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SYSTEMS AND METHODS FOR
ESTIMATING ISCHEMIA AND BLOOD FLOW
CHARACTERISTICS FROM VESSEL
GEOMETRY AND PHYSIOLOGY

RELATED APPLICATION

[0001] This application claims priority to U.S. Provisional
Application Nos. 61/700,213 filed Sep. 12,2012, and 61/793,
673, filed Mar. 15, 2013, the entire disclosures of which are
hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

[0002] Various embodiments of the present disclosure
relate generally to medical imaging and related methods.
More specifically, particular embodiments of the present dis-
closure relate to systems and methods for estimating patient-
specific blood flow characteristics from vessel geometry and
physiology.

[0003] In addition, embodiments of the present disclosure
relate to rapid estimation of ischemia, blood flow, fractional
flow reserve (FFR), or other metrics derived from patient-
specific anatomy and characteristics to aid physicians in the
diagnosis, management, and treatment of cardiovascular dis-
eases.

BACKGROUND

[0004] Cardiovascular diseases are the leading cause of
death in the industrialized world and contribute to roughly a
third of global deaths. The predominant form of acquired
cardiovascular disease, atherosclerosis, results from the
chronic buildup of fatty material in the inner layer of the
arteries supplying the heart, brain, kidneys, digestive system,
and lower extremities. Progressive coronary artery disease
restricts blood flow to the heart, presenting as chest pain
during physical exertion, referred to as chronic stable angina,
or when the patient is at rest, known as unstable angina. More
severe manifestation of disease may lead to myocardial inf-
arction, or heart attack. Patients presenting with chest pain are
usually subject to a range of currently available noninvasive
tests, including ECG, treadmill tests, SPECT, PET, and
CT—none of which measure blood flow and provide only
anatomic information or indirect indications of disease. Due
to the lack of accurate functional information provided by
current noninvasive tests, many patients require invasive
catheter procedures to assess coronary blood flow. There is a
pressing need for a noninvasive means to quantify blood flow
in the human coronary arteries to assess the functional sig-
nificance of diffuse and focal coronary artery disease. Addi-
tionally, there is a need to achieve rapid assessment of blood
flow to enable use in emergency rooms, in-patient treatment,
and onsite hospital use. In addition to non-invasive use, there
is a need within invasive imaging, such as coronary angiog-
raphy, to quickly estimate functional metrics without the need
for pressure or flow wires or special medication. Such a
technology is also applicable to preventing, diagnosing, man-
aging and treating disease in other portions of the cardiovas-
cular system including the arteries of the neck, e.g. the carotid
arteries, the arteries in the head, e.g. the cerebral arteries, the
arteries in the abdomen, e.g. the abdominal aorta and its
branches, the arteries in legs, e.g. the femoral and popliteal
arteries.

[0005] A functional assessment of arterial capacity is
important for treatment planning to address patient needs.
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Recent studies have demonstrated that hemodynamic charac-
teristics, such as Fractional Flow Reserve (FFR), are impor-
tantindicators to determine the optimal treatment fora patient
with arterial disease. Conventional assessments of these
hemodynamic characteristics use invasive catheterizations to
directly measure blood flow characteristics, such as pressure
and flow velocity. However, despite the important clinical
information that is gathered, these invasive measurement
techniques present severe risks to the patient and significant
costs to the healthcare system.

[0006] To address the risks and costs associated with inva-
sive measurement, a new generation of noninvasive tests have
been developed to assess blood flow characteristics. These
noninvasive tests use patient imaging (such as computed
tomography (CT)) to determine a patient-specific geometric
model of the blood vessels and this model is used computa-
tionally to simulate the blood flow using computational fluid
dynamics (CFD) with appropriate physiological boundary
conditions and parameters. Examples of inputs to these
patient-specific boundary conditions include the patient’s
blood pressure, blood viscosity and the expected demand of
blood from the supplied tissue (derived from scaling laws and
a mass estimation of the supplied tissue from the patient
imaging). Although these simulation-based estimations of
blood flow characteristics have demonstrated a level of fidel-
ity comparable to direct (invasive) measurements of the same
quantity of interest, physical simulations demand a substan-
tial computational burden that can make these virtual, nonin-
vasive tests difficult to execute in a real-time clinical environ-
ment. Consequently, the present disclosure describes new
approaches for performing rapid, noninvasive estimations of
blood flow characteristics that are computationally inexpen-
sive.

SUMMARY

[0007] Systems and methods are disclosed for deriving a
patient-specific geometric model of a patient’s blood vessels,
and combining this geometry with the patient-specific physi-
ological information and boundary conditions. Combined,
these data may be used to estimate the patient’s blood flow
characteristics and predict clinically relevant quantities of
interest (e.g., FFR). The presently disclosed systems and
methods offer advantages over physics-based simulation of
blood flow to compute the quantity of interest, such as by
instead using machine learning to predict the results of a
physics-based simulation. In one embodiment, disclosed sys-
tems and methods involve two phases: first, a training phase in
which a machine learning system is trained to predict one or
more blood flow characteristics; and second, a production
phase in which the machine learning system is used to pro-
duce one or more blood flow characteristics and clinically
relevant quantities of interest. In the case of predicting mul-
tiple blood flow characteristics, this machine learning system
can be applied for each blood flow characteristic and quantity
of interest.

[0008] According to one embodiment, a method is dis-
closed for determining individual-specific blood flow charac-
teristics. The method includes acquiring, for each of a plural-
ity of individuals, individual-specific anatomic data and
blood flow characteristics of at least part of the individual’s
vascular system; executing a machine learning algorithm on
the individual-specific anatomic data and blood flow charac-
teristics for each of the plurality of individuals; relating,
based on the executed machine learning algorithm, each indi-
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vidual’s individual-specific anatomic data to functional esti-
mates of blood flow characteristics; acquiring, for an indi-
vidual, individual-specific anatomic data of at least part of the
individual’s vascular system; and for at least one point in the
individual’s individual-specific anatomic data, determining a
blood flow characteristic of the individual, using relations
from the step of relating individual-specific anatomic data to
functional estimates of blood flow characteristics.

[0009] According to one embodiment, a system is dis-
closed for determining individual-specific blood flow charac-
teristics. The system includes a data storage device storing
instructions for estimating individual-specific blood flow
characteristics; and a processor configured to execute the
instructions to perform a method including the steps of:
acquiring, for each of a plurality of individuals, individual-
specific anatomic data and blood flow characteristics of at
least part of the individual’s vascular system; executing a
machine learning algorithm on the individual-specific ana-
tomic data and blood flow characteristics for each of the
plurality of individuals; relating, based on the executed
machine learning algorithm, each individual’s individual-
specific anatomic data to functional estimates of blood flow
characteristics; acquiring, for an individual, individual-spe-
cific anatomic data of at least part of the individual’s vascular
system; and for at least one point in the individual’s indi-
vidual-specific anatomic data, determining a blood flow char-
acteristic of the individual, using relations from the step of
relating individual-specific anatomic data to functional esti-
mates of blood flow characteristics.

[0010] According to one embodiment, a non-transitory
computer-readable medium storing instructions that, when
executed by a computer, cause the computer to perform a
method including: acquiring, for each of a plurality of indi-
viduals, individual-specific anatomic data and blood flow
characteristics of at least part of the individual’s vascular
system; executing a machine learning algorithm on the indi-
vidual-specific anatomic data and blood flow characteristics
for each of the plurality of individuals; relating, based on the
executed machine learning algorithm, each individual’s indi-
vidual-specific anatomic data to functional estimates of blood
flow characteristics; acquiring, for an individual, individual-
specific anatomic data of at least part of the individual’s
vascular system; and for at least one point in the individual’s
individual-specific anatomic data, determining a blood flow
characteristic of the individual, using relations from the step
of relating individual-specific anatomic data to functional
estimates of blood flow characteristics.

[0011] Additional objects and advantages of the disclosed
embodiments will be set forth in part in the description that
follows, and in part will be apparent from the description, or
may be learned by practice of the disclosed embodiments.
The objects and advantages of the disclosed embodiments
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims.

[0012] Itistobeunderstood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the dis-
closed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
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various exemplary embodiments and together with the
description, serve to explain the principles of the disclosed
embodiments.

[0014] FIG. 1is a block diagram of an exemplary system
and network for estimating patient-specific blood flow char-
acteristics from vessel geometry and physiological informa-
tion, according to an exemplary embodiment of the present
disclosure.

[0015] FIG. 2 is a block diagram of an exemplary method
for estimating patient-specific blood flow characteristics
from vessel geometry and physiological information, accord-
ing to an exemplary embodiment of the present disclosure.

DESCRIPTION OF THE EMBODIMENTS

[0016] Reference will now be made in detail to the exem-
plary embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout the
drawings to refer to the same or like parts.

[0017] The present disclosure describes certain principles
and embodiments for providing advantages over physics-
based simulation of blood flow to compute patient-specific
blood flow characteristics and clinically relevant quantities of
interest. Namely, the presently disclosed systems and meth-
ods may incorporate machine learning techniques to predict
the results of a physics-based simulation. For example, the
present disclosure describes an exemplary, less processing-
intensive technique, which may involve modeling the frac-
tional flow reserve (FFR) as a function of a patient’s vascular
cross-sectional area, diseased length, and boundary condi-
tions. The cross-sectional area may be calculated based on
lumen segment and plaque segment, among other things. The
diseased length may be calculated based on plaque segment
and stenosis location, among other things. The boundary
conditions may reflect patient-specific physiology, such as
coronary flow (estimated from myocardial mass), outlet area,
and hyperemic assumptions, to reflect that different patients
have different geometry and physiologic responses.

[0018] In oneembodiment, fractional flow reserve may be
modeled as a function of a patient’s boundary conditions
(f(BCs)), and a function of a patient’s vascular geometry
(g(areaReductions)). Although the patient’s geometry may be
described as a function of “areaReductions,” it should be
appreciated that this term refers, not just to changes in
patient’s vascular cross-sectional area, but to any physical or
geometric characteristics affecting a patient’s blood flow. In
one embodiment, FFR can be predicted by optimizing the
functions “f” and “g” such that the difference between the
estimated FFR (FFR ¢ sopnmeran) and the measured FFR
(mFFR)is minimized. In other words, machine learning tech-
niques can be used to solve for the functions that cause the
estimated FFR to approximate the measured FFR. In one
embodiment, the measured FFR may be calculated by tradi-
tional catheterized methods or by modern, computational
fluid dynamics (CFD) techniques. In one embodiment, one or
more machine learning algorithms may be used to optimize
the functions of boundary conditions and patient geometry
for hundreds or even thousands of patients, such that esti-
mates for FFR can reliably approximate measured FFR val-
ves. Thus, FFR values calculated by CFD techniques can be
valuable for training the machine learning algorithms.
[0019] Referring now to the figures, FIG. 1 depicts a block
diagram of an exemplary system and network for estimating
patient-specific blood flow characteristics from vessel geom-
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etry and physiological information. Specifically, FIG. 1
depicts a plurality of physicians 102 and third party providers
104, any of whom may be connected to an electronic network
100, such as the Internet, through one or more computers,
servers, and/or handheld mobile devices. Physicians 102 and/
or third party providers 104 may create or otherwise obtain
images of one or more patients” cardiac and/or vascular sys-
tems. The physicians 102 and/or third party providers 104
may also obtain any combination of patient-specific informa-
tion, such as age, medical history, blood pressure, blood vis-
cosity, etc. Physicians 102 and/or third party providers 104
may transmit the cardiac/vascular images and/or patient-spe-
cific information to server systems 106 over the electronic
network 100. Server systems 106 may include storage
devices for storing images and data received from physicians
102 and/or third party providers 104. Sever systems 106 may
also include processing devices for processing images and
data stored in the storage devices.

[0020] FIG. 2 is a block diagram of an exemplary method
for estimating patient-specific blood flow characteristics
from vessel geometry and physiological information, accord-
ing to an exemplary embodiment of the present disclosure.
The method of FIG. 2 may be performed by server systems
106, based on information received from physicians 102 and/
or third party providers 104 over electronic network 100.
[0021] In one embodiment, the method of FIG. 2 may
include a training method 202, for training one or more
machine learning algorithms based on numerous patients’
blood flow characteristic estimates, and a production method
204 for using the machine learning algorithm results to pre-
dict a particular patient’s blood flow characteristics.

[0022] In one embodiment, training method 202 may be
performed based on FFR estimates generating using CFD
techniques for hundreds of patients. Training method 202
may involve acquiring, for each of a plurality of individuals,
e.g., in digital format: (a) a patient-specific geometric model,
(b) one or more measured or estimated physiological param-
eters, and (c) values of blood flow characteristics. Training
method 202 may then involve, for one or more points in each
patient’s model, creating a feature vector of the patients’
physiological parameters and associating the feature vector
with the values of blood flow characteristics. For example,
training method 202 may associate an estimated FFR with
every point in a patient’s geometric model. Training method
202 may then train a machine learning algorithm (e.g., using
processing devices of server systems 106) to predict blood
flow characteristics at each point of a geometric model, based
on the feature vectors and blood flow characteristics. Training
method 202 may then save the results of the machine learning
algorithm, including feature weights, in a storage device of
server systems 106. The stored feature weights may define the
extent to which patient features or geometry are predictive of
certain blood flow characteristics.

[0023] In one embodiment, the production method 204
may involve estimating FFR values for a particular patient,
based on results of executing training method 202. In one
embodiment, production method 204 may include acquiring,
e.g. in digital format: (a) a patient-specific geometric model,
and (b) one or more measured or estimated physiological
parameters. For multiple points in the patient’s geometric
model, production method 204 may involve creating a feature
vector of the physiological parameters used in the training
mode. Production method 204 may then use saved results of
the machine learning algorithm to produce estimates of the
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patient’s blood flow characteristics for each point in the
patient-specific geometric model. Finally, production method
204 may include saving the results of the machine learning
algorithm, including predicted blood flow characteristics, to a
storage device of server systems 106.

[0024] Described below are general and specific exemplary
embodiments for implementing a training mode and a pro-
duction mode of machine learning for predicting patient-
specific blood flow characteristics, e.g. using server systems
106 based on images and data received from physicians 102
and/or third party providers 104 over electronic network 100.

General Embodiment

[0025] In a general embodiment, server systems 106 may
perform a training mode based on images and data received
from physicians 102 and/or third party providers 104 over
electronic network 100. Specifically, for one or more patients,
server systems 106 may acquire a digital representation (e.g,,
the memory or digital storage [e.g., hard drive, network drive]
of a computational device such as a computer, laptop, DSP,
server, etc.) of the following items: (a) a patient-specific
mode] of the geometry for one or nore of the patient’s blood
vessels; (b) a list of one or more measured or estimated
physiological or phenotypic parameters of the patient; and/or
(c) measurements, estimations or simulated values of all
blood flow characteristic being targeted for prediction. In one
embodiment, the patient-specific model of the geometry may
be represented by a list of points in space (possibly with a list
of neighbors for each point) in which the space can be mapped
to spatial units between points (e.g., millimeters). In one
embodiment, the list of one or more measured or estimated
physiological or phenotypic parameters of the patient may
include blood pressure, blood viscosity, patient age, patient
gender, mass of the supplied tissue, etc. These patient-specific
parameters may be global (e.g., blood pressure) or local (e.g.,
estimated density of the vessel wall at a particular location).
[0026] For every point in the patient-specific geometric
model for which there is a measured, estimated or simulated
value ofthe blood flow characteristic, server systems 106 may
then create a feature vector for that point. The feature vector
may be a numerical description of the patient-specific geom-
etry at that point and estimates of physiological or phenotypic
parameters of the patient. The feature vector may contain both
global and local physiological or phenotypic parameters,
where: for global parameters, all points have the same
numerical value; and for local parameters, the value(s) may
change at different points in the feature vector. Server systems
106 may then associate this feature vector with the measured,
estimated or simulated value of the blood flow characteristic
at this point.

[0027] Server systems 106 may then train a machine learn-
ing algorithm to predict the blood flow characteristics at the
points from the feature vectors at the points. Examples of
machine learning algorithms that can perform this task are
support vector machines (SVMs), multi-layer perceptrons
(MLPs), and multivariate regression (MVR) (e.g., weighted
linear or logistic regression). Server systems 106 may then
save the results of the machine learning algorithm (e.g., fea-
ture weights) to a digital representation (e.g., the memory or
digital storage [e.g., hard drive, network drive] of a compu-
tational device such as a computer, laptop, DSP, server, etc.).
[0028] Also in a general embodiment, server systems 106
may perform a production mode based on images and data
received from physicians 102 and/or third party providers 104



US 2015/0245775 Al

over electronic network 100. For a patient on whom a blood
flow analysis is to be performed, server systems 106 may
acquire a digital representation (e.g., the memory or digital
storage [e.g., hard drive, network drive] of a computational
device such as a computer, laptop, DSP, server, etc.) of (a) a
patient-specific model of the geometry for one or more of the
patient’s blood vessels; and (b) a list of one or more estimates
of physiological or phenotypic parameters of the patient. In
one embodiment, the patient-specific model of the geometry
for one or more of the patient’s blood vessels may be repre-
sented as a list of points in space (possibly with a list of
neighbors for each point) in which the space can be mapped to
spatial units between points (e.g., millimeters). The list of one
or more estimates of physiological or phenotypic parameters
of the patient, may include blood pressure, blood viscosity,
patient age, patient gender, the mass of the supplied tissue,
etc. These parameters may be global (e.g., blood pressure) or
local (e.g., estimated density of the vessel wall at a location).
This list of parameters must be the same as the list used in the
training mode.

[0029] For every point in the patient-specific geometric
model, server systems 106 may create a feature vector that
consists of a numerical description of the geometry and esti-
mates of physiological or phenotypic parameters of the
patient. Global physiological or phenotypic parameters can
be used in the feature vector of all points and local physiologi-
cal or phenotypic parameters can change in the feature vector
of different points. These feature vectors may represent the
same parameters used in the training mode. Server systems
106 may then use the saved results of the machine learning
algorithm produced in the training mode (e.g., feature
weights) to produce estimates of the blood flow characteris-
tics at each point in the patient-specific geometric model.
These estimates may be produced using the same machine
learning algorithm technique used in the training mode (e.g.,
the SVM, MLP, MVR technique). Server systems 106 may
also save the predicted blood flow characteristics for each
point to a digital representation (e.g., the memory or digital
storage [e.g., hard drive, network drive] of a computational
device such as a computer, laptop, DSP, server, etc.).

Exemplary Embodiment

[0030] In one exemplary embodiment, server systems 106
may perform a training mode based on images and data
received from physicians 102 and/or third party providers 104
over electronic network 100. Specifically, for one or more
patients, server systems 106 may acquire a digital represen-
tation (e.g., the memory or digital storage [e.g., hard drive,
network drive] of a computational device such as a computer,
laptop, DSP, server, etc.) of (a) a patient-specific model of the
geometry for the patient’s ascending aorta and coronary
arterytree; (b) alist of measured or estimated physiological or
phenotypic parameters of the patient; and (c) measurements
of the FFR when available.

[0031] In one embodiment, the patient-specific model of
the geometry for the patient’s ascending aorta and coronary
artery tree may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). This model may be derived by performing a
cardiac CT imaging study of the patient during the end dias-
tole phase of the cardiac cycle. The resulting CT images may
then be segmented manually or automatically to identify vox-
els belonging to the aorta and to the lumen of the coronary
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arteries. Once all relevant voxels are identified, the geometric
model can be derived (e.g., using marching cubes).

[0032] In one embodiment, the list of measured or esti-
mated physiological or phenotypic parameters of the patient
may be obtained and may include: (i) systolic and diastolic
blood pressures; (ii) heart rate; (iii) hematocrit level; (iv)
patient age, gender, height, weight, general health status
(presence or absence of diabetes, current medications); (v)
lifestyle characteristics: smoker/non-smoker; and/or (vi)
myocardial mass (may be derived by segmenting the myocar-
dium obtained during the CT imaging study and then calcu-
lating the volume in the image; the mass is then computed
using the computed volume and an estimated density (1.05
g/mL) of the myocardial mass.

[0033] Inoneembodiment, measurements of the FFR may
be obtained when available. If the measured FFR value is not
available at a given spatial location in the patient-specific
geometric model, then a numerically computed value of the
FFR at the point may be used. The numerically computed
values may be obtained from a previous CFD simulation
using the same geometric model and patient-specific bound-
ary conditions derived from the physiological and phenotypic
parameters listed above.

[0034] For every point in the patient-specific geometric
model for which there is a measured, estimated or simulated
value of the blood flow characteristics, server systems 106
may create a feature vector for that point that contains a
numerical description of physiological or phenotypic param-
eters of the patient and a description of the local geometry.
Specifically the feature vector may contain: (i) systolic and
diastolic blood pressures; (ii) heart rate; (iii) blood properties
including: plasma, red blood cells (erythrocytes), hematocrit,
white blood cells (leukocytes) and platelets (thrombocytes),
viscosity, yield stress; (iv) patient age, gender, height, weight,
etc.; (v) diseases: presence or absence of diabetes, myocardial
infarction, malignant and rheumatic conditions, peripheral
vascular conditions, etc.; (vi) lifestyle characteristics: pres-
ence or absence of current medications/drugs, smoker/non-
smoker; (vii) characteristics of the aortic geometry (Cross-
sectional area of the aortic inlet and outlet, Surface area and
volume of'the aorta, Minimum, maximum, and average cross-
sectional area, etc.); (viii) characteristics of the coronary
branch geometry; and (ix) one or more feature sets.

[0035] Inone embodiment, the characteristics of the coro-
nary branch geometry may include: (i) volumes of the aorta
upstream/downstream of the coronary branch point; (ii)
cross-sectional area of the coronary/aorta bifurcation point,
i.e., inlet to the coronary branch; (iii) total number of vessel
bifurcations, and the number of upstream/downstream vessel
bifurcations; (iv) average, minimum, and maximum
upstream/downstream cross-sectional areas; (v) distances
(along the vessel centerline) to the centerline point of mini-
mum and maximum upstream/downstream cross-sectional
areas; (vi) cross-sectional of and distance (along the vessel
centerline) to the nearest upstream/downstream vessel bifur-
cation; (vii) cross-sectional area of and distance (along the
vessel centerline) to the nearest coronary outlet and aortic
inlet/outlet; (viii) cross-sectional areas and distances (along
the vessel centerline) to the downstream coronary outlets with
the smallest/largest cross-sectional areas; (ix) upstream/
downstream volumes of the coronary vessels; and (x)
upstream/downstream volume fractions of the coronary ves-
sel with a cross-sectional area below a user-specified toler-
ance.
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[0036] In one embodiment, a first feature set may define
cross-sectional area features, such as a cross-sectional lumen
area along the coronary centerline, a powered cross-sectional
lumen area, a ratio of lumen cross-sectional area with respect
to the main ostia (LM, RCA), a powered ratio of lumen
cross-sectional area with respect to the main ostia, a degree of
tapering in cross-sectional lumen area along the centerline,
locations of stenotic lesions, lengths of stenotic lesions, loca-
tion and number of lesions corresponding to 50%, 75%, 90%
areareduction, distance from stenotic lesion to the main ostia,
and/or irregularity (or circularity) of cross-sectional lumen
boundary.

[0037] Inone embodiment, the cross-sectional lumen area
along the coronary centerline may be calculated by extracting
a centerline from constructed geometry, smoothing the cen-
terline if necessary, and computing cross-sectional area at
each centerline point and map it to corresponding surface and
volume mesh points. In one embodiment, the powered cross-
sectional lumen area can be determined from various source
of scaling laws. In one embodiment, the ratio of lumen cross-
sectional area with respect to the main ostia (LM, RCA) can
be calculated by measuring cross-sectional area at the LM
ostium, normalizing cross-sectional area of the left coronary
by LM ostium area, measuring cross-sectional area at the
RCA ostium, and normalizing cross-sectional area of the
right coronary by RCA ostium area. In one embodiment, the
powered ratio of lumen cross-sectional area with respect to
the main ostia can be determined from various source of
scaling laws. In one embodiment, the degree of tapering in
cross-sectional lumen area along the centerline can be calcu-
lated by sampling centerline points within a certain interval
(e.g., twice the diameter of the vessel) and compute a slope of
linearly-fitted cross-sectional area. In one embodiment, the
location of stenotic lesions can be calculated by detecting
minima of cross-sectional area curve, detecting locations
where first derivative of area curve is zero and second deriva-
tive is positive, and computing distance (parametric arc
length of centerline) from the main ostium. In one embodi-
ment, the lengths of stenotic lesions can be calculated by
computing the proximal and distal locations from the stenotic
lesion, where cross-sectional area is recovered.

[0038] Inoneembodiment, another feature set may include
intensity features that define, for example, intensity change
along the centerline (slope of linearly-fitted intensity varia-
tion). In one embodiment, another feature set may include
surface features that define, for example, 3D surface curva-
ture of geometry (Gaussian, maximum, minimum, mean). In
one embodiment, another feature set may include volume
features that define, for example, a ratio of total coronary
volume compared to myocardial volume. In one embodi-
ment, another feature set may include centerline features that
define, for example, curvature (bending) of coronary center-
line, e.g., by computing Frenet curvature:

_ ey
TP

where p is coordinate of centerline

[0039] or by computing an inverse of the radius of circum-
scribed circle along the centerline points. Curvature (bend-
ing) of coronary centerline may also be calculated based on
tortuosity (non-planarity) of coronary centerline, e.g., by
computing Frenet torsion:
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(p/ Xp”) . p///
lp' % p"[?

where p is coordinate of centerline

[0040] Inoneembodiment, another feature set may include
a SYNTAX scoring feature, including, for example, an exist-
ence of aorto ostial lesion, detection of a lesion located at the
origin of the coronary from the aorta; and/or dominance (left
or right).

[0041] Inoneembodiment, another feature set may include
a simplified physics feature, e.g., including a fractional flow
reserve value derived from Hagen-Poisseille flow assumption
(Resistance~Area™). For example, in one embodimen,
server systems 106 may compute the cross-sectional area of
the origin (LM ostium or RCA ostium) of the coronary from
the aorta (A,) with aortic pressure (P,); compute cross-sec-
tional area of coronary vessel (A,) at each sampled interval
(L,); determine the amount of coronary flow in each segment
of vessel using resistance boundary condition under hyper-
emic assumption (Q,); estimate resistance at each sampled
location (R;) based on:

where:

[0042] Nominal value p=dynamic viscosiy of blood, o, =1.
0,3,=0, v,=2.0 (Hagen-Poisseille).

[0043] Server systems 106 may estimate pressure drop
(AP,)as AP,=Q.R, and compute FFR at each sampled location
as

Po—; AP,

0

FFR =

Locations of cross-sectional area minima or intervals smaller
than vessel radius may beused for sampling locations. Server
systems 106 may interpolate FFR along the centerline using
FFR,, project FFR values to 3D surface mesh node, and vary
o, P, v, and obtain new sets of FFR estimation as necessary
for training, such as by using the feature sets defined above to
perturb parameters where o, {3, can be a function of the
diseased length, degree of stenosis and tapering ratio to
account for tapered vessel, and Q, can be determined by
summing distributed flow of each outlet on the basis of the
same scaling law as the resistance boundary condition (outlet
resistanceccoutlet area™ %), However, a new scaling law and
hyperemic assumption can be adopted, and this feature vector
may be associated with the measurement or simulated value
of the FFR at that point. Server systems 106 may also train a
linear SVM to predict the blood flow characteristics at the
points from the feature vectors at the points; and save the
results of the SVM as a digital representation (e.g., the
memory or digital storage [e.g., hard drive, network drive] of
a computational device such as a computer, laptop, DSP,
server, efc.).

[0044] In an exemplary production mode, servers systems
106 may, for a target patient, acquire in digital representation
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(e.g., the memory or digital storage (e.g., hard drive, network
drive) of a computational device such as a computer, laptop,
DSP, server, etc.): (a) a patient-specific model of the geometry
for the patient’s ascending aorta and coronary artery tree; and
(b) a list of physiological and phenotypic parameters of the
patient obtained during training mode. In one embodiment,
the patient-specific model of the geometry for the patient’s
ascending aorta and coronary artery tree may be represented
as alist of points in space (possibly with a list of neighbors for
each point) in which the space can be mapped to spatial units
between points (e.g., millimeters). This model may be
derived by performing a cardiac CT imaging of the patient in
the end diastole phase of the cardiac cycle. This image then
may be segmented manually or automatically to identify vox-
els belonging to the aorta and the lumen of the coronary
arteries. Once the voxels are identified, the geometric model
can be derived (e.g., using marching cubes). The process for
generating the patient-specific model of the geometry may be
the same as in the training mode. For every point in the
patient-specific geometric model, the server systems 106 may
create a feature vector for that point that consists of a numeri-
cal description of the geometry at that point and estimates of
physiological or phenotypic parameters of the patient. These
features may be the same as the quantities used in the training
mode. The server systems 106 may then use the saved results
of the machine learning algorithm produced in the training
mode (e.g., feature weights) to produce estimates of the FFR
at each point in the patient-specific geometric model. These
estimates may be produced using the same linear SVM tech-
nique used in the training mode. The server systems 106 may
save the predicted FFR values for each point to a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive| of a computational device such as a
computer, laptop, DSP, server, etc.).

[0045] In one embodiment, the above factors (i) thru (viii)
(“Systolic and diastolic blood pressures” thru “Characteris-
tics of the coronary branch geometryv”) may be considered
global features, which are applicable to all points within a
given patient’s geometric model. Also, items (ix) thru (xv)
(“Feature Set I: Cross-sectional area feature” thru “Feature
Set VII: Simplified Physics feature”) may be considered fea-
tures that are local to specific points within a given patient’s
geometric model. In addition, features (i) thru (vi) may be
considered variables within the function of boundary condi-
tions, f(BCs), while features (vii) thru (xv) may be considered
variables within the function of geometry, g(areaReductions),
on that page. It will be appreciated that any combination of
those features, modified by any desired weighting scheme,
may be incorporated into a machine learning algorithm
executed according to the disclosed embodiments.

[0046] In another embodiment, systems and methods are
described to obtain estimates of physiologic metrics, such as
ischemia, blood flow, or FFR from patient-specific anatomy
and characteristics. The system may consist of a computer
and software either on-site at a hospital or off-site that phy-
sicians load or transfer patient-specific data to. The anatomic
data may consist of imaging data (ie CT) or measurements
and anatomic representation already obtained from imaging
data (quantitative angiography, vessel segmentations from
third party software, vascular diameters, etc). Other patient
characteristics may consist of heart rate, blood pressure,
demographics such as age or sex, medication, disease states
including diabetes and hypertension, prior MI, etc.

Sep. 3, 2015

[0047] After relevant data is received by the system, it may
be processed by software automation, the physician using the
system, a third-party technician or analyst using the system,
or any combination. The data may be processed using algo-
rithms relating the patient’s anatomy and characteristics to
functional estimates of ischemia and blood flow. The algo-
rithms may employ empirically derived models, machine
learning, or analytical models relating blood flow to anatomy.
Estimates of ischemia (blood flow, FFR, etc) may be gener-
ated for a specific location in a vessel, as an overall estimate
for the vessel, or for an entire system of vessels such as the
coronary arteries. A numeric output, such as an FFR value,
may be generated or simple positive/negative/inconclusive
indications based on clinical metrics may be provided (ie
FFR> or <0.80). Along with the output, a confidence may be
provided. Results of the analysis may be displayed or stored
in a variety of media, including images, renderings, tables of
values, or reports and may be transferred back to the physi-
cian through the system or through other electronic or physi-
cal delivery methods.

[0048] In one embodiment, the algorithm to estimate FFR
from patient anatomy consists of deriving an analytical model
based on fundamentals of physiology and physics, for
example analytical fluid dynamics equations and morphom-
etry scaling laws. Information about the following coronary
anatomy, including but not limited to the following features
derived from imaging data (ie CT), serves as an input:

[0049] Vessel sizes

[0050] Vessel size at ostium

[0051] Vessel size at distal branches

[0052] Reference and minimum vessel size at plaque
[0053] Distance from ostium to plaque

[0054] Length of plaque and length of minimum vessel size
[0055] Myocardial volume

[0056] Branches proximal/distal to measurement location
[0057] Branches proximal/distal to plaque

[0058] Measurement location

[0059] Using some or all of the information above, a net-

work of flow resistance may be created. Pressure drop may be
estimated by relating the amount of blood flow to the resis-
tance to blood flow using any of a variety of analytical mod-
els, such as Poiseuille’s equation, energy loss models, etc. As
an example embodiment:
[0060] FEFR=(P-AP)/P where P is the aortic pressure and
AP is the change in pressure from the aorta to the location of
interest.
[0061] AP=QR, where Q is flow rate, and R is resistance
[0062] The flow rate may be estimated by morphometry
relations, such as Q «M* where M is the myocardial volume
and k is an exponent, often approximately 0.75. Individual
vessel flow rates may scale based on the morphometry rela-
tionship of QxD* where D is the diameter of the vessel and k
is an exponent, often between 2 and 3.
[0063] Inanexampleembodiment, the resistance througha
vessel may be estimated by Poiseuille’s equation:

Rocul/D* where u is viscosity, L is length, and D is

diameter

[0064] Downstream, or microvascular resistances may be
estimated through morphometric tree generation or other
methods described in Ser. No. 13/014,809 and U.S. Pat. No.
8/157,742. FFR can be estimated by relating all the resistance
and flow estimates in a network representing the distribution
of vessels in the coronary circulation, and pressure can be
solved.
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[0065] In another embodiment, regression or machine
learning may be employed to train the algorithm using the
features previously mentioned, formulations of resistances
and flows, and additional anatomic and patient characteris-
tics, including but not limited to:

[0066] Age, sex, and other demographics

[0067] Heart rate, blood pressure, and other physiologic
measures

[0068] Disease state, such as hypertension, diabetes, previ-

ous cardiac events

[0069] Vessel dominance

[0070] Plaque type

[0071] Plaque shape

[0072] Prior simulation results, such as full 3D simulations
of FFR

[0073] A library or database of anatomic and patient char-

acteristics along with FFR, ischemia test results, previous
simulation results, imaging data, or other metrics may be
compiled. For every point of interest where an FFR estima-
tion is required, a set of features may be generated. A regres-
sion or machine learning technique, such as linear regression
or decision trees, may be used to define which features have
the largest impact on estimating FFR and to create an algo-
rithm that weights the various features. Example embodi-
ments may estimate FFR numerically, classify a vessel as
ischemia positive or negative, or classify a patient as ischemia
positive or negative.
[0074] Once an algorithm is created, it may be executed on
new data provided by the physician to the system. As previ-
ously described, a number of methods may be used to gener-
ate the anatomic information required, and once obtained, the
features defined, algorithm performed, and results reported.
Along with numerical or classification results, a confidence
from the machine learning algorithm may be provided. One
example embodiment is to report that a particular vessel in a
patient has a specific percent confidence of being positive or
negative for ischemia, ie Left anterior descending artery is
positive with 85% confidence. Over time, the algorithm may
be refined or updated as additional patient data is added to the
library or database.
[0075] One additional embodiment is to derive any of the
previously mentioned parameters, physiologic, or physical
estimations empirically. Coupled with machine learning or
analytic techniques, empirical studies of flow and pressure
across various geometries may be utilized to inform the algo-
rithms.
[0076] Other embodiments of the invention will be appar-
ent to those skilled in the art from consideration of the speci-
fication and practice of the invention disclosed herein. It is
intended that the specification and examples be considered as
exemplary only, with a true scope and spirit of the invention
being indicated by the following claims.
1. A method for determining individual-specific blood flow
characteristics, the method comprising:
acquiring, for each of a plurality of individuals, individual-
specific anatomic data and blood flow characteristics of
at least part of the individual’s vascular system;
executing a machine learning algorithm on the individual-
specific anatomic data and blood flow characteristics for
each of the plurality of individuals;
relating, based on the executed machine learning algo-
rithm, each individual’s individual-specific anatomic
data to functional estimates of blood flow characteris-
tics;

Sep. 3, 2015

acquiring, for an individual, individual-specific anatomic
data of at least part of the individual’s vascular system;
and

for at least one point in the individual’s individual-specific

anatomic data, determining a blood flow characteristic
of theindividual, using relations from the step of relating
individual-specific anatomic data to functional esti-
mates of blood flow characteristics.

2. The method of claim 1, further comprising:

acquiring, for each of the plurality of individuals, one or

more individual characteristics; and

executing the machine learning algorithm further based on

the one or more individual characteristics.
3. The method of claim 1, wherein the blood flow charac-
teristics of the individuals include ischemia, blood flow, or
fractional flow reserve.
4. The method of claim 1, further comprising:
generating a set of features for each point of interest where
a blood flow characteristic is desired;

using a regression or machine learning technique to weight
the impact of features on the blood flow characteristic;
and

using the regression or machine learning technique to esti-

mate a blood flow characteristic numerically, classify a
vessel as ischemia positive or negative, or classify an
individual as ischemia positive or negative.

5. The method of claim 2, wherein the individual charac-
teristics include one or more of: heart rate, blood pressure,
demographics such as age or sex, medication, disease states,
including diabetes, hypertension, vessel dominance, and
prior MIL.

6. The method of claim 1, further comprising: displaying or
storing the produced estimates in one or more of a media,
including images, renderings, tables of values, or reports, or
transferring the produced estimates to a physician through
other electronic or physical delivery methods.

7. The method of claim 1, further comprising displaying
along with each produced estimate a confidence level or a
positive, negative, or inconclusive indication.

8. The method of claim 1, further comprising producing
estimates based on one or more of analytical fluid dynamics
equations and morphometry scaling laws.

9. The method of claim 1, wherein the individual-specific
anatomic data includes one or more of: vessel size, vessel size
at ostium, vessel size at distal branches, reference and mini-
mum vessel size at plaque, distance from ostium to plaque,
length of plaque and length of minimum vessel size, myocar-
dial volume, branches proximal/distal to measurement loca-
tion, branches proximal/distal to plaque, and measurement
location.

10. The method of claim 2, further comprising:

compiling a library or database of anatomic and individual

characteristics along with FFR, ischemia test results,
previous simulation results, and imaging data.

11. The method of claim 10, further comprising:

refining the machine learning algorithm based on addi-

tional data added to the library or database.

12. The method of claim 10, wherein the individual-spe-
cific anatomic data for the individual or the plurality of indi-
viduals is obtained from one or more of: medical image data,
measurements, models, and segmentations.

13. A system for determining individual-specific blood
flow characteristics, the system comprising:
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a data storage device storing instructions for estimating
individual-specific blood flow characteristics; and
a processor configured to execute the instructions to per-
form a method including the steps of:
acquiring, for each of a plurality of individuals, indi-
vidual-specific anatomic data and blood flow charac-
teristics of at least part of the individual’s vascular
system;
executing a machine learning algorithm on the indi-
vidual-specific anatomic data and blood flow charac-
teristics for each of the plurality of individuals;
relating, based on the executed machine learning algo-
rithm, each individual’s individual-specific anatomic
data to functional estimates of blood flow character-
istics;
acquiring, for an individual, individual-specific ana-
tomic data of at least part of the individual’s vascular
system; and
for at least one point in the individual’s individual-spe-
cific anatomic data, determining a blood flow charac-
teristic of the individual, using relations from the step
of relating individual-specific anatomic data to func-
tional estimates of blood flow characteristics.
14. The system of claim 13, wherein the system is further
configured for:
acquiring, for each of the plurality of individuals, one or
more individual characteristics; and
executing the machine learning algorithm further based on
the one or more individual characteristics.
15. The system of claim 13, wherein the blood flow char-
acteristics include ischemia, blood flow, or fractional flow
reserve.
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16. The system of claim 13, wherein the processor is fur-
ther configured for:
generating a set of features for each point of interest where
a blood flow characteristic is desired;

using a regression or machine learning technique to weight
the impact of features on estimated blood flow charac-
teristic; and

using the regression or machine learning technique to esti-

mate a blood flow characteristic numerically, classify a
vessel as ischemia positive or negative, or classify an
individual as ischemia positive or negative.

17. The system of claim 14, wherein the individual char-
acteristics include one or more of: heart rate, blood pressure,
demographics such as age or sex, medication, disease states,
including diabetes, hypertension, vessel dominance, and
prior MIL.

18. The system of claim 13, wherein the processor is fur-
ther configured for:

displaying or storing the produced estimates in one or more

of a media, including images, renderings, tables of val-
ues, or reports, or transferring the produced estimates to
aphysician through other electronic or physical delivery
methods.

19. The system of claim 13, wherein the processor is fur-
ther configured for:

displaying along with each produced estimate a confidence

level or a positive, negative, or inconclusive indication.

20. The system of claim 13, further comprising producing
estimates based on one or more of analytical fluid dynamics
equations and morphometry scaling laws.

21-31. (canceled)
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