiological
or phenotypic parameters of the patient. These features may
be the same as the quantities used in the training mode. The
server systems 106 may then use the saved results of the
machine learning algorithm produced in the training mode
(e.g., feature weights) to produce estimates of the FFR at
each point in the patient-specific geometric model. These
estimates may be produced using the same linear SVM
technique used in the training mode. The server systems 106
may save the predicted FFR values for each point to a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

[0045] In one embodiment, the above factors (i) thru (viii)
(“Systolic and diastolic blood pressures” thru “Characteris-
tics of the coronary branch geometry”) may be considered
global features, which are applicable to all points within a
given patient’s geometric model. Also, items (ix) thru (xv)
(“Feature Set I: Cross-sectional area feature” thru “Feature
Set VII: Simplified Physics feature™) may be considered
features that are local to specific points within a given
patients geometric model. In addition, features (i) thru (vi)
may be considered variables within the function of boundary
conditions, f(BCs), while features (vii) thru (xv) may be
considered variables within the function of geometry,
g(areaReductions), on that page. It will be appreciated that
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any combination of those features, modified by any desired
weighting scheme, may be incorporated into a machine
learning algorithm executed according to the disclosed
embodiments.

[0046] In another embodiment, systems and methods are
described to obtain estimates of physiologic metrics, such as
ischemia, blood flow, or FFR from patient-specific anatomy
and characteristics. The system may consist of a computer
and software either on-site at a hospital or off-site that
physicians load or transfer patient-specific data to. The
anatomic data may consist of imaging data (ie CT) or
measurements and anatomic representation already obtained
from imaging data (quantitative angiography, vessel seg-
mentations from third party software, vascular diameters,
etc). Other patient characteristics may consist of heart rate,
blood pressure, demographics such as age or sex, medica-
tion, disease states including diabetes and hypertension,
prior MI, etc.

[0047] After relevant data is received by the system, it
may be processed by software automation, the physician
using the system, a third-party technician or analyst using
the system, or any combination. The data may be processed
using algorithms relating the patient’s anatomy and charac-
teristics to functional estimates of ischemia and blood flow.
The algorithms may employ empirically derived models,
machine learning, or analytical models relating blood flow
to anatomy. Estimates of ischemia (blood flow, FFR, etc)
may be generated for a specific location in a vessel, as an
overall estimate for the vessel, or for an entire system of
vessels such as the coronary arteries.

[0048] A numeric output, such as an FFR value, may be
generated or simple positive/negative/Inconclusive indica-
tions based on clinical metrics may be provided (ie FFR> or
<0.80). Along with the output, a confidence may be pro-
vided. Results of the analysis may be displayed or stored in
a variety of media, including images, renderings, tables of
values, or reports and may be transferred back to the
physician through the system or through other electronic or
physical delivery methods.

[0049] In one embodiment, the algorithm to estimate FFR
from patient anatomy consists of deriving an analytical
model based on fundamentals of physiology and physics, for
example analytical fluid dynamics equations and morphom-
etry scaling laws. Information about the following coronary
anatomy, including but not limited to the following features
derived from imaging data (ie CT), serves as an input:

[0050] Vessel Sizes

[0051] Vessel size at ostium

[0052] Vessel size at distal branches

[0053] Reference and minimum vessel size at plaque
[0054] Distance from ostium to plaque

[0055] Length of plaque and length of minimum vessel
size

[0056] Myocardial volume

[0057] Branches proximal/distal to measurement location
[0058] Branches proximal/distal to plaque

[0059] Measurement location

[0060] Using some or all of the information above, a

network of flow resistance may be created. Pressure drop
may be estimated by relating the amount of blood flow to the
resistance to blood flow using any of a variety of analytical
models, such as Poiseuille’s equation, energy loss models,
etc. As an example embodiment:

FFR=(P-AP)/P
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[0061] where P is the aortic pressure and AP is the change
in pressure from the aorta to the location of interest.

AP=0R,

where Q is flow rate, and R is resistance

[0062] The flow rate may be estimated by morphometry
relations, such asQxM"* where M is the myocardial volume
and k is an exponent, often approximately 0.75. Individual
vessel flow rates may scale based on the morphometry
relationship of QOD* where D is the diameter of the vessel
and k is an exponent, often between 2 and 3.

[0063] In an example embodiment, the resistance through
a vessel may be estimated by Poiseuille’s equation:

RocpL/iD*

where u is viscosity, L is length, and D is diameter

[0064] Downstream, or microvascular resistances may be
estimated through morphometric tree generation or other
methods described in Ser. No. 13/014,809 and Ser. No.
8/157.742. FFR can be estimated by relating all the resis-
tance and flow estimates in a network representing the
distribution of vessels in the coronary circulation, and pres-
sure can be solved.

[0065] In another embodiment, regression or machine
learning may be employed to train the algorithm using the
features previously mentioned, formulations of resistances
and flows, and additional anatomic and patient characteris-
tics, including but not limited to:

[0066] Age, sex, and other demographics

[0067] Heart rate, blood pressure, and other physiologic
measures

[0068] Disease state, such as hypertension, diabetes, pre-

vious cardiac events

[0069] Vessel dominance

[0070] Plaque type

[0071] Plaque shape

[0072] Prior simulation results, such as full 3D simula-
tions of FFR

[0073] A library or database of anatomic and patient

characteristics along with FFR, ischemia test results, previ-
ous simulation results, imaging data, or other metrics may be
compiled. For every point of interest where an FFR estima-
tion is required, a set of features may be generated. A
regression or machine learning technique, such as linear
regression or decision trees, may be used to define which
features have the largest impact on estimating FFR and to
create an algorithm that weights the various features.
Example embodiments may estimate FFR numerically, clas-
sify a vessel as ischemia positive or negative, or classify a
patient as ischemia positive or negative.

[0074] Once an algorithm is created, it may be executed on
new data provided by the physician to the system. As
previously described, a number of methods may be used to
generate the anatomic information required, and once
obtained, the features defined, algorithm performed, and
results reported. Along with numerical or classification
results, a confidence from the machine learning algorithm
may be provided. One example embodiment is to report that
a particular vessel in a patient has a specific percent confi-
dence of being positive or negative for ischemia, ie Left
anterior descending artery is positive with 85% confidence.
Over time, the algorithm may be refined or updated as
additional patient data is added to the library or database.
[0075] One additional embodiment is to derive any of the
previously mentioned parameters, physiologic, or physical
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estimations empirically. Coupled with machine learning or
analytic techniques, empirical studies of flow and pressure
across various geometries may be utilized to inform the
algorithms.

[0076] Other embodiments of the invention will be appar-
ent to those skilled in the art from consideration of the
specification and practice of the invention disclosed herein.
It is intended that the specification and examples be con-
sidered as exemplary only, with a true scope and spirit of the
invention being indicated by the following claims.

1-31. (canceled)
32. A method for estimating ischemia of a patient, the
method comprising:

acquiring, by a processor, for each of a plurality of
individuals, (1) individual-specific anatomic data,
including a vascular cross sectional area, and (2) an
estimate of ischemia, at one or more points of at least
part of each individual’s vascular system;

training a machine learning algorithm performed by the
processor to predict ischemia at one or more points of
a vascular system of an individual of the plurality of
individuals, using a multilayer perceptron to generate
learned associations between the individual-specific
anatomic data and the estimate of ischemia at the one
or more points of each individual’s vascular system, for
each of the plurality of individuals;

acquiring, by the processor, for a patient different from the
plurality of individuals, patient-specific anatomic data,
including a vascular cross sectional area, of at least part
of the patient’s vascular system;

for at least one point in the patient’s vascular system,
determining, by the processor, an estimate of ischemia
of the patient using the trained machine learning algo-
rithm; and

generating and displaying, by the processor, or storing, by
the processor, the determined estimate of ischemia of
the patient in one or more of a media, including images,
renderings, tables of values, or reports.

33. The method of claim 32, further comprising;

acquiring, by the processor, for each of the plurality of
individuals, one or more individual characteristics;

receiving, by the processor, for each of the plurality of
individuals, functional estimates of a blood flow char-
acteristic at one or more points of the individual’s
vascular system,;

training, by the processor, the machine learning algorithm

further, using the individual-specific anatomic data, the
one or more individual characteristics, the functional
estimates of the blood flow characteristic, and the
estimate of ischemia as supervised training data for the
multilayer perceptron, for each of the plurality of
individuals; and

acquiring further, by the processor, for the patient differ-

ent from the plurality of individuals, one or more
patient characteristics.

34. The method of claim 32, wherein the estimate of the
determined ischemia of the patient or the estimate of isch-
emia at the one or more points of each individual’s vascular
system includes, one or more of: a blood flow characteristic,
or a fractional flow reserve value.

35. The method of claim 33, wherein, determining the
estimate of ischemia of the patient further comprises:
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training, by the processor, the machine learning algorithm
to weight an impact of the individual-specific anatomi-
cal data on the functional estimates of the blood flow
characteristic.

36. The method of claim 33, wherein the individual
characteristics or the patient characteristics include one or
more of: heart rate, blood pressure, age, sex, medication,
discase states, presence or absence of diabetes, hyperten-
sion, vessel dominance, and prior myocardial infarction
(MD).

37. The method of claim 32, further comprising display-
ing, by the processor, along with the estimate of the deter-
mined ischemia of the patient, a confidence level or a
positive, negative, or inconclusive indication.

38. The method of claim 33, wherein the functional
estimates of the blood flow characteristic are based on one
or more of analytical fluid dynamics equations and mor-
phometry scaling laws.

39. The method of claim 32, wherein the individual-
specific or the patient-specific anatomic data includes one or
more of: vessel size, vessel size at ostium, vessel size at
distal branches, reference and minimum vessel size at
plaque, distance from ostium to plaque, length of plaque and
length of minimum vessel size, myocardial volume,
branches proximal/distal to measurement location, branches
proximal/distal to plaque, and measurement location.

40. The method of claim 33, further comprising:

compiling, by the processor, a library or database of the

individual-specific or the patient-specific anatomic
characteristics, and the individual or the patient char-
acteristics, along with fractional flow reserve (FFR),
ischemia test results, previous simulation results, and
imaging data.

41. The method of claim 40, further comprising:

refining, by the processor, the machine learning algorithm

based on additional data added to the library or data-
base.

42. A system for determining estimating ischemia of a
patient, the system comprising:

a data storage device storing instructions for estimating

ischemia of a patient; and

a processor configured to execute the instructions to

perform a method including steps of:

acquiring, for each of a plurality of individuals, (1)
individual-specific anatomic data, including a vas-
cular cross sectional area, and (2) an indicia of
ischemia, at one or more points of at least part of
each individual’s vascular system;

training a machine learning algorithm to predict isch-
emia at one or more points of a vascular system of an
individual of the plurality of individuals, using a
multilayer perceptron to generate learned associa-
tions between the individual-specific anatomic data
and the indicia of ischemia at the one or more points
of each individual’s vascular system, for each of the
plurality of individuals;

acquiring, for a patient different from the plurality of
individuals, patient-specific anatomic data, including
a vascular cross sectional area, of at least part of the
patient’s vascular system;

for at least one point in the patient’s vascular system,
determining indicia of ischemia of the patient using
the trained machine learning algorithm; and
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generating and displaying or storing indicia of the
determined indicia of ischemia of the patient in one
or more of a media, including images, renderings,
tables of values, or reports.

43. The system of claim 42, wherein the system is further
configured for

acquiring, for each of the plurality of individuals, one or

more individual characteristics;
receiving, for each of the plurality of individuals, func-
tional estimates of a blood flow characteristic at one or
more points of the individual’s vascular system;

training the machine learning algorithm further, using the
individual-specific anatomic data, the one or more
individual characteristics, the functional estimates of
the blood flow characteristic, and the indicia of isch-
emia as supervised training data for the multilayer
perceptron, for each of the plurality of individuals; and

acquiring further, for the patient different from the plu-
rality of individuals, one or more patient characteris-
tics.

44. The system of claim 42, wherein the indicia of
ischemia of the patient or the plurality of individuals
includes, one or more of: a blood flow characteristic, or a
fractional flow reserve value.

45. The system of claim 42, wherein, determining the
indicia of ischemia of the patient further comprises:

training the machine learning algorithm to weight an

impact of the individual-specific anatomical data on the
functional estimates of the blood flow characteristic.

46. The system of claim 42, wherein the individual
characteristics or the patient characteristics include one or
more of: heart rate, blood pressure, age, sex, medication,
disease states, presence or absence of diabetes, hyperten-
sion, vessel dominance, and prior myocardial infarction
MD).

47. The system of claim 42, wherein the processor is
further configured for:

displaying along with the determined indicia of ischemia

of the patient, a confidence level or a positive, negative,
or inconclusive indication.

48. The system of claim 43, wherein the functional
estimates of blood flow characteristics are based on one or
more of analytical fluid dynamics equations and morphom-
etry scaling laws.

49. A non-transitory computer-readable medium storing
instructions that, when executed by a computer, cause the
computer to perform a method including:

acquiring, for each of a plurality of individuals, (1)

individual-specific anatomic data, including a vascular
cross sectional area, and (2) an indicia of ischemia, at
one or more points of at least part of each individual’s
vascular system;

training a machine learning algorithm to predict ischemia

at one or more points of a vascular system of an
individual of the plurality of individuals, using a mul-
tilayer perceptron to generate learned associations
between the individual-specific anatomic data and the
indicia of ischemia at the one or more points of each
individual’s vascular system, for each of the plurality
of individuals;

acquiring, for a patient different from the plurality of

individuals, patient-specific anatomic data, including a
vascular cross sectional area, of at least part of the
patient’s vascular system;
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for at least one point in the patient’s vascular system,
determining ischemia of the patient using the trained
machine learning algorithm; and

generating and displaying or storing indicia of the deter-

mined ischemia of the patient in one or more of a
media, including images, renderings, tables of values,
or reports.

50. The non-transitory computer-readable medium of
claim 49, further comprising:

acquiring, for each of the plurality of individuals, one or

more individual characteristics;
receiving, for each of the plurality of individuals, func-
tional estimates of a blood flow characteristic at one or
more points of the individual’s vascular system;

training the machine learning algorithm further, using the
individual-specific anatomic data, the one or more
individual characteristics, the functional estimates of
the blood flow characteristic, and the indicia of isch-
emia as supervised training data for the multilayer
perceptron, for each of the plurality of individuals; and

acquiring further, for the patient different from the plu-
rality of individuals, one or more patient characteris-
tics.

51. The non-transitory computer-readable medium of
claim 49, wherein the machine learning algorithm further
comprises one or more of: a support vector machine (SVM),
another multi-layer perceptron (MLP), a multivariate regres-
sion (MVR), and a weighted linear or logistic regression.

* % % k¥
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