

US009788768B2

(12) United States Patent Al-Ali et al.

(54) PHYSIOLOGICAL PARAMETER TRACKING SYSTEM

(71) Applicant: **MASIMO CORPORATION**, Irvine, CA (US)

(72) Inventors: **Ammar Al-Ali**, San Juan Capistrano, CA (US); **Mohamed K. Diab**, Ladera Ranch, CA (US); **Walter M. Weber**, Laguna Hills, CA (US)

(73) Assignee: MASIMO CORPORATION, Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/777,936

(22) Filed: Feb. 26, 2013

(65) Prior Publication Data

US 2013/0274572 A1 Oct. 17, 2013

Related U.S. Application Data

- (63) Continuation of application No. 11/834,602, filed on Aug. 6, 2007, now Pat. No. 8,385,995, which is a continuation of application No. 10/930,048, filed on Aug. 30, 2004, now Pat. No. 7,254,431.
- (60) Provisional application No. 60/498,749, filed on Aug. 28, 2003.
- (51) **Int. Cl.**A61B 5/1455 (2006.01)

 A61B 5/00 (2006.01)
- (52) U.S. Cl.

CPC *A61B 5/1455* (2013.01); *A61B 5/14551* (2013.01); *A61B 5/14552* (2013.01); *A61B* 5/72 (2013.01); *A61B 2560/0204* (2013.01)

(10) Patent No.: US 9,788,768 B2

(45) **Date of Patent:** Oct. 17, 2017

(58) Field of Classification Search

CPC . A61B 5/1455; A61B 5/14551; A61B 5/0205; A61B 5/0059; A61B 5/14552; A61B 5/72 USPC 600/310, 322, 323, 326, 328, 330, 331, 600/334, 335, 336, 340, 344, 473, 476; 356/41

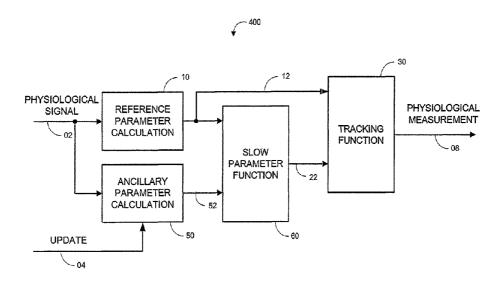
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,407,290	Α	*	10/1983	Wilber	600/330
4,603,700	Α	*	8/1986	Nichols et al	600/331
4,960,128	Α		10/1990	Gordon et al.	
4,964,408	Α		10/1990	Hink et al.	
5,041,187	Α		8/1991	Hink et al.	
5,069,213	Α		12/1991	Polczynski	
5,101,825	Α	*	4/1992	Gravenstein et al	600/326
5,163,438	Α		11/1992	Gordon et al.	
(Continued)					

OTHER PUBLICATIONS


Schuman, Andrew J., M.D., "Pulse oximetry: The fifth vital sign,"available at: http://contemporarypediatrics.modernmedicine.com/contemporary-pediatrics/news/pulse-oximetry-fifth-vital-sign?page=full. Oct. 1, 2014.

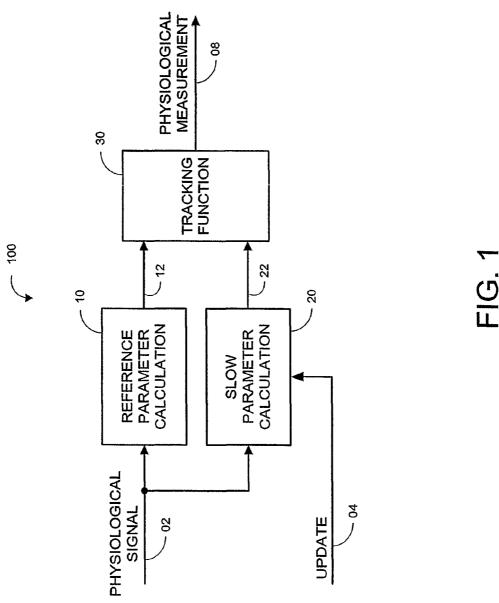
Primary Examiner — Eric Winakur Assistant Examiner — Chu Chuan (JJ) Liu (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear LLP

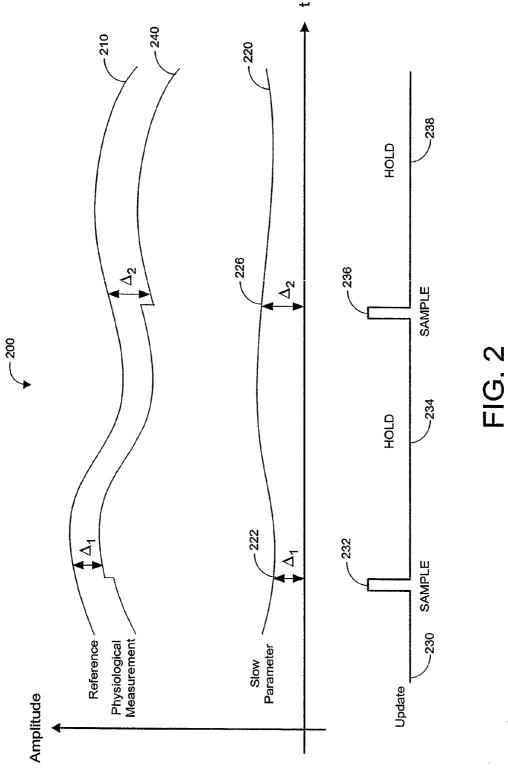
(57) **ABSTRACT**

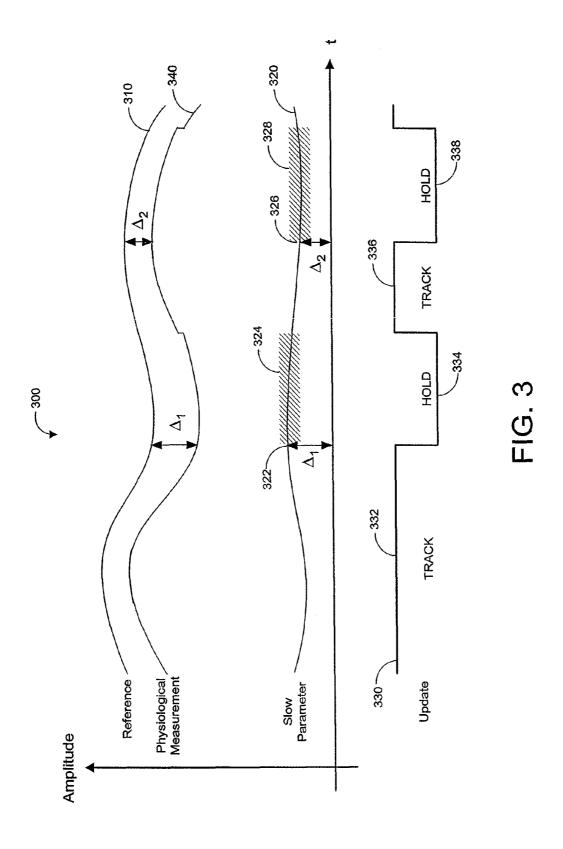
A physiological parameter tracking system has a reference parameter calculator configured to provide a reference parameter responsive to a physiological signal input. A physiological measurement output is a physiological parameter derived from the physiological signal input during a favorable condition and an estimate of the physiological parameter according to the reference parameter during an unfavorable condition.

19 Claims, 5 Drawing Sheets

US 9,788,768 B2 Page 2


(56)	Referen	ices Cited	6,285,896 B1		Tobler et al.
	DATENT	DOCUMENTS	6,321,100 B1 6,334,065 B1*	11/2001	Parker Al-Ali et al 600/323
0.5.	IMILIVI	BOCOMENTS	6,343,224 B1	1/2002	
5,337,744 A	8/1994	Branigan	6,349,228 B1	2/2002	Kiani et al.
5,341,805 A	8/1994	Stavridi et al.	6,360,114 B1		Diab et al.
D353,195 S	12/1994	Savage et al.	6,368,283 B1		Xu et al.
D353,196 S		Savage et al.	6,371,921 B1		Caro et al.
5,377,676 A		Vari et al.	6,377,829 B1 6,388,240 B2	4/2002 5/2002	Schulz et al.
D359,546 S 5,431,170 A		Savage et al. Mathews	6,397,091 B2		Diab et al.
D361,840 S		Savage et al.	6,430,525 B1		Weber et al.
D362,063 S		Savage et al.	6,463,311 B1	10/2002	
5,452,717 A		Branigan et al.	6,470,199 B1		Kopotic et al.
D363,120 S		Savage et al.	6,501,975 B2 6,505,059 B1		Diab et al. Kollias et al.
5,456,252 A		Vari et al. Diab et al.	6,515,273 B2	2/2003	
5,482,036 A 5,490,505 A		Diab et al.	6,519,487 B1	2/2003	
5,494,043 A		O'Sullivan et al.	6,525,386 B1		Mills et al.
5,533,511 A		Kaspari et al.	6,526,300 B1		Kiani et al.
5,561,275 A		Savage et al.	6,541,756 B2 6,542,764 B1		Schulz et al. Al-Ali et al.
5,562,002 A	10/1996		6,580,086 B1		Schulz et al.
5,590,649 A 5,602,924 A		Caro et al. Durand et al.	6,584,336 B1		Ali et al.
5,632,272 A		Diab et al.	6,595,316 B2	7/2003	Cybulski et al.
5,638,816 A		Kiani-Azarbayjany et al.	6,597,932 B2		Tian et al.
5,638,818 A		Diab et al.	6,597,933 B2		Kiani et al. Ali et al.
5,645,440 A		Tobler et al.	6,606,511 B1 6,632,181 B2		Flaherty et al.
5,685,299 A D393,830 S		Diab et al. Tobler et al.	6,639,668 B1		Trepagnier
5,743,262 A		Lepper, Jr. et al.	6,640,116 B2	10/2003	
5,746,697 A *	5/1998	Swedlow et al 600/323	6,643,530 B2		Diab et al.
5,758,644 A		Diab et al.	6,650,917 B2 6,654,624 B2		Diab et al. Diab et al.
5,760,910 A 5,769,785 A		Lepper, Jr. et al. Diab et al.	6,658,276 B2		Kianl et al.
5,782,757 A		Diab et al.	6,661,161 B1	12/2003	Lanzo et al.
5,785,659 A	7/1998	Caro et al.	6,671,531 B2		Al-Ali et al.
5,788,647 A *	8/1998	Eggers A61B 5/1459	6,678,543 B2		Diab et al.
5 501 245 4	0/1000	600/341	6,684,090 B2 6,684,091 B2	1/2004	Ali et al. Parker
5,791,347 A 5,810,734 A		Flaherty et al. Caro et al.	6,697,656 B1	2/2004	
5,823,950 A		Diab et al.	6,697,657 B1		Shehada et al.
5,830,131 A	11/1998	Caro et al.	6,697,658 B2	2/2004	
5,833,618 A	11/1998	Caro et al.	RE38,476 E 6,699,194 B1		Diab et al. Diab et al.
5,842,979 A * 5,853,364 A		Jarman 600/322 Baker et al.	6,714,804 B2		Al-Ali et al.
5,860,919 A		Kiani-Azarbayjany et al.	RE38,492 E		Diab et al.
5,890,929 A		Mills et al.	6,721,582 B2		Trepagnier et al.
5,904,654 A		Wohltmann et al.	6,721,585 B1 6,725,075 B2	4/2004 4/2004	
5,919,134 A	7/1999		6,728,560 B2		Kollias et al.
5,934,925 A 5,940,182 A		Tobler et al. Lepper, Jr. et al.	6,735,459 B2	5/2004	
5,995,855 A		Kiani et al.	6,745,060 B2		Diab et al.
5,997,343 A		Mills et al.	6,754,516 B2 * 6,760,607 B2	7/2004	Mannheimer 600/323
6,002,952 A		Diab et al.	6,770,028 B1		Ali et al.
6,011,986 A 6,027,452 A		Diab et al. Flaherty et al.	6,771,994 B2	8/2004	Kiani et al.
6,036,642 A		Diab et al.	6,792,300 B1		Diab et al.
6,045,509 A		Caro et al.	6,813,511 B2		Diab et al.
6,067,462 A		Diab et al.	6,816,741 B2 6,822,564 B2	11/2004 11/2004	
6,081,735 A 6,088,607 A		Diab et al. Diab et al.	6,826,419 B2		Diab et al.
6,110,522 A		Lepper, Jr. et al.	6,830,711 B2		Mills et al.
6,124,597 A		Shehada	6,850,787 B2		Weber et al.
6,144,868 A	11/2000		6,850,788 B2 6,852,083 B2	2/2005	Al-Alı Caro et al.
6,151,516 A		Kiani-Azarbayjany et al.	6,861,639 B2	3/2005	
6,152,754 A 6,157,850 A		Gerhardt et al. Diab et al.	6,898,452 B2		Al-Ali et al.
6,165,005 A		Mills et al.	6,920,345 B2		Al-Ali et al.
6,184,521 B1	2/2001	Coffin, IV et al.	6,931,268 B1		Kiani-Azarbayjany et al.
6,206,830 B1		Diab et al.	6,934,570 B2 6,939,305 B2		Kiani et al. Flaherty et al.
6,229,856 B1 6,232,609 B1		Diab et al.	6,939,305 B2 6,943,348 B1		Coffin IV
6,236,872 B1		Snyder et al. Diab et al.	6,950,687 B2	9/2005	
6,241,683 B1		Macklem et al.	6,961,598 B2	11/2005	
6,256,523 B1		Diab et al.	6,970,792 B1	11/2005	Diab
6,263,222 B1		Diab et al.	6,979,812 B2	12/2005	
6,278,522 B1 6,280,213 B1		Lepper, Jr. et al. Tobler et al.	6,985,764 B2 6,990,426 B2		Mason et al. Yoon et al.
0,200,213 DI	8/2001	1001दा दा वा.	0,330, 4 20 D 2	1/2000	TOOK & at.


(56) **References Cited**


U.S. PATENT DOCUMENTS

6,993,371	B2	1/2006	Kiani et al.
6,996,427	B2	2/2006	Ali et al.
6,999,904	B2	2/2006	Weber et al.
7,003,338	B2	2/2006	Weber et al.
7,003,339	B2	2/2006	Diab et al.
7,015,451	B2	3/2006	Dalke et al.
7,024,233	B2	4/2006	Ali et al.
7,027,849	B2	4/2006	Al-Ali
7,030,749	B2	4/2006	Al-Ali
7,039,449	B2	5/2006	Al-Ali
7,041,060	B2	5/2006	Flaherty et al.
7,044,918	B2	5/2006	Diab
7,067,893	B2	6/2006	Mills et al.
7,096,052	B2	8/2006	Mason et al.
7,096,054		8/2006	Abdul-Hafiz et al.
7,132,641	B2	11/2006	Schulz et al.
7,142,901	B2	11/2006	Kiani et al.
7,149,561	B2	12/2006	Diab
7,186,966	B2	3/2007	Al-Ali
7,190,261	B2	3/2007	Al-Ali
7,215,984	B2	5/2007	Diab
7,215,986	B2	5/2007	Diab
7,221,971	B2	5/2007	Diab
7,225,006	B2	5/2007	Al-Ali et al.
7,225,007	B2	5/2007	Al-Ali
RE39,672	Ε	6/2007	Shehada et al.
7,239,905		7/2007	Kiani-Azarbayjany et al.
7,245,953	В1	7/2007	Parker
7,254,431		8/2007	Al-Ali et al.
8,385,995		2/2013	Al-Ali et al.
2004/0034294	A1*	2/2004	Kimball A61B 5/0285
			600/323

^{*} cited by examiner

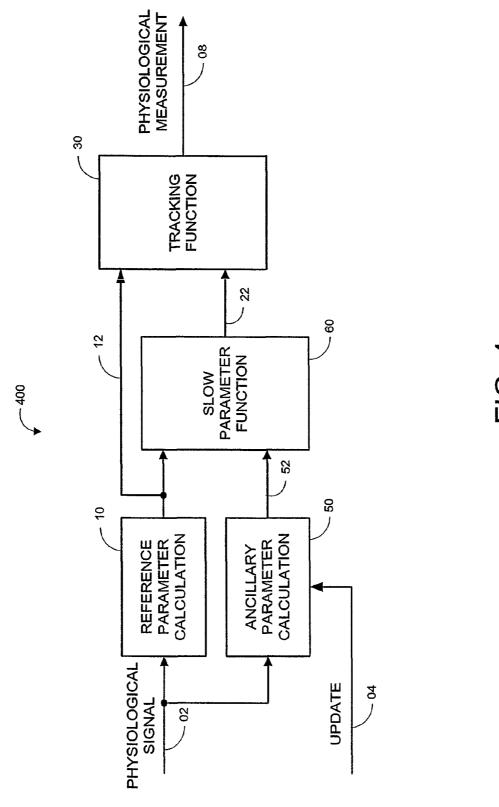


FIG. 4

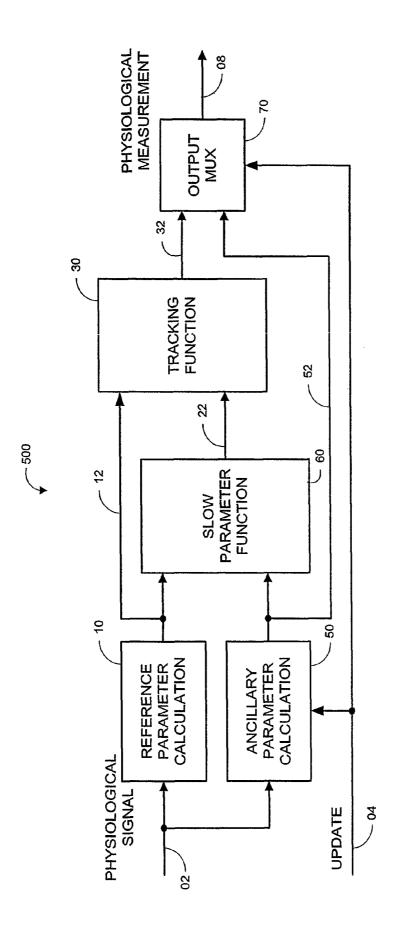


FIG. 5

PHYSIOLOGICAL PARAMETER TRACKING **SYSTEM**

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority benefit under 35 U.S.C.\\$120 from, and is a continuation of U.S. patent application Ser. No. 11/834,602, filed Aug. 6, 2007, entitled "Physiological Parameter Tracking System", which is a 10 continuation of U.S. patent application Ser. No. 10/930,048, filed Aug. 30, 2004, entitled "Physiological Parameter Tracking System", which claims priority benefit under 35 U.S.C.§119(e) from U.S. Provisional Patent Application No. 60/498,749, filed Aug. 28, 2003, entitled "Physiological 15 Parameter Tracking System". The present application incorporates the foregoing disclosures herein by reference.

BACKGROUND OF THE INVENTION

Oxygen transport from the lungs to body tissue can be monitored by measuring various physiological parameters. For example, oxygen saturation of arterial blood (S_aO_2) is a measure of the ratio of oxyhemoglobin (HbO₂) concentration to the sum of HbO₂ and deoxyhemoglobin (Hb) con- 25 centrations in the arterial blood. Because HbO₂ is the major oxygen carrying component of blood, S_aO₂ is indicative of oxygen delivery to body tissues. As another example, oxygen saturation of venous blood (S_vO₂) is a similar measure of HbO₂ and Hb concentrations in venous blood and is 30 indicative of oxygen consumption by body tissues. Measurements of the concentrations of carboxyhemoglobin (HbCO) and methemoglobin (MetHb) are indicative of abnormal hemoglobin constituents that interfere with oxygen transport.

Pulse oximetry is a noninvasive, easy to use, inexpensive procedure for measuring the oxygen saturation level of arterial blood. Pulse oximeters perform a spectral analysis of the pulsatile component of arterial blood in order to determine oxygen saturation $(S_{pa}O_2)$, which is an estimate of 40 S_aO_2 . A pulse oximetry system has a sensor and a monitor. The sensor has emitters that typically consist of a red light emitting diode (LED) and an infrared LED that project light through blood vessels and capillaries underneath a tissue site, such as a fingernail bed. A sensor also has a detector that 45 typically is a photodiode positioned opposite the LEDs so as to detect the emitted light as it emerges from the tissue site. A pulse oximetry sensor is described in U.S. Pat. No. 6,088,607 entitled "Low Noise Optical Probe," which is assigned to Masimo Corporation, Irvine, Calif. and incor- 50 porated by reference herein.

SUMMARY OF THE INVENTION

One aspect of a physiological parameter tracking system 55 comprises a physiological signal and first, second, third and fourth calculators. The physiological signal has at least first and second intensity signal components received from a light-sensitive detector that detects light of at least first and ing pulsing blood. The first calculator is configured to output a reference parameter responsive to the physiological signal. The second calculator is configured to output an ancillary parameter responsive to the physiological signal. The third calculator is configured to output a slow parameter that is a 65 function of the reference parameter and the ancillary parameter. The slow parameter is a function of time that is slowly

varying relative to the reference parameter and the ancillary parameter. A fourth calculator is configured to output a physiological measurement responsive to the reference parameter and the slow parameter. In an embodiment, the fourth calculator provides a physiological measurement that is at least in part a function of the reference parameter and the slow parameter. In an embodiment, the physiological measurement is a function of the reference parameter and the slow parameter during a first time interval and is the ancillary parameter during a second time interval. In an embodiment, the first time interval includes a period when calculations of the ancillary parameter are unfavorable. In an embodiment, the second time interval includes a period when calculations of the ancillary parameter are favorable.

Another aspect of a physiological parameter tracking system comprises inputting a physiological signal, deriving a physiological measurement from the physiological signal during a favorable condition, estimating the physiological 20 measurement during an unfavorable condition and outputting a combination of the derived physiological measurement and the estimated physiological measurement. In an embodiment, estimating comprises calculating a slow parameter that is physiologically related to the reference parameter and the physiological measurement and tracking the reference parameter with the slow parameter. In an embodiment, outputting comprises selecting between estimated physiological measurement and derived measurement according to the favorable condition and the unfavorable condition. In an embodiment, the favorable condition and the unfavorable conditions relate to power consumption goals. In an embodiment, the favorable condition and the unfavorable conditions relate to the quality of the physiological signal.

A further aspect of a physiological parameter tracking system comprises a physiological signal input, a reference parameter calculator and a physiological measurement means for outputting and estimating. The physiological signal input has at least first and second intensity signal components received from a light-sensitive detector that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood. The reference parameter calculator is configured to output a reference parameter responsive to the physiological signal. The physiological measurement means outputs a physiological parameter derived from the physiological signal input during a favorable condition and estimates the physiological parameter according to the reference parameter during an unfavorable condition. In an embodiment, a slow parameter means relates the reference parameter to the physiological parameter during the unfavorable condition. In an embodiment, an update means selects a first time period for outputting the derived physiological parameter and a second time period for outputting the estimated physiological parameter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a slow parameter calculation second wavelengths transmitted through body tissue carry- 60 embodiment of a physiological parameter tracking system; FIG. 2 is a graph illustrating operation of a physiological parameter tracking system in a sample and hold (S/H) mode; FIG. 3 is a graph illustrating operation of a physiological parameter tracking system in a track and hold (T/H) mode; FIG. 4 is a block diagram of an ancillary calculation embodiment of a physiological parameter tracking system for operation in a S/H mode; and

3

FIG. 5 is a block diagram of an ancillary calculation embodiment of a physiological parameter tracking system for operation in a T/H mode.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Overview

FIGS. 1, 4 and 5 illustrate embodiments of a physiological parameter tracking system that advantageously provide a clinically accurate physiological measurement by tracking a reference parameter based upon a slowly varying ("slow") parameter. As such, it is not necessary to continuously or frequently perform complex calculations to derive the physiological measurement. That is, the physiological measurement is a relatively simple function of the reference parameter and the slow parameter. Slow parameter calculations are performed only when conditions are favorable, or alternatively, suspended when conditions are not favorable, as indicated by an update command. The update command may be responsive to conditions such as power consumption goals or the quality of a physiological signal input to name a few.

In one embodiment, the slow parameter is HbCO or MetHb, and the reference parameter is $S_{pa}O_2$. Accordingly, 25 the physiological measurement is $S_{pa}O_2$ corrected for the presence of one or both of these abnormal hemoglobin constituents. In another embodiment, the slow parameter is $\Delta_{av}=S_{pa}O_2-S_vO_2$, a measure of oxygen consumption at a tissue site, and the reference parameter is $S_{pa}O_2$. Accordingly, the physiological measurement is an estimate of S_vO_2 .

Slow Parameter Calculation

FIG. 1 illustrates a slow parameter calculation embodiment of a physiological parameter tracking system 100 in which the slow parameter 22 is derived from and responsive 35 to a physiological signal 02. The physiological parameter tracking system 100 has a physiological signal 02 input, a reference parameter calculation 10, a slow parameter calculation 20 and a tracking function 30 and generates a physiological measurement 08 output. The reference parameter 40 calculation 10 generates a reference parameter 12 from the physiological signal 02. The slow parameter calculation 20 generates the slow parameter 22 from the physiological signal 02 input. The tracking function 30 generates the physiological measurement 08 from the reference parameter 45 12 and the slow parameter 22.

As shown in FIG. 1, the physiological signal 02 is responsive to a physiological condition. In one embodiment, the physiological signal 02 originates from an optical sensor (not shown) attached to a tissue site. The sensor transmits 50 multiple wavelengths of optical energy $\lambda_1, \lambda_2, \ldots, \lambda_n$ into the tissue site and detects corresponding optical energy emerging from the tissue site. The reference parameter calculation 10 may include pulse oximetry algorithms that operate on the physiological signal 02 to generate arterial 55 oxygen saturation, $S_{pa}O_2$, as the reference parameter 12. A pulse oximetry signal processor and algorithms are described in U.S. Pat. No. 5,632,272 entitled Signal Processing Apparatus which is assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.

Also shown in FIG. 1, the slow parameter calculation 20 generates a slow parameter 22 from the physiological signal input 02 according to an update command 04. As an example, the slow parameter calculation 20 may include algorithms that operate on the physiological signal 02 to 65 generate a measure of the concentration of abnormal hemoglobin, such as HbCO or MetHb. Multiple wavelength

4

signal processing for measuring abnormal hemoglobin constituents, for example, is described in U.S. Provisional Patent App. No. 60/426,638 entitled "Parameter Compensated Physiological Monitor," U.S. Provisional Patent App. No. 60/428,419 entitled "Blood Parameter Measurement System," and U.S. Pat. No. 6,229,856 entitled "Method and Apparatus for Demodulating Signals in a Pulse Oximetry System, which is assigned to Masimo Corporation, Irvine, Calif., all incorporated by reference herein.

Further shown in FIG. 1, the update command 04 may operate in a sample and hold (S/H) mode. That is, when the update command 04 is asserted, the slow parameter calculation 20 is triggered and the resulting slow parameter 22 value is held until a subsequent calculation. Operation of a physiological parameter tracking system having a S/H update is described with respect to FIG. 2, below. Alternatively, the update command 04 may operate in a track and hold (T/H) mode. That is, while the update command **04** is asserted, the slow parameter calculation 20 continues to generate values for the slow parameter 22. When the update command 04 is not asserted, the last generated value of the slow parameter 22 is held until the update command 04 is once more asserted. Operation of a physiological parameter tracking system having a T/H update is described with respect to FIG. 3, below.

Tracking Examples

FIG. 2 is an amplitude versus time graph 200 illustrating operation of a physiological parameter tracking system utilizing a S/H update. The graph 200 illustrates a reference curve 210 corresponding to a reference parameter 12 (FIG. 1) and a slow parameter curve 220 corresponding to a slow parameter 22 (FIG. 1). Below the graph 200 is a timing diagram 230 corresponding to the update command 04 (FIG. 1). A physiological measurement curve 240 corresponds to the physiological measurement 08 (FIG. 1).

As shown in FIG. 2, the physiological measurement curve 240 tracks the reference curve 210 according to a tracking function 30 (FIG. 1), which in this illustration is the difference between the reference parameter 12 (FIG. 1) and the slow parameter 22 (FIG. 1). A slow parameter 220 value is calculated at sample times 232, 236 and maintained throughout hold periods 234, 238. In particular, during a first sample time 232, a slow parameter value 222 of Δ_1 is calculated, and during a second sample time 236, a slow parameter value **226** of Δ_2 is calculated. As a result, during a first hold period 234, the physiological measurement curve 240 tracks the reference curve 210 by a difference of Δ_1 . Likewise, during a second hold period 238, the physiological measurement curve 240 tracks the reference curve 210 by a difference of Δ_2 . In this manner, the physiological measurement 240 is advantageously displayed with clinical accuracy utilizing only occasional computational resources and reducing power consumption accordingly.

FIG. 3 is an amplitude versus time graph 300 illustrating operation of a physiological parameter tracking system utilizing a T/H update. The graph 300 illustrates a reference curve 310 corresponding to a reference parameter 12 (FIG. 1) and a slow parameter curve 320 corresponding to a slow parameter 22 (FIG. 1). Below the graph 300 is a timing diagram 330 corresponding to the update command 04 (FIG. 1). A physiological measurement curve 340 corresponds to the physiological measurement 08 (FIG. 1).

As shown in FIG. 3, the physiological measurement curve 340 tracks the reference curve 310 according to a tracking function 30 (FIG. 1), which, again, is the difference between the reference parameter 12 (FIG. 1) and the slow parameter 22 (FIG. 1). Slow parameter 320 values are calculated

5

throughout track periods 332, 336, and the last computed values are maintained throughout the corresponding hold periods 334, 338. In particular, during a first track period 332, the physiological measurement curve 340 is the reference curve 310 minus the slow parameter curve 320. At the end of the first track period 332, a slow parameter value 332 of Δ_1 is maintained throughout the first hold period 334. As a result, during the first hold period 334, the physiological measurement curve 340 is the reference curve 310 minus Δ_1 and does not depend on the slow parameter curve 320. That is, during the first hold period 332, the physiological measurement curve 340 tracks the reference curve 310 by a difference of Δ_1 .

The "track" periods **332**, **336** are so named because the slow parameter calculation **20** (FIG. **1**) in response to the 15 update timing **330** operates in a manner roughly analogous to a conventional track/hold amplifier when its output tracks the input. These are not to be confused with the periods when the physiological measurement curve **340** is "tracking" the reference parameter curve **310**, which actually is 20 during the hold periods **334**, **338**, when the slow parameter **22** (FIG. **1**) output is held constant.

Also shown in FIG. 3, during a second track period 336, the physiological measurement curve 340 is again the reference curve 310 minus the slow parameter curve 320. At 25 the end of the second track period 336, a slow parameter value 326 of Δ_2 is maintained throughout the second hold period 338. As a result, during the second hold period 338, the physiological measurement curve 340 is the reference curve 310 minus Δ_2 and does not depend on the slow 30 parameter curve 320. That is, during the second hold period 338, the physiological measurement curve 340 tracks the reference curve 310 at a difference of Δ_2 .

Further shown in FIG. 3, the hold periods 334, 338 may correspond to slow parameter drop-out periods 324, 328, i.e. 35 periods when the slow parameter cannot be accurately calculated. In this manner, the physiological measurement 340 is advantageously displayed with clinical accuracy even when noise or other signal corruption prevents measurement of the slow parameter 320.

Ancillary Parameter Calculation

FIG. 4 illustrates an ancillary parameter calculation embodiment of a physiological parameter tracking system 400 in which the slow parameter 22 is derived from an ancillary parameter 52 in S/H mode. The ancillary parameter 45 **52**, in turn, is derived from a physiological signal **02**. That is, unlike the slow parameter calculation embodiment 100(FIG. 1), the slow parameter 22 is only indirectly derived from and responsive to the physiological signal 02. The physiological parameter tracking system 400 has a physi- 50 ological signal 02 input, a reference parameter calculation 10 and a tracking function 30, and, accordingly, generates a physiological measurement 08, similarly as described with respect to FIG. 1, above. However, in the ancillary calculation embodiment 400, the slow parameter 22 is a function 55 60 of the reference parameter 12 and/or an ancillary parameter 52. An ancillary parameter calculation 50 generates the ancillary parameter 52 from the physiological signal input 02 according to a S/H update command 04 input, such as described with respect to FIG. 2, above.

As an example, the ancillary parameter calculation **50** may include algorithms that operate on the physiological signal **02** to intermittently calculate venous oxygen saturation, $S_{pv}O_2$, as determined by a S/H update command **04**. A corresponding slow parameter function **60** is the difference 65 between an $S_{pa}O_2$ reference parameter **12** and the $S_{pv}O_2$ ancillary parameter **52** to yield a Δ_{av} slow parameter **22**.

6

Then, the tracking function 30 is a difference between the SpaO_2 reference parameter 12 and the sampled Δ_{av} slow parameter 22 to generate a $\operatorname{S}_{pv}\operatorname{O}_2$ ' physiological measurement 08. That is, the physiological measurement 08 in this example advantageously provides a continuous measurement of venous saturation $\operatorname{S}_{pv}\operatorname{O}_2$ ' utilizing intermittent calculations of $\operatorname{S}_{pv}\operatorname{O}_2$. Apparatus and methods for determining $\operatorname{S}_{pv}\operatorname{O}_2$ from mechanical or ventillator induced perturbation of the venous blood volume are described in U.S. Pat. No. 5,638,816 entitled "Active Pulse Blood Constituent Monitoring" and U.S. Pat. No. 6,334,065 entitled "Stereo Pulse Oximeter," which are assigned to Masimo Corporation, Irvine, Calif. and are incorporated by reference herein.

FIG. 5 illustrates an ancillary parameter calculation embodiment of a physiological parameter tracking system 500 in which the slow parameter 22 is derived from an ancillary parameter 52 in T/H mode. The ancillary parameter 52, in turn, is derived from a physiological signal 02. The physiological parameter tracking system 500 has a physiological signal 02 input, a reference parameter calculation 10, an ancillary parameter calculation 50, a slow parameter function 60 and a tracking function 30, and, accordingly, generates a physiological measurement 08, similarly as described with respect to FIG. 4, above. However, in this ancillary calculation embodiment 500, the update command 04 operates in a track and hold mode, as described with respect to FIG. 3, above. Accordingly, the ancillary calculation embodiment 500 also has an output multiplexer 70 having the tracking function output 32 and the ancillary parameter 52 as inputs and the physiological measurement 08 as an output, as controlled by the update command 04 input. As such, the physiological measurement 08 is the ancillary parameter 52 during a track period 332, 336 (FIG. 3) of the update command 04 and is a function of the ancillary parameter 52 and the reference parameter 10 during a hold period 334, 338 (FIG. 3) of the update command 04. That is, the physiological measurement 08 is advantageously the ancillary parameter 52 except during a hold period, when the physiological measurement 08 tracks 40 the reference parameter 12 according to the maintained value of the slow parameter 22.

As an example, the ancillary parameter calculation 50 may continuously calculate venous oxygen saturation, $S_{p\nu}O_2$, as determined by the update command 04 during track periods, and this calculation is provided as the physiological measurement 08. However, during hold periods of the update command 04, the physiological measurement 08 becomes $S_{p\nu}O_2$ ' i.e. the $S_{pa}O_2$ reference parameter 12 minus a maintained value of the $\Delta_{a\nu}$ slow parameter 22. The physiological measurement 08 in this example advantageously provides a measurement of venous saturation that is continuous through drop-out periods.

A physiological parameter tracking system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

What is claimed is:

1. A method of monitoring a patient's condition by electronically tracking one or more physiological parameters of the patient through processing signals received from a noninvasive sensor, said electronically tracking including transforming said signals into measurements of said one or more physiological parameters, the method comprising:

receiving a physiological signal from a noninvasive physiological sensor that detects light of at least first

and second wavelengths transmitted through body tissue carrying pulsing blood;

electronically processing said signal in a pulse oximetry signal processor, including:

calculating a first blood parameter responsive to the 5 physiological signal, the first blood parameter having a first rate of amplitude change over time;

responsive to an update command:

in a sample period of the update command calculating a sampled value of a second blood parameter responsive to the physiological signal, the second blood parameter having a second rate of amplitude change over time, wherein the first blood parameter and the second blood parameter are different 15 blood parameters, and

in a subsequent hold period of the update command following the sample period, maintaining the sampled value of the second blood parameter calculated during the sample period,

calculating a third blood parameter based at least in part on a difference between a current value of the first blood parameter and the sampled value of the second blood parameter; and

determining a physiological measurement of oxygen 25 saturation in the body tissue at least partly by tracking the first blood parameter by the third blood parameter such that, in the sample period, the physiological parameter represents the sampled value of the second blood parameter and, in the hold period, the physiological parameter represents an estimate of the second blood parameter based on the current value of the first blood parameter and the sampled value of the second blood parameter, wherein determining the physiological measurement using the sample period and the hold period utilizes less computational resources and consumes less power than determining the physiological measurement without the sample period and the hold period; and

displaying the physiological measurement.

- 2. The method of claim 1, wherein the calculating said second blood parameter comprises suspending calculations during a first time interval comprising the hold period and performing calculations during a second time interval com- 45 prising the sample period as indicated by the update command.
- 3. The method of claim 2, wherein the determining said physiological measurement further comprises calculating the physiological measurement, during the first time inter- 50 val, as a function of the first blood parameter and a difference corresponding to the measured value of the third blood
- 4. The method of claim 2, wherein the determining said second blood parameter during the second time interval.
- 5. The method of claim 1, further comprising asserting the update command wherein, upon assertion, a value of the third blood parameter is repeatedly generated.
- 6. The method of claim 1, further comprising asserting the 60 update command wherein, upon assertion, a value of the third blood parameter is held for a predetermined duration.
- 7. The method of claim 1, wherein the calculating said second blood parameter further comprises repeatedly calculating venous oxygen saturation.
- 8. The method of claim 1, comprising providing said noninvasive physiological sensor.

- 9. The method of claim 1, comprising providing a patient monitor including an input to receive said signal and a signal processor to execute said processing.
- 10. The method of claim 1, further comprising asserting the update command responsive to power consumption goals or quality of a physiological signal input.
- 11. A patient monitor configured to receive a signal from a non-invasive optical sensor, the monitor comprising:
 - an input configured to receive a physiological signal from a noninvasive physiological sensor that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood, said physiological signal responsive to said detection of said light; and
 - a pulse oximetry signal processor configured to receive data responsive to said physiological signal and configured to:
 - calculate a first blood parameter responsive to the physiological signal, the first blood parameter having a first rate of amplitude change over time,

responsive to an update command:

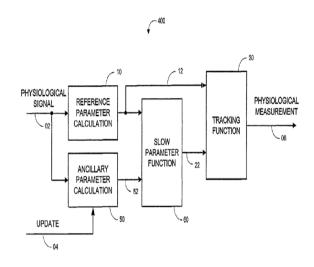
- in a sample period of the update command calculate a sampled value of a second blood parameter responsive to the physiological signal, the second blood parameter having a second rate of amplitude change over time, wherein the first blood parameter and the second blood parameter are different blood parameters, and
- in a subsequent hold period of the update command following the sample period, maintain the sampled value of the second blood parameter calculated during the sample period,
- calculate a third blood parameter based at least in part on a difference between a current value of the first blood parameter and the sampled value of the second blood parameter, and
- determine a physiological measurement of oxygen saturation in the body tissue at least partly as a difference between the first blood parameter and the third blood parameter such that, in the sample period, the physiological parameter represents the sampled value of the second blood parameter and, in the hold period, the physiological parameter represents an estimate of the second blood parameter based on the current value of the first blood parameter and the sampled value of the second blood parameter; and
- a display configured to display the physiological measurement.
- 12. The patient monitor of claim 11, wherein the signal processor is also configured to suspend calculations during a first time interval comprising the hold period and to perform calculations during a second time interval comprising the sample period as indicated by the update command.
- 13. The patient monitor of claim 12, wherein the signal physiological measurement further comprises outputting the 55 processor is also configured to calculate the physiological measurement as a function of the first blood parameter and the third blood parameter during the first time interval.
 - 14. The patient monitor of claim 12, wherein the signal processor is also configured to output the second blood parameter during the second time interval.
 - 15. The patient monitor of claim 11, wherein the signal processor is also configured to generate a measure of the concentration of abnormal hemoglobin.
 - 16. The patient monitor of claim 11, wherein the signal processor is also configured to assert the update command wherein, upon assertion, a value of the third blood parameter is repeatedly generated.

10

17. The patient monitor of claim 11, wherein the signal processor is also configured to assert the update command wherein, upon assertion, a value of the third blood parameter is held for a predetermined duration.

9

- **18**. The patient monitor of claim **11**, wherein the signal 5 processor is also configured to repeatedly calculate venous oxygen saturation.
- 19. The patient monitor of claim 11, wherein the signal processor is configured to assert the update command responsive to power consumption goals or quality of a 10 physiological signal input.


* * * * *

专利名称(译)	生理参数跟踪系统					
公开(公告)号	<u>US9788768</u>	公开(公告)日	2017-10-17			
申请号	US13/777936	申请日	2013-02-26			
[标]申请(专利权)人(译)	梅西莫股份有限公司					
申请(专利权)人(译)	Masimo公司					
当前申请(专利权)人(译)	Masimo公司					
[标]发明人	AL ALI AMMAR DIAB MOHAMED K WEBER WALTER M					
发明人	AL-ALI, AMMAR DIAB, MOHAMED K. WEBER, WALTER M.					
IPC分类号	A61B5/1455 A61B5/00					
CPC分类号	A61B5/1455 A61B5/14551 A61B5/14552 A61B5/72 A61B2560/0204					
代理机构(译)	KNOBBE, MARTENS, 奥尔森&BEAR LLP					
优先权	11/834602 2013-02-26 US 10/930048 2007-08-07 US 60/498749 2003-08-28 US					
其他公开文献	US20130274572A1					
外部链接	Espacenet USPTO					

摘要(译)

生理参数跟踪系统具有参考参数计算器,其被配置为响应于生理信号输入提供参考参数。生理测量输出是从在有利条件期间输入的生理信号导出的生理参数和在不利条件期间根据参考参数估计生理参数。

