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SYSTEMS AND METHODS FOR
ESTIMATING ISCHEMIA AND BLOOD
FLOW CHARACTERISTICS FROM VESSEL
GEOMETRY AND PHYSIOLOGY

RELATED APPLICATION

This application claims priority to U.S. Provisional Appli-
cation Nos. 61/700,213 filed Sep. 12,2012, and 61/793,673,
filed Mar. 15, 2013, the entire disclosures of which are
hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

Various embodiments of the present disclosure relate
generally to medical imaging and related methods. More
specifically, particular embodiments of the present disclo-
sure relate to systems and methods for estimating patient-
specific blood flow characteristics from vessel geometry and
physiology.

In addition, embodiments of the present disclosure relate
to rapid estimation of ischemia, blood flow, fractional flow
reserve (FFR), or other metrics derived from patient-specific
anatomy and characteristics to aid physicians in the diag-
nosis, management, and treatment of cardiovascular dis-
eases.

BACKGROUND

Cardiovascular diseases are the leading cause of death in
the industrialized world and contribute to roughly a third of
global deaths. The predominant form of acquired cardiovas-
cular disease, atherosclerosis, results from the chronic
buildup of fatty material in the inner layer of the arteries
supplying the heart, brain, kidneys, digestive system, and
lower extremities. Progressive coronary artery disease
restricts blood flow to the heart, presenting as chest pain
during physical exertion, referred to as chronic stable
angina, or when the patient is at rest, known as unstable
angina. More severe manifestation of disease may lead to
myocardial infarction, or heart attack. Patients presenting
with chest pain are usually subject to a range of currently
available noninvasive tests, including electrocardiogram
(ECG), treadmill tests, single-photon emission computed
tomography (SPECT), positron emission tomography
(PET), and computed tomography (CT)—none of which
measure blood flow and provide only anatomic information
or indirect indications of disease. Due to the lack of accurate
functional information provided by current noninvasive
tests, many patients require invasive catheter procedures to
assess coronary blood flow. There is a pressing need for a
noninvasive means to quantify blood flow in the human
coronary arteries to assess the functional significance of
diffuse and focal coronary artery disease. Additionally, there
is a need to achieve rapid assessment of blood flow to enable
use in emergency rooms, in-patient treatment, and onsite
hospital use. In addition to non-invasive use, there is a need
within invasive imaging, such as coronary angiography, to
quickly estimate functional metrics without the need for
pressure or flow wires or special medication. Such a tech-
nology is also applicable to preventing, diagnosing, manag-
ing and treating disease in other portions of the cardiovas-
cular system including the arteries of the neck, e.g. the
carotid arteries, the arteries in the head, e.g. the cerebral
arteries, the arteries in the abdomen, e.g. the abdominal aorta
and its branches, the arteries in legs, e.g. the femoral and
popliteal arteries.

20

25

30

40

45

60

65

2

A functional assessment of arterial capacity is important
for treatment planning to address patient needs. Recent
studies have demonstrated that hemodynamic characteris-
tics, such as Fractional Flow Reserve (FFR), are important
indicators to determine the optimal treatment for a patient
with arterial disease. Conventional assessments of these
hemodynamic characteristics use invasive catheterizations
to directly measure blood flow characteristics, such as
pressure and flow velocity. However, despite the important
clinical information that is gathered, these invasive mea-
surement techniques present severe risks to the patient and
significant costs to the healthcare system.

To address the risks and costs associated with invasive
measurement, a new generation of noninvasive tests have
been developed to assess blood flow characteristics. These
noninvasive tests use patient imaging (such as computed
tomography (CT)) to determine a patient-specific geometric
model of the blood vessels and this model is used compu-
tationally to simulate the blood flow using computational
fluid dynamics (CFD) with appropriate physiological
boundary conditions and parameters. Examples of inputs to
these patient-specific boundary conditions include the
patient’s blood pressure, blood viscosity and the expected
demand of blood from the supplied tissue (derived from
scaling laws and a mass estimation of the supplied tissue
from the patient imaging). Although these simulation-based
estimations of blood flow characteristics have demonstrated
a level of fidelity comparable to direct (invasive) measure-
ments of the same quantity of interest, physical simulations
demand a substantial computational burden that can make
these virtual, noninvasive tests difficult to execute in a
real-time clinical environment. Consequently, the present
disclosure describes new approaches for performing rapid,
noninvasive estimations of blood flow characteristics that
are computationally inexpensive.

SUMMARY

Systems and methods are disclosed for deriving a patient-
specific geometric model of a patient’s blood vessels, and
combining this geometry with the patient-specific physi-
ological information and boundary conditions. Combined,
these data may be used to estimate the patient’s blood flow
characteristics and predict clinically relevant quantities of
interest (e.g., FFR). The presently disclosed systems and
methods offer advantages over physics-based simulation of
blood flow to compute the quantity of interest, such as by
instead using machine learning to predict the results of a
physics-based simulation. In one embodiment, disclosed
systems and methods involve two phases: first, a training
phase in which a machine learning system is trained to
predict one or more blood flow characteristics; and second,
a production phase in which the machine learning system is
used to produce one or more blood flow characteristics and
clinically relevant quantities of interest. In the case of
predicting multiple blood flow characteristics, this machine
learning system can be applied for each blood flow charac-
teristic and quantity of interest.

According to one embodiment, a method is disclosed for
determining individual-specific blood flow characteristics.
The method includes acquiring, for each of a plurality of
individuals, individual-specific anatomic data and blood
flow characteristics of at least part of the individual’s
vascular system; executing a machine learning algorithm on
the individual-specific anatomic data and blood flow char-
acteristics for each of the plurality of individuals; relating,
based on the executed machine learning algorithm, each
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individual’s individual-specific anatomic data to functional
estimates of blood flow characteristics; acquiring, for an
individual, individual-specific anatomic data of at least part
of the individual’s vascular system; and for at least one point
in the individual’s individual-specific anatomic data, deter-
mining a blood flow characteristic of the individual, using
relations from the step of relating individual-specific ana-
tomic data to functional estimates of blood flow character-
istics.

According to one embodiment, a system is disclosed for
determining individual-specific blood flow characteristics.
The system includes a data storage device storing instruc-
tions for estimating individual-specific blood flow charac-
teristics; and a processor configured to execute the instruc-
tions to perform a method including the steps of: acquiring,
for each of a plurality of individuals, individual-specific
anatomic data and blood flow characteristics of at least part
of the individual’s vascular system; executing a machine
learning algorithm on the individual-specific anatomic data
and blood flow characteristics for each of the plurality of
individuals; relating, based on the executed machine learn-
ing algorithm, each individual’s individual-specific ana-
tomic data to functional estimates of blood flow character-
istics; acquiring, for an individual, individual-specific
anatomic data of at least part of the individual’s vascular
system; and for at least one point in the individual’s indi-
vidual-specific anatomic data, determining a blood flow
characteristic of the individual, using relations from the step
of relating individual-specific anatomic data to functional
estimates of blood flow characteristics.

According to one embodiment, a non-transitory com-
puter-readable medium storing instructions that, when
executed by a computer, cause the computer to perform a
method including: acquiring, for each of a plurality of
individuals, individual-specific anatomic data and blood
flow characteristics of at least part of the individual’s
vascular system; executing a machine learning algorithm on
the individual-specific anatomic data and blood flow char-
acteristics for each of the plurality of individuals; relating,
based on the executed machine learning algorithm, each
individual’s individual-specific anatomic data to functional
estimates of blood flow characteristics; acquiring, for an
individual, individual-specific anatomic data of at least part
of the individual’s vascular system; and for at least one point
in the individual’s individual-specific anatomic data, detet-
mining a blood flow characteristic of the individual, using
relations from the step of relating individual-specific ana-
tomic data to functional estimates of blood flow character-
istics.

Additional objects and advantages of the disclosed
embodiments will be set forth in part in the description that
follows, and in part will be apparent from the description, or
may be learned by practice of the disclosed embodiments.
The objects and advantages of the disclosed embodiments
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate various
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exemplary embodiments and together with the description,
serve to explain the principles of the disclosed embodi-
ments.

FIG. 1 is a block diagram of an exemplary system and
network for estimating patient-specific blood flow charac-
teristics from vessel geometry and physiological informa-
tion, according to an exemplary embodiment of the present
disclosure.

FIG. 2 is a block diagram of an exemplary method for
estimating patient-specific blood flow characteristics from
vessel geometry and physiological information, according to
an exemplary embodiment of the present disclosure.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the exemplary
embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts.

The present disclosure describes certain principles and
embodiments for providing advantages over physics-based
simulation of blood flow to compute patient-specific blood
flow characteristics and clinically relevant quantities of
interest. Namely, the presently disclosed systems and meth-
ods may incorporate machine learning techniques to predict
the results of a physics-based simulation. For example, the
present disclosure describes an exemplary, less processing-
intensive technique, which may involve modeling the frac-
tional flow reserve (FFR) as a function of a patient’s
vascular cross-sectional area, diseased length, and boundary
conditions. The cross-sectional area may be calculated based
on lumen segment and plaque segment, among other things.
The diseased length may be calculated based on plaque
segment and stenosis location, among other things. The
boundary conditions may reflect patient-specific physiology,
such as coronary flow (estimated from myocardial mass),
outlet area, and hyperemic assumptions, to reflect that
different patients have different geometry and physiologic
responses.

In one embodiment, fractional flow reserve may be mod-
eled as a function of a patient’s boundary conditions
(f(BCs)), and a function of a patient’s vascular geometry
(g(areaReductions)). Although the patient’s geometry may
be described as a function of “areaReductions,” it should be
appreciated that this term refers, not just to changes in
patient’s vascular cross-sectional area, but to any physical or
geometric characteristics affecting a patient’s blood flow. In
one embodiment, FFR can be predicted by optimizing the
fanctions “f” and “g” such that the difference between the
estimated FFR (FFR (7 s pig10) @nd the measured FFR
(mFFR) is minimized. In other words, machine learning
techniques can be used to solve for the functions that cause
the estimated FFR to approximate the measured FFR. In one
embodiment, the measured FFR may be calculated by tra-
ditional catheterized methods or by modern, computational
fluid dynamics (CFD) techniques. In one embodiment, one
or more machine learning algorithms may be used to opti-
mize the functions of boundary conditions and patient
geometry for hundreds or even thousands of patients, such
that estimates for FFR can reliably approximate measured
FFR values. Thus, FFR values calculated by CFD tech-
niques can be valuable for training the machine learning
algorithms.

Referring now to the figures, FIG. 1 depicts a block
diagram of an exemplary system and network for estimating
patient-specific blood flow characteristics from vessel
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geometry and physiological information. Specifically, FIG.
1 depicts a plurality of physicians 102 and third party
providers 104, any of whom may be connected to an
electronic network 100, such as the Internet, through one or
more computers, servers, and/or handheld mobile devices.
Physicians 102 and/or third party providers 104 may create
or otherwise obtain images of one or more patients’ cardiac
and/or vascular systems. The physicians 102 and/or third
party providers 104 may also obtain any combination of
patient-specific information, such as age, medical history,
blood pressure, blood viscosity, etc. Physicians 102 and/or
third party providers 104 may transmit the cardiac/vascular
images and/or patient-specific information to server systems
106 over the electronic network 100. Server systems 106
may include storage devices for storing images and data
received from physicians 102 and/or third party providers
104. Sever systems 106 may also include processing devices
for processing images and data stored in the storage devices.

FIG. 2 is a block diagram of an exemplary method for
estimating patient-specific blood flow characteristics from
vessel geometry and physiological information, according to
an exemplary embodiment of the present disclosure. The
method of FIG. 2 may be performed by server systems 106,
based on information received from physicians 102 and/or
third party providers 104 over electronic network 100.

In one embodiment, the method of FIG. 2 may include a
training method 202, for training one or more machine
learning algorithms based on numerous patients’ blood flow
characteristic estimates, and a production method 204 for
using the machine learning algorithm results to predict a
particular patient’s blood flow characteristics.

In one embodiment, training method 202 may be per-
formed based on FFR estimates generating using CFD
techniques for hundreds of patients. Training method 202
may involve acquiring, for each of a plurality of individuals,
e.g., in digital format: (a) a patient-specific geometric model,
(b) one or more measured or estimated physiological param-
eters, and (c) values of blood flow characteristics. Training
method 202 may then involve, for one or more points in each
patient’s model, creating a feature vector of the patients’
physiological parameters and associating the feature vector
with the values of blood flow characteristics. For example,
training method 202 may associate an estimated FFR with
every point in a patient’s geometric model. Training method
202 may then train a machine learning algorithm (e.g., using
processing devices of server systems 106) to predict blood
flow characteristics at each point of a geometric model,
based on the feature vectors and blood flow characteristics.
Training method 202 may then save the results of the
machine learning algorithm, including feature weights, in a
storage device of server systems 106. The stored feature
weights may define the extent to which patient features or
geometry are predictive of certain blood flow characteristics.

In one embodiment, the production method 204 may
involve estimating FFR values for a particular patient, based
on results of executing training method 202. In one embodi-
ment, production method 204 may include acquiring, e.g. in
digital format: (a) a patient-specific geometric model, and
(b) one or more measured or estimated physiological param-
eters. For multiple points in the patient’s geometric model,
production method 204 may involve creating a feature
vector of the physiological parameters used in the training
mode. Production method 204 may then use saved results of
the machine learning algorithm to produce estimates of the
patient’s blood flow characteristics for each point in the
patient-specific geometric model. Finally, production
method 204 may include saving the results of the machine

20

25

40

45

60

65

6

learning algorithm, including predicted blood flow charac-
teristics, to a storage device of server systems 106.

Described below are general and specific exemplary
embodiments for implementing a training mode and a pro-
duction mode of machine learning for predicting patient-
specific blood flow characteristics, e.g. using server systems
106 based on images and data received from physicians 102
and/or third party providers 104 over electronic network
100.

GENERAL EMBODIMENT

In a general embodiment, server systems 106 may per-
form a training mode based on images and data received
from physicians 102 and/or third party providers 104 over
electronic network 100. Specifically, for one or more
patients, server systems 106 may acquire a digital represen-
tation (e.g., the memory or digital storage [e.g., hard drive,
network drive] of a computational device such as a com-
puter, laptop, digital signal processor (DSP), server, etc.) of
the following items: (a) a patient-specific model of the
geometry for one or more of the patient’s blood vessels; (b)
a list of one or more measured or estimated physiological or
phenotypic parameters of the patient; and/or (c) measure-
ments, estimations or simulated values of all blood flow
characteristic being targeted for prediction. In one embodi-
ment, the patient-specific model of the geometry may be
represented by a list of points in space (possibly with a list
of neighbors for each point) in which the space can be
mapped to spatial units between points (e.g., millimeters). In
one embodiment, the list of one or more measured or
estimated physiological or phenotypic parameters of the
patient may include blood pressure, blood viscosity, patient
age, patient gender, mass of the supplied tissue, etc. These
patient-specific parameters may be global (e.g., blood pres-
sure) or local (e.g., estimated density of the vessel wall at a
particular location).

For every point in the patient-specific geometric model
for which there is a measured, estimated or simulated value
of the blood flow characteristic, server systems 106 may
then create a feature vector for that point. The feature vector
may be a numerical description of the patient-specific geom-
etry at that point and estimates of physiological or pheno-
typic parameters of the patient. The feature vector may
contain both global and local physiological or phenotypic
parameters, where: for global parameters, all points have the
same numerical value; and for local parameters, the value(s)
may change at different points in the feature vector. Server
systems 106 may then associate this feature vector with the
measured, estimated or simulated value of the blood flow
characteristic at this point.

Server systems 106 may then train a machine learning
algorithm to predict the blood flow characteristics at the
points from the feature vectors at the points. Examples of
machine learning algorithms that can perform this task are
support vector machines (SVMs), multi-layer perceptrons
(MLPs), and multivariate regression (MVR) (e.g., weighted
linear or logistic regression). Server systems 106 may then
save the results of the machine learning algorithm (e.g.,
feature weights) to a digital representation (e.g., the memory
or digital storage [e.g., hard drive, network drive] of a
computational device such as a computer, laptop, DSP,
server, etc.).

Also in a general embodiment, server systems 106 may
perform a production mode based on images and data
received from physicians 102 and/or third party providers
104 over electronic network 100. For a patient on whom a
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blood flow analysis is to be performed, server systems 106
may acquire a digital representation (e.g., the memory or
digital storage [e.g., hard drive, network drive] of a com-
putational device such as a computer, laptop, DSP, server,
etc.) of (a) a patient-specific model of the geometry for one
or more of the patient’s blood vessels; and (b) a list of one
or more estimates of physiological or phenotypic parameters
of the patient. In one embodiment, the patient-specific model
of the geometry for one or more of the patient’s blood
vessels may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). The list of one or more estimates of physi-
ological or phenotypic parameters of the patient, may
include blood pressure, blood viscosity, patient age, patient
gender, the mass of the supplied tissue, etc. These param-
eters may be global (e.g., blood pressure) or local (e.g.,
estimated density of the vessel wall at a location). This list
of parameters must be the same as the list used in the training
mode.

For every point in the patient-specific geometric model,
server systems 106 may create a feature vector that consists
of a numerical description of the geometry and estimates of
physiological or phenotypic parameters of the patient.
Global physiological or phenotypic parameters can be used
in the feature vector of all points and local physiological or
phenotypic parameters can change in the feature vector of
different points. These feature vectors may represent the
same parameters used in the training mode. Server systems
106 may then use the saved results of the machine learning
algorithm produced in the training mode (e.g., feature
weights) to produce estimates of the blood flow character-
istics at each point in the patient-specific geometric model.
These estimates may be produced using the same machine
learning algorithm technique used in the training mode (e.g.,
the SVM, MLP, MVR technique). Server systems 106 may
also save the predicted blood flow characteristics for each
point to a digital representation (e.g., the memory or digital
storage [e.g., hard drive, network drive] of a computational
device such as a computer, laptop, DSP, server, etc.).

Exemplary Embodiment

In one exemplary embodiment, server systems 106 may
perform a training mode based on images and data received
from physicians 102 and/or third party providers 104 over
electronic network 100. Specifically, for one or more
patients, server systems 106 may acquire a digital represen-
tation (e.g., the memory or digital storage [e.g., hard drive,
network drive] of a computational device such as a com-
puter, laptop, DSP, server, etc.) of (a) a patient-specific
model of the geometry for the patient’s ascending aorta and
coronary artery tree; (b) a list of measured or estimated
physiological or phenotypic parameters of the patient; and
(c) measurements of the FFR when available.

In one embodiment, the patient-specific model of the
geometry for the patient’s ascending aorta and coronary
artery tree may be represented as a list of points in space
(possibly with a list of neighbors for each point) in which the
space can be mapped to spatial units between points (e.g.,
millimeters). This model may be derived by performing a
cardiac CT imaging study of the patient during the end
diastole phase of the cardiac cycle. The resulting CT images
may then be segmented manually or automatically to iden-
tify voxels belonging to the aorta and to the lumen of the
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coronary arteries. Once all relevant voxels are identified, the
geometric model can be derived (e.g., using marching
cubes).

In one embodiment, the list of measured or estimated
physiological or phenotypic parameters of the patient may
be obtained and may include: (i) systolic and diastolic blood
pressures; (ii) heart rate; (iii) hematocrit level; (iv) patient
age, gender, height, weight, general health status (presence
or absence of diabetes, current medications); (v) lifestyle
characteristics: smoker/non-smoker; and/or (vi) myocardial
mass (may be derived by segmenting the myocardium
obtained during the CT imaging study and then calculating
the volume in the image; the mass is then computed using
the computed volume and an estimated density (1.05 g/mL)
of the myocardial mass.

In one embodiment, measurements of the FFR may be
obtained when available. If the measured FFR value is not
available at a given spatial location in the patient-specific
geometric model, then a numerically computed value of the
FFR at the point may be used. The numerically computed
values may be obtained from a previous CFD simulation
using the same geometric model and patient-specific bound-
ary conditions derived from the physiological and pheno-
typic parameters listed above.

For every point in the patient-specific geometric model
for which there is a measured, estimated or simulated value
of the blood flow characteristics, server systems 106 may
create a feature vector for that point that contains a numeri-
cal description of physiological or phenotypic parameters of
the patient and a description of the local geometry. Specifi-
cally the feature vector may contain: (i) systolic and dia-
stolic blood pressures; (ii) heart rate; (iii) blood properties
including: plasma, red blood cells (erythrocytes), hemato-
crit, white blood cells (leukocytes) and platelets (thrombo-
cytes), viscosity, yield stress; (iv) patient age, gender, height,
weight, etc.; (v) diseases: presence or absence of diabetes,
myocardial infarction, malignant and rheumatic conditions,
peripheral vascular conditions, etc.; (vi) lifestyle character-
istics: presence or absence of current medications/drugs,
smoker/non-smoker; (vii) characteristics of the aortic geom-
etry (Cross-sectional area of the aortic inlet and outlet,
Surface area and volume of the aorta, Minimum, maximum,
and average cross-sectional area, etc.); (viii) characteristics
of the coronary branch geometry; and (ix) one or more
feature sets.

In one embodiment, the characteristics of the coronary
branch geometry may include: (i) volumes of the aorta
upstream/downstream of the coronary branch point; (ii)
cross-sectional area of the coronary/aorta bifurcation point,
i.e., inlet to the coronary branch; (iii) total number of vessel
bifurcations, and the number of upstream/downstream ves-
sel bifurcations; (iv) average, minimum, and maximum
upstream/downstream cross-sectional areas; (v) distances
(along the vessel centerline) to the centerline point of
minimum and maximum upstream/downstream cross-sec-
tional areas; (vi) cross-sectional of and distance (along the
vessel centerline) to the nearest upstream/downstream ves-
sel bifurcation; (vii) cross-sectional area of and distance
(along the vessel centerline) to the nearest coronary outlet
and aortic inlet/outlet; (viii) cross-sectional areas and dis-
tances (along the vessel centerline) to the downstream
coronary outlets with the smallest/largest cross-sectional
areas; (ix) upstream/downstream volumes of the coronary
vessels; and (X) upstream/downstream volume fractions of
the coronary vessel with a cross-sectional area below a
user-specified tolerance.
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In one embodiment, a first feature set may define cross-
sectional area features, such as a cross-sectional lumen area
along the coronary centerline, a powered cross-sectional
lumen area, a ratio of lumen cross-sectional area with

respect to the main ostia, i.e., the left main (LM) and right 5

coronary arteries (RCA), a powered ratio of lumen cross-
sectional area with respect to the main ostia, a degree of
tapering in cross-sectional lumen area along the centerline,
locations of stenotic lesions, lengths of stenotic lesions,
location and number of lesions corresponding to 50%, 75%,
90% area reduction, distance from stenotic lesion to the
main ostia, and/or irregularity (or circularity) of cross-
sectional lumen boundary.

In one embodiment, the cross-sectional lumen area along
the coronary centerline may be calculated by extracting a
centerline from constructed geometry, smoothing the cen-
terline if necessary, and computing cross-sectional area at
each centerline point and map it to corresponding surface
and volume mesh points. In one embodiment, the powered
cross-sectional lumen area can be determined from various
source of scaling laws. In one embodiment, the ratio of
lumen cross-sectional area with respect to the main ostia
(LM, RCA) can be calculated by measuring cross-sectional
area at the LM ostium, normalizing cross-sectional area of
the left coronary by LM ostium area, measuring cross-
sectional area at the RCA ostium, and normalizing cross-
sectional area of the right coronary by RCA ostium area. In
one embodiment, the powered ratio of lumen cross-sectional
area with respect to the main ostia can be determined from
various source of scaling laws. In one embodiment, the
degree of tapering in cross-sectional lumen area along the
centerline can be calculated by sampling centerline points
within a certain interval (e.g., twice the diameter of the
vessel) and compute a slope of linearly-fitted cross-sectional
area. In one embodiment, the location of stenotic lesions can
be calculated by detecting minima of cross-sectional area
curve, detecting locations where first derivative of area
curve is zero and second derivative is positive, and com-
puting distance (parametric arc length of centerline) from

the main ostium. In one embodiment, the lengths of stenotic 4

lesions can be calculated by computing the proximal and
distal locations from the stenotic lesion, where cross-sec-
tional area is recovered.

In one embodiment, another feature set may include
intensity features that define, for example, intensity change
along the centerline (slope of linearly-fitted intensity varia-
tion). In one embodiment, another feature set may include
surface features that define, for example, 3D surface curva-
ture of geometry (Gaussian, maximum, minimum, mean). In
one embodiment, another feature set may include volume
features that define, for example, a ratio of total coronary
volume compared to myocardial volume. In one embodi-
ment, another feature set may include centerline features that
define, for example, curvature (bending) of coronary cen-
terline, e.g., by computing Frenet curvature:

P Xsp I’
17l
where p is coordinate of centerline
or by computing an inverse of the radius of circumscribed
circle along the centerline points. Curvature (bending) of
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coronary centerline may also be calculated based on tortu- 65

osity (non-planarity) of coronary centerline, e.g., by com-
puting Frenet torsion:

10

xp")p’
|p/ X p//ll ’

where p is coordinate of centerline

In one embodiment, another feature set may include a
SYNTAX scoring feature, including, for example, an exis-
tence of aorta ostial lesion, detection of a lesion located at
the origin of the coronary from the aorta; and/or dominance
(left or right).

In one embodiment, another feature set may include a
simplified physics feature, e.g., including a fractional flow
reserve value derived from Hagen-Poisseille flow assump-
tion (Resistance~Area=2). For example, in one embodiment,
server systems 106 may compute the cross-sectional area of
the origin (LM ostium or RCA ostium) of the coronary from
the aorta (A,) with aortic pressure (P,); compute cross-
sectional area of coronary vessel (A,) at each sampled
interval (L,); determine the amount of coronary flow in each
segment of vessel using resistance boundary condition under
hyperemic assumption (Q,); estimate resistance at each
sampled location (R,) based on:

8ul,;

Ri=ai— +
nAl

Bis

where:

Nominal value p=dynamic viscosity of blood, ,=1.0,
=0, y/=2.0 (Hagen-Poisseille).

Server systems 106 may estimate pressure drop (AP,) as
AP=Q,R; and compute FFR at each sampled location as

FFR =
Py

Locations of cross-sectional area minima or intervals
smaller than vessel radius may be used for sampling loca-
tions. Server systems 106 may interpolate FFR along the
centerline using FFR,, project FFR values to 3D surface
mesh node, and vary o, p,, v, and obtain new sets of FFR
estimation as necessary for training, such as by using the
feature sets defined above to perturb parameters where a., f;
can be a function of the diseased length, degree of stenosis
and tapering ratio to account for tapered vessel; and Q, can
be determined by summing distributed flow of each outlet on
the basis of the same scaling law as the resistance boundary
condition (outlet resistanceccoutlet area™'->*). However, a
new scaling law and hyperemic assumption can be adopted,
and this feature vector may be associated with the measure-
ment or simulated value of the FFR at that point. Server
systems 106 may also train a linear SVM to predict the blood
flow characteristics at the points from the feature vectors at
the points; and save the results of the SVM as a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

In an exemplary production mode, servers systems 106
may, for a target patient, acquire in digital representation
(e.g., the memory or digital storage (e.g., hard drive, net-
work drive) of a computational device such as a computer,
laptop, DSP, server, etc.): (a) a patient-specific model of the
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geometry for the patient’s ascending aorta and coronary
artery tree; and (b) a list of physiological and phenotypic
parameters of the patient obtained during training mode. In
one embodiment, the patient-specific model of the geometry
for the patient’s ascending aorta and coronary artery tree
may be represented as a list of points in space (possibly with
a list of neighbors for each point) in which the space can be
mapped to spatial units between points (e.g., millimeters).
This model may be derived by performing a cardiac CT
imaging of the patient in the end diastole phase of the
cardiac cycle. This image then may be segmented manually
or automatically to identify voxels belonging to the aorta
and the lumen of the coronary arteries. Once the voxels are
identified, the geometric model can be derived (e.g., using
marching cubes). The process for generating the patient-
specific model of the geometry may be the same as in the
training mode. For every point in the patient-specific geo-
metric model, the server systems 106 may create a feature
vector for that point that consists of a numerical description
of the geometry at that point and estimates of physiological
or phenotypic parameters of the patient. These features may
be the same as the quantities used in the training mode. The
server systems 106 may then use the saved results of the
machine learning algorithm produced in the training mode
(e.g., feature weights) to produce estimates of the FFR at
each point in the patient-specific geometric model. These
estimates may be produced using the same linear SVM
technique used in the training mode. The server systems 106
may save the predicted FFR values for each point to a digital
representation (e.g., the memory or digital storage [e.g., hard
drive, network drive] of a computational device such as a
computer, laptop, DSP, server, etc.).

In one embodiment, the above factors (i) thru (viii)
(“Systolic and diastolic blood pressures” thru “Characteris-
tics of the coronary branch geometry”) may be considered
global features, which are applicable to all points within a
given patient’s geometric model. Also, items (ix) thru (xv)
(“Feature Set I: Cross-sectional area feature” thru “Feature
Set VII: Simplified Physics feature™) may be considered
features that are local to specific points within a given
patient’s geometric model. In addition, features (i) thru (vi)
may be considered variables within the function of boundary
conditions, f(BCs), while features (vii) thru (xv) may be
considered variables within the function of geometry,
g(areaReductions), on that page. It will be appreciated that
any combination of those features, modified by any desired
weighting scheme, may be incorporated into a machine
learning algorithm executed according to the disclosed
embodiments.

In another embodiment, systems and methods are
described to obtain estimates of physiologic metrics, such as
ischemia, blood flow, or FFR from patient-specific anatomy
and characteristics. The system may consist of a computer
and software either on-site at a hospital or off-site that
physicians load or transfer patient-specific data to. The
anatomic data may consist of imaging data (ie CT) or
measurements and anatomic representation already obtained
from imaging data (quantitative angiography, vessel seg-
mentations from third party software, vascular diameters,
etc). Other patient characteristics may consist of heart rate,
blood pressure, demographics such as age or sex, medica-
tion, disease states including diabetes and hypertension,
prior M1, etc.

After relevant data is received by the system, it may be
processed by software automation, the physician using the
system, a third-party technician or analyst using the system,
or any combination. The data may be processed using
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algorithms relating the patient’s anatomy and characteristics
to functional estimates of ischemia and blood flow. The
algorithms may employ empirically derived models,
machine learning, or analytical models relating blood flow
to anatomy. Estimates of ischemia (blood flow, FFR, etc)
may be generated for a specific location in a vessel, as an
overall estimate for the vessel, or for an entire system of
vessels such as the coronary arteries. A numeric output, such
as an FFR value, may be generated or simple positive/
negative/inconclusive indications based on clinical metrics
may be provided (ie FFR> or <0.80). Along with the output,
a confidence may be provided. Results of the analysis may
be displayed or stored in a variety of media, including
images, renderings, tables of values, or reports and may be
transferred back to the physician through the system or
through other electronic or physical delivery methods.

In one embodiment, the algorithm to estimate FFR from
patient anatomy consists of deriving an analytical model
based on fundamentals of physiology and physics, for
example analytical fluid dynamics equations and morphom-
etry scaling laws. Information about the following coronary
anatomy, including but not limited to the following features
derived from imaging data (ie CT), serves as an input:

Vessel sizes

Vessel size at ostium

Vessel size at distal branches

Reference and minimum vessel size at plaque

Distance from ostium to plaque

Length of plaque and length of minimum vessel size

Myocardial volume

Branches proximal/distal to measurement location

Branches proximal/distal to plaque

Measurement location

Using some or all of the information above, a network of
flow resistance may be created. Pressure drop may be
estimated by relating the amount of blood flow to the
resistance to blood flow using any of a variety of analytical
models, such as Poiseuille’s equation, energy loss models,
etc. As an example embodiment:

FFR=(P-AP)/P

where P is the aortic pressure and AP is the change in
pressure from the aorta to the location of interest.

AP=0R,

where Q is flow rate, and R is resistance

The flow rate may be estimated by morphometry rela-
tions, such as QxM* where M is the myocardial volume and
k is an exponent, often approximately 0.75. Individual
vessel flow rates may scale based on the morphometry
relationship of Q¥ where D is the diameter of the vessel
and k is an exponent, often between 2 and 3.

In an example embodiment. the resistance through a
vessel may be estimated by Poiseuille’s equation:

R CXIML/D4

where u is viscosity, L is length, and D is diameter

Downstream, or microvascular resistances may be esti-
mated through morphometric tree generation or other meth-
ods described in Ser. No. 13/014,809 and Ser. No. 08/157,
742. FFR can be estimated by relating all the resistance and
flow estimates in a network representing the distribution of
vessels in the coronary circulation, and pressure can be
solved.

In another embodiment, regression or machine learning
may be employed to train the algorithm using the features
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previously mentioned, formulations of resistances and
flows, and additional anatomic and patient characteristics,
including but not limited to:
Age, sex, and other demographics
Heart rate, blood pressure, and other physiologic mea-
sures
Disease state, such as hypertension, diabetes, previous
cardiac events
Vessel dominance
Plaque type
Plaque shape
Prior simulation results, such as full 3D simulations of
FFR
A library or database of anatomic and patient character-
istics along with FFR, ischemia test results, previous simu-
lation results, imaging data, or other metrics may be com-
piled. For every point of interest where an FFR estimation
is required, a set of features may be generated. A regression
or machine learning technique, such as linear regression or
decision trees, may be used to define which features have the
largest impact on estimating FFR and to create an algorithm
that weights the various features. Example embodiments
may estimate FFR numerically, classify a vessel as ischemia
positive or negative, or classify a patient as ischemia posi-
tive or negative.
Once an algorithm is created, it may be executed on new
data provided by the physician to the system. As previously
described, a number of methods may be used to generate the
anatomic information required, and once obtained, the fea-
tures defined, algorithm performed, and results reported.
Along with numerical or classification results, a confidence
from the machine learning algorithm may be provided. One
example embodiment is to report that a particular vessel in
a patient has a specific percent confidence of being positive
or negative for ischemia, ie Left anterior descending artery
is positive with 85% confidence. Over time, the algorithm
may be refined or updated as additional patient data is added
to the library or database.
One additional embodiment is to derive any of the pre-
viously mentioned parameters, physiologic, or physical esti-
mations empirically. Coupled with machine learning or
analytic techniques, empirical studies of flow and pressure
across various geometries may be utilized to inform the
algorithms.
Other embodiments of the invention will be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the invention disclosed herein. It is
intended that the specification and examples be considered
as exemplary only, with a true scope and spirit of the
invention being indicated by the following claims.
What is claimed is:
1. A method for determining individual-specific blood
flow characteristics, the method comprising:
acquiring, by a processor, for each of a plurality of
individuals, individual-specific anatomic data, one or
more physiological parameters of the respective indi-
vidual, and one or more non-invasively computed
blood flow characteristics of blood flow through at least
part of each respective individual’s vascular system;

for each of a plurality of points in the individual-specific
anatomic data of each of the plurality of individuals,
creating, by the processor, a feature vector comprising
a vascular cross-sectional area, a diseased length, and
one or more boundary conditions of a geometric model
at the respective point;

forming, by the processor, associations of each created

feature vector with a non-invasively computed blood
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flow characteristic of blood flow through the part of the
respective individual’s vascular system at the respec-
tive point of the feature vector;
training a machine learning algorithm comprising one or
more of a support vector machine (SVM), a multi-layer
perceptron (MLP), a multivariate regression (MVR),
and a weighted linear or logistic regression on the
associated feature vectors and non-invasively com-
puted blood flow characteristics of the plurality of
points of the plurality of individuals’ vascular systems,
wherein the training of the machine learning algorithm
comprises operations performed by the processor to
generate feature weights between each individual’s
individual-specific anatomic data and the individual’s
non-invasively computed blood flow characteristics;

acquiring, by the processor, for a patient, patient-specific
anatomic data of at least part of the patient’s vascular
system and one or more physiological parameters of the
patient; and

for at least one point in the patient’s patient-specific

anatomic data, estimating, by the processor, one or
more values of the blood flow characteristic at one or
more points of the patient’s vascular system, using the
trained machine learning algorithm and the generated
feature weights.

2. The method of claim 1, wherein the blood flow char-
acteristics of the individuals include ischemia, blood flow, or
fractional flow reserve.

3. The method of claim 1, further comprising:

using the machine learning algorithm, by the processor, to

weight the impact of features on the blood flow char-
acteristic; and

using the machine learning algorithm, by the processor, to

estimate a blood flow characteristic numerically, clas-
sify a vessel as ischemia positive or negative, or
classify a respective individual as ischemia positive or
negative.

4. The method of claim 1, wherein the one or more
physiological parameters include one or more of: heart rate,
blood pressure, demographics such as age or sex, medica-
tion, disease states, including diabetes, hypertension, vessel
dominance, and prior myocardial infarction (MI).

5. The method of claim 1, further comprising: displaying
or storing, by the processor, the estimated value of the blood
flow characteristic of the patient in one or more of a media,
including images, renderings, tables of values, or reports, or
transferring the estimated value of the blood flow charac-
teristic of the patient to a physician through other electronic
or physical delivery methods.

6. The method of claim 1, further comprising displaying,
by the processor, along with each estimated value of the
blood flow characteristic of the patient a confidence level or
a positive, negative, or inconclusive indication.

7. The method of claim 1, further comprising producing,
by the processor, estimates of the blood flow characteristic
of the patient based on one or more of analytical fluid
dynamics equations and morphometry scaling laws.

8. The method of claim 1, wherein the individual-specific
anatomic data includes one or more of: vessel size, vessel
size at ostium, vessel size at distal branches, reference and
minimum vessel size at plaque, distance from ostium to
plaque, length of plaque and length of minimum vessel size,
myocardial volume, branches proximal/distal to measure-
ment location, branches proximal/distal to plaque, and mea-
surement location.
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9. The method of claim 1, further comprising:

compiling, by the processor, a library or database of

individual-specific anatomic data and physiological
parameters along with fractional flow reserve, ischemia
test results, previous simulation results, and imaging
data.

10. The method of claim 9, further comprising:

refining, by the processor, the machine learning algorithm

based on additional data added to the library or data-
base.

11. The method of claim 9, wherein the individual-
specific anatomic data for the patient or the plurality of
individuals is obtained from one or more of: medical image
data, measurements, models, and segmentations.

12. A system for determining individual-specific blood
flow characteristics, the system comprising:

a data storage device storing instructions for estimating

individual-specific blood flow characteristics; and

a processor configured to execute the instructions to

perform a method including the steps of:

acquiring, for each of a plurality of individuals, indi-
vidual-specific anatomic data, one or more physi-
ological parameters of the respective individual, and
one or more non-invasively computed blood flow
characteristics of blood flow through at least part of
each respective individual’s vascular system;

for each of a plurality of points in the individual-
specific anatomic data of each of the plurality of
individuals, creating a feature vector comprising a
vascular cross-sectional area, a diseased length, and
one or more boundary conditions of a geometric
model at the respective point;

forming associations of each created feature vector
with a non-invasively computed blood flow charac-
teristic of blood flow through the part of the respec-
tive individual’s vascular system at the respective
point of the feature vector;

training a machine learning algorithm comprising one
or more of a support vector machine (SVM), a
multi-layer perceptron (MLP), a multivariate regres-
sion (MVR), and a weighted linear or logistic regres-
sion on the associated feature vectors and non-
invasively computed blood flow characteristics of
the plurality of points of the plurality of individuals’
vascular systems, wherein the training of the
machine learning algorithm comprises operations
performed by a processor to generate feature weights
between each individual’s individual-specific ana-
tomic data and the individual’s non-invasively com-
puted blood flow characteristics;

acquiring, for a patient, patient-specific anatomic data
of at least part of the patient’s vascular system and
one or more physiological parameters of the patient;
and

for at least one point in the patient’s patient-specific
anatomic data, estimating one or more values of the
blood flow characteristic at one or more points of the
patient’s vascular system, using the trained machine
learning algorithm and the generated feature
weights.

13. The system of claim 12, wherein the blood flow
characteristics include ischemia, blood flow, or fractional
flow reserve.

14. The system of claim 12, wherein the processor is
further configured for:

using the machine learning algorithm to weight the impact

of features on estimated blood flow characteristic; and
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using the machine learning algorithm to estimate a blood
flow characteristic numerically, classify a vessel as
ischemia positive or negative, or classify a respective
individual as ischemia positive or negative.

15. The system of claim 12, wherein the one or more
physiological parameters include one or more of: heart rate,
blood pressure, demographics such as age or sex, medica-
tion, disease states, including diabetes, hypertension, vessel
dominance, and prior myocardial infarction (MI).

16. The system of claim 12, wherein the processor is
further configured for:

displaying or storing the estimated value of the blood flow

characteristic of the patient in one or more of a media,
including images, renderings, tables of values, or
reports, or transferring the estimated value of the blood
flow characteristic of the patient to a physician through
other electronic or physical delivery methods.

17. The system of claim 12, wherein the processor is
further configured for:

displaying along with the estimated value of the deter-

mined blood flow characteristic of the patient a confi-
dence level or a positive, negative, or inconclusive
indication.

18. The system of claim 12, further comprising producing
estimates of the blood flow characteristic of the patient
based on one or more of analytical fluid dynamics equations
and morphometry scaling laws.

19. The system of claim 12, wherein the individual-
specific anatomic data includes one or more of: vessel size,
vessel size at ostium, vessel size at distal branches, reference
and minimum vessel size at plaque, distance from ostium to
plaque, length of plaque and length of minimum vessel size,
myocardial volume, branches proximal/distal to measure-
ment location, branches proximal/distal to plaque, and mea-
surement location.

20. The system of claim 12, wherein the processor is
further configured for:

compiling a library or database of individual-specific

anatomic data and physiological parameters along with
fractional flow reserve, ischemia test results, previous
simulation results, and imaging data.

21. The system of claim 12, wherein the individual-
specific anatomic data for the patient or the plurality of
individuals is obtained from one or more of: medical image
data, measurements, models, and segmentations.

22. A non-transitory computer-readable medium storing
instructions that, when executed by a computer, cause the
computer to perform a method including:

acquiring, for each of a plurality of individuals, indi-

vidual-specific anatomic data, one or more physiologi-
cal parameters of the respective individual, and one or
more non-invasively computed blood flow characteris-
tics of blood flow through at least part of each respec-
tive individual’s vascular system;

for each of a plurality of points in the individual-specific

anatomic data of each of the plurality of individuals,
creating a feature vector comprising a vascular cross-
sectional area, a diseased length, and one or more
boundary conditions of a geometric model at the
respective point;

forming associations of each created feature vector with a

non-invasively computed blood flow characteristic of
blood flow through the part of the respective individu-
al’s vascular system at the respective point of the
feature vector;

training a machine learning algorithm comprising one or

more of a support vector machine (SVM), a multi-layer
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perceptron (MLP), a multivariate regression (MVR),
and a weighted linear or logistic regression on the
associated feature vectors and non-invasively com-
puted blood flow characteristics of the plurality of
points of the plurality of individuals” vascular systems,
wherein the training of the machine learning algorithm
comprises operations performed by a processor to
generate feature weights between each individual’s
individual-specific anatomic data and the individual’s
non-invasively computed blood flow characteristics;
acquiring, for a patient, patient-specific anatomic data of
at least part of the patient’s vascular system and one or
more physiological parameters of the patient; and
for at least one point in the patient’s patient-specific
anatomic data, estimating one or more values of the
blood flow characteristic at one or more points of the
patient’s vascular system, using the trained machine
leaming algorithm and the generated feature weights.

23. The non-transitory computer-readable medium of
claim 22, wherein each feature vector further includes one or
more of?

an intensity feature set, a surface feature set, a volume

feature set, a centerline feature set, and a simplified
physics feature set.

24. The non-transitory computer-readable medium of
claim 22, wherein the one or more physiological parameters
include one or more of systolic and diastolic blood pres-
sures, heart rate, hematocrit level, blood pressure, blood
viscosity, individual age, individual gender, individual
height, individual weight, individual lifestyle characteristic,
characteristics of aortic geometry, characteristics of the
coronary branch geometry, and a mass of supplied tissue.

* % % k¥
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