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7) ABSTRACT

Disclosed herein are devices, systems, methods and plat-
forms for continuously monitoring the health status of a user,
for example the cardiac health status. The present disclosure
describes systems, methods, devices, software, and plat-
forms for continuously monitoring a user’s health-indicator
data (for example and without limitation PPG signals, heart
rate or blood pressure) from a user-device in combination
with corresponding (in time) data related to factors that may
impact the health-indicator (“other-factors”) to determine
whether a user has normal health as judged by or compared
to, for example and not by way of limitation, either (i) a
group of individuals impacted by similar other-factors, or
(ii) the user him/herself impacted by similar other-factors.
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CONTINUOUS MONITORING OF A USER’S
HEALTH WITH A MOBILE DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
application Ser. No. 16/153,403, filed Oct. 5, 2018, which is
a continuation-in-part of U.S. application Ser. No. 15/393,
077, filed Dec. 28, 2016, which is a continuation of U.S.
application Ser. No. 14/730,122, filed Jun. 3, 2015, now U.S.
Pat. No. 9,572,499, issued Feb. 21, 2017, which is a con-
tinuation of U.S. application Ser. No. 14/569,513, filed Dec.
12, 2014, now U.S. Pat. No. 9,420,956, issued Aug. 23,
2016, the entire contents of all of which are incorporated by
reference, which claims the benefit of U.S. Provisional
Application No. 61/915.113, filed Dec. 12, 2013, which
application is incorporated herein by reference, U.S. Provi-
sional Application No. 61/953,616, filed Mar. 14,2014, U.S.
Provisional Application No. 61/969,019, filed Mar. 21,
2014, U.S. Provisional Application No. 61/970,551, filed
Mar. 26, 2014, which application is incorporated herein by
reference, U.S. Provisional Application No. 62/014,516,
filed Jun. 19, 2014, which application is incorporated herein
by reference, and U.S. Provisional Application 62/569,309,
filed Oct. 6, 2017, the entire contents of which are hereby
incorporated by reference. This application also claims the
benefit of U.S. Provisional Application 62/589,477, filed
Nov. 21, 2017, the entire contents of which are hereby
incorporated by reference.

BACKGROUND

[0002] Indicators of an individual’s physiological health
(“health-indicators”)—for example and not by way of limi-
tation: heart rate, heart rate variability, blood pressure, and
ECG (electrocardiogram) to name a few—can be measured
or calculated at any discrete point or points in time from data
collected to measure the health-indicators. In many cases,
the value of the health-indicator at a particular time, or a
change over time provides information regarding the state of
an individual’s health. A low or high heart rate or blood
pressure, or an ECG that clearly demonstrate myocardial
ischemia, for example, may demonstrate the need for imme-
diate intervention. But, readings, a series of readings, or
changes to the readings over time of these indicators may
provide information not recognized by the user or even a
health professional as needing attention.

[0003] Arrhythmias, for example, may occur continuously
or may occur intermittently. Continuously occurring
arrhythmias may be diagnosed most definitively from an
electrocardiogram of an individual. Because a continuous
arrhythmia is always present, ECG analysis may be applied
at any time in order to diagnose the arrhythmia. An ECG
may also be used to diagnose intermittent arrhythmias.
However, because intermittent arrhythmias may be asymp-
tomatic and/or are by definition intermittent , diagnosis
presents challenges of applying the diagnostic technique at
the time when the individual is experiencing the arrhythmia.
Thus, actual diagnosis of intermittent arrhythmias is noto-
riously difficult. This particular difficulty is compounded
with asymptomatic arrhythmias, which account for nearly
40% of arrhythmias in the US. Boriani G. and Pettorelli D.,
Atrial Fibrillation Burden and Atrial Fibrillation type: Clini-
cal Significance and Impact on the Risk of Stroke and
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Decision Making for Long-term Anticoagulation, Fascul
Pharmacol., 83:26-35 (August 2016), pp. 26.

[0004] Sensors and mobile electronics technologies exist
which permit frequent or continuous monitoring and record-
ing of health-indicators. However, the capability of these
sensor platforms often exceeds that of conventional medical
science to interpret the data they produce. The physiological
significance of health-indicator parameters, like heart rate,
are frequently well defined only in specific medical contexts:
for instance, heart rate is conventionally evaluated as a
single scalar value out of context from other data/informa-
tion that may impact the health-indicator. A resting heart rate
in the range of 60-100 beats per minute (BPM) may be
considered normal. A user may generally measure their
resting heart rate manually once or twice per day.

[0005] A mobile sensor platform (for example: a mobile
blood pressure cuff; mobile heart rate monitor; or mobile
ECG device) may be capable of monitoring the health-
indicator (e.g., heart rate) continuously, e.g., producing a
measurement every second or every 5 seconds, while simul-
taneously also acquiring other data about the user such as
and without limitation: activity level, body position, and
environmental parameters like air temperature, barometric
pressure, location, etc. In a 24-hour period, this may result
in many thousands of independent health-indicator measure-
ments. In contrast to a measurement once or twice a day,
there is relatively little data or medical consensus on what a
“normal” sequence of thousands of measurements looks
like.

[0006] Devices presently used to continuously measure
health-indicators of users/patients range from bulky, inva-
sive, and inconvenient to simple wearable or handheld
mobile devices. Presently, these devices do not provide the
capability to effectively utilize the data to continuously
monitor a person’s heath. It is up to a user or health
professional to assess the health-indicators in light of other
factors that may impact these health-indicators to determine
the health status of the user.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Certain features described herein are set forth with
particularity in the appended claims. A better understanding
of the features and advantages disclosed embodiments will
be obtained by reference to the following detailed descrip-
tion that sets forth illustrative embodiments, in which the
principles described herein are utilized, and the accompa-
nying drawings of which:

[0008] FIGS. 1A-1B depict a convolutional neural net-
work that may be used accordance with some embodiments
as described herein;

[0009] FIGS. 2A-2B depict a recurrent neural network that
may be used in accordance with some embodiments as
described herein;

[0010] FIG. 3 depicts an alternative recurrent neural net-
work that may be used in accordance with some embodi-
ments as described herein;

[0011] FIGS. 4A-4C depict hypothetical data plots to
demonstrate application of some embodiments as described
herein;

[0012] FIGS. 5A-SE depict alternative recurrent neural
networks in accordance with some embodiments as
described herein and hypothetical plots used to describe
some of these embodiments;
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[0013] FIG. 6 depicts an unrolled recurrent neural network
in accordance with some embodiments as described herein;
[0014] FIGS.7A-7B depicts systems and devices in accor-
dance with some embodiments as described herein;

[0015] FIG. 8 depicts a method in accordance with some
embodiments as described herein;

[0016] FIGS. 9A-9B depicts a method in accordance with
some embodiments as described herein and a hypothetical
plot of heartrate versus time to demonstrate one or more
embodiments;

[0017] FIG. 10 depicts a method in accordance with some
embodiments as described herein.

[0018] FIG. 11 depicts hypothetical data plots to demon-
strate application of some embodiments as described herein;
and

[0019] FIG. 12 depicts a method in accordance with some
embodiments as described herein;

[0020] FIG. 13 depicts systems and devices in accordance
with some embodiments as described herein.

DETAILED DESCRIPTION

[0021] The high volume of data, complexity of interac-
tions between health-indicators and other-factors and limited
clinical guidance may limit the effectiveness of any moni-
toring system that attempts to detect abnormalities in con-
tinuous and/or ambulatory sensor data through specific rules
based on conventional medical practice. Embodiments
described herein include devices, systems, methods, and
platforms that can detect abnormalities in an unsupervised
fashion from time sequences of health-indicator data alone
or in combination with other-factor (as defined herein) data
utilizing predictive machine learning models.

[0022] Atrial fibrillation (AF or AFib) is found in 1-2% of
the general population, and the presence of AF increases risk
of morbidity and adverse outcomes such as stroke and heart
failure. Boriani G. and Pettorelli D., Atrial Fibrillation
Burden and Atrial Fibrillation type: Clinical Significance
and Impact on the Risk of Stroke and Decision Making for
Long-term Anticoagulation, Vascul Pharmacol., 83:26-35
(August 2016), pp. 26. AFib in many people, some estimate
as high as 40% of AF patients, may be asymptomatic, and
these asymptomatic patients have similar risk profiles for
stroke and heart failure as symptomatic patients. See, id.
However, the symptomatic patients can take active mea-
sures, such as taking blood thinners or other medications, to
reduce the risks of negative outcomes. Use of implantable
electrical devices (CIEDs) can detect asymptomatic AF
(so-called silent AF or SAF) and the duration the patient is
in AF. Id. From this information, the time these patients
spend in AF, or AF-burden can be determined. 1d. An
AF-burden of greater than 5-6 min and particularly greater
than 1 hour is associated with significant increased risk of
stroke and other negative health outcomes. 1d. Thus, the
ability to measure AF-burden in asymptomatic patients can
lead to earlier interventional therapies and may reduce risks
of negative health outcomes associated with AF. Id. Detec-
tion of SAF is challenging, typically requiring some form of
continuous monitoring, Presently continuous monitoring for
AF requires bulky, sometimes invasive, and expensive
devices, where such monitoring requires a high level of
medical professional oversight and review.

[0023] Many devices continuously obtain data to provide
a measurement or calculation of the health-indicator data,
for example and without limitation FitBit®, Apple Watch®,
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Polar®, smart phones, tablets among others are in the class
of wearable and/or mobile devices. Other devices include
permanent or semi-permanent devices on or in a user/patient
(e.g., holter), and others may include larger devices in
hospitals that may be mobile by virtue of being on a cart.
But, little is done with this measured data other than
periodically observing it on a display or establishing simple
data-thresholds. Observation of the data, even by trained
medical professionals, may frequently appear as normal, one
primary exception being when a user has readily identifiable
acute symptoms. It is tremendously difficult and practically
impossible for medical professionals to continuously moni-
tor health-indicators to observe anomalies and/or trends in
data that may be indicative of something more serious.

[0024] As used herein, a platform comprises one or more
customized software applications (or “applications™) con-
figured to interact with one another either locally or through
a distributed network including the cloud and the Internet.
Applications of a platform as described herein are config-
ured to collect and analyze user data and may include one or
more software models. In some embodiments of the plat-
form, the platform includes one or more hardware compo-
nents (e.g. one or more sensing devices, processing devices,
or microprocessors). In some embodiments, a platform is
configured to operate together with one or more devices
and/or one or more systems. That is, a device as described
herein, in some embodiments, is configured to run an
application of a platform using a built-in processor, and in
some embodiments, a platform is utilized by a system
comprising one or more computing devices that interact with
or run one or more applications of the platform.

[0025] The present disclosure describes systems, methods,
devices, software, and platforms for continuously monitor-
ing a user’s data related to one or more health-indicators (for
example not by way of limitation PPG signals, heart rate or
blood pressure) from a user-device in combination with
corresponding (in time) data related to factors that may
impact the health-indicator (referred to herein as “other-
factors™) to determine whether a user has normal health as
judged by or compared to, for example and not by way of
limitation, either (i) a group of individuals impacted by
similar other-factors, or (ii) the user him/herself impacted by
similar other-factors. In some embodiments, measured
health-indicator data alone or in combination with other-
factor data is input into a trained machine learning model
that determines a probability the user’s measured health-
indicator is considered within a healthy range, and if not to
notify the user of such. The user not being in a healthy range
may increase the likelihood the user may be experiencing a
health event warranting high-fidelity information to confirm
a diagnosis, such as an arrhythmia which may be symptom-
atic or asymptomatic. The notification may take the form of,
for example, requesting the user to obtain an ECG. Other
high-fidelity measurements may be requested, blood pres-
sure, pulse oximeter to name two, ECG is but one example.
The high-fidelity measurement, ECG in this embodiment,
can be evaluated by algorithms and/or medical professionals
to make a notification or diagnosis (collectively referred to
herein as “diagnosis”, recognizing that only a physician can
make a diagnosis). In the ECG example, the diagnosis may
be AFib or any other number of well-known conditions
diagnosed utilizing ECGs.

[0026] In further embodiments, a diagnosis is used to label
a low-fidelity data sequence (e.g., heart rate or PPG), which
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may include the other-factor data sequence. This high-
fidelity diagnosis-labeled low-fidelity data sequence is used
to train a high-fidelity machine learning model. In these
further embodiments, the training of the high-fidelity
machine learning model may be trained by unsupervised
learning or may be updated from time to time with new
training examples. In some embodiments, a user’s measured
low-fidelity health-indicator data sequence and optionally a
corresponding (in time) data sequence of other-factors are
input into the trained high-fidelity machine learning models
to determine a probability and/or prediction the user is
experiencing or experienced the diagnosed condition on
which the high-fidelity machine learning model was trained.
This probability may include a probability of when the event
begins and when it ends. Some embodiments, for example,
may calculate the atrial fibrillation (AF) burden of a user, or
the amount of time a user experiences AF over time.
Previously AF burden could only be determined using
cumbersome and expensive holter or implantable continu-
ous ECG monitoring apparatus. Thus, some embodiments
described herein can continuously monitor a user’s health
status and notify the user of a health status change by
continuously monitoring health-indicator data (for example
and not by way of limitation PPG data, blood pressure data,
and heart rate data) obtained from a user worn device alone
or in combination with corresponding data for other-factors.
“Other-factors™, as used herein, include anything that may
impact the health-indicator, and/or may impact the data
representing the health-indicator (e.g., PPG data). These
other-factors may include a variety of factors such as by way
of example not limitation: air temperature, altitude, exercise
levels, weight, gender, diet, standing, sitting, falling, lying
down, weather, and BMI to name a few. In some embodi-
ments a mathematical or empirical model not a machine
learning model may be used to determine when to notify a
user to obtain a high-fidelity measurement, which can then
be analyzed and used to train a high-fidelity machine train-
ing models as described herein.

[0027] Some embodiments described herein can detect
abnormalities of a user in an unsupervised fashion by:
receiving a primary time sequence of health-indicator data;
optionally receiving one or more secondary time sequences
of other-factor data, corresponding in time with the primary
time sequence of health-indicator data, which secondary
sequences may come from a sensor, or from external data
sources (e.g. over a network connection, a computer API,
etc.); providing the primary and secondary time sequence(s)
to a pre-processor, which may perform operations on the
data like filtering, caching, averaging, time alignment, buff-
ering, upsampling and downsampling; providing the time
sequences of data to a machine learning model, trained
and/or configured to utilize the values of the primary and
secondary time sequence(s) to predict next value(s) of the
primary sequence at a future time; comparing the predicted
primary time sequence values(s) generated by the machine
learning module at a specific time t to the measured values
of the primary time sequence at time t; and alerting or
prompting the user to take an action if the difference
between the predicted future time sequence and measured
time sequences exceeds a threshold or criteria.

[0028] Some embodiments described herein, thus, detect
when the observed behavior of the primary sequence of
physiological data with respect to the passage of time and/or
in response to the observed secondary sequence of data
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differs from what is expected given the training examples
used to train the model. When the training example is
gathered from normal individuals or from data that has been
previously categorized as normal for a specific user, then the
system can serve as an abnormality detector. If the data has
simply been acquired from a specific user without any other
categorization, then the system can serve as a change
detector, detecting a change in the health-indicator data that
the primary sequence is measuring relative to the time at
which the training data was captured.

[0029] Described herein are software platforms, systems,
devices, and methods for generating and using trained
machine learning models to predict or determine a probabil-
ity when a user’s measured health-indicator data (primary
sequence) under the influence of other-factor(s) (secondary
sequence) is outside the bounds of normal for a healthy
population (i.e., a global model) under the influence of
similar other-factors, or outside the bounds of normal for
that particular user (i.e., personalized model) under the
influence of similar other-factors, where a notification of
such is provided to the user. In some embodiments, the user
may be prompted to obtain additional measured high-fidelity
data that can be used to label previously acquired low-
fidelity user health-indicator data to generate a different
trained high-fidelity machine learning model that has the
ability to predict or diagnose abnormalities or events using
only low-fidelity health-indicator data, where such abnor-
malities are typically only identified or diagnosed using
high-fidelity data.

[0030] Some embodiments described herein may include
inputting a user’s health-indicator data, and optionally input-
ting corresponding (in time) data of other-factors into a
trained machine learning model, where the trained machine
learning model predicts the user’s health-indicator data or a
probability distribution of the health-indicator data at a
future time step. The prediction in some embodiments is
compared with the user’s measured health-indicator data at
the time step of the prediction, where, if the absolute value
of the difference exceeds a threshold, the user is notified that
his or her health-indicator data is outside a normal range.
This notification, in some embodiments, may include a
diagnosis or instructions to do something, for example and
not by way of limitation obtain additional measurements or
contact a health professional. In some embodiments, health-
indicator data and corresponding (in time) data of other-
factors from a healthy population of people is used to train
the machine learning model. It will be appreciated that the
other-factors in training examples used to train the machine
learning model may not be averages of the population, rather
data for each of the other-factors corresponds in time with
collection of the health-indicator data for individuals in the
training examples.

[0031] Some embodiments are described as receiving dis-
crete data points in time, predicting discrete data points at a
future time from the input and then determining if a loss
between discrete measured input at the future time and the
predicted value at the future time exceeds a threshold. The
skilled artisan will readily appreciate that the input data and
output predictions may take forms other than a discrete data
point or a scalar. For example, and not by way of limitation,
the health-indicator data sequence (also referred to herein as
primary sequence) and the other-data sequence (also
referred to herein as secondary sequence) may be split into
segments of time. The skilled artisan will recognize the
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manner in which the data is segmented is a matter of design
choice and may take many different forms.

[0032] Some embodiments partition the health-indicator
data sequence (also referred to herein as primary sequence)
and the other-data sequence (also referred to herein as
secondary sequence) into two segments: past, representing
all data before a specific time t, and future, representing all
data at or after time t. These embodiments input the health-
indicator data sequence for a past time segment and all
other-data sequence(s) for the past time segment into a
machine learning model configured to predict the most
probable future segment of the health-indicator data (or
distribution of probable future segments). Alternatively,
these embodiments input the health-indicator data sequence
for a past time segment, all other-data sequences for the past
time segment and other-data sequences from the future
segment into a machine learning model configured to predict
the most probable future segment of the health-indicator
data (or distribution of probable future segments). The
predicted future segment of the health-indicator data is
compared to the user’s measured health-indicator data at the
future segment to determine a loss and whether the loss
exceeds a threshold, in which case some action is taken. The
action may include for example and not by way of limita-
tion: notifying the user to obtain additional data (e.g., ECG
or blood pressure); notifying the user to contact a healthcare
professional; or automatically triggering acquisition of addi-
tional data. Automatic acquisition of additional data may
include, for example and not by way of limitation, ECG
acquisition via a sensor operably coupled (wired or wire-
lessly) to a user worn computing device, or blood pressure
via a mobile cuff around the user’s wrist or other appropriate
body part and coupled to a user worn computing device. The
segments of data may include a single data point, many data
points over a period of time, an average of these data points
over the time period where the average may include a true
average, median or mode. In some embodiments the seg-
ments may overlap in time.

[0033] These embodiments detect when the observed
behavior or measurement of the health-indicator sequence of
data with respect to the passage of time as impacted by
corresponding (in time) other-factor sequence of data differs
from what is expected from the training examples, which
training examples are collected under similar other-factors.
If the training examples are gathered from healthy individu-
als under similar other-factors or from data that has been
previously categorized as healthy for a specific user under
similar other-factors, then these embodiments serve as an
abnormality detector from the healthy population or from
the specific user, respectively. If the training examples have
simply been acquired from a specific user without any other
categorization, then these embodiments serve as a change
detector, detecting a change in the health-indicators at the
time of measurement relative to the time at which the
training examples were collected for the specific user.

[0034] Some embodiments described herein utilize
machine learning to continuously monitor a person’s health-
indicators under the impact of one or more other-factors and
assess whether the person is healthy in view a population
categorized as healthy under the impact of similar other
factors. As the skilled artisan will readily appreciate, a
number of different machine learning algorithms or models
(including without limitation Bayes, Markov, Gausian pro-
cesses, clustering algorithms, generative models, kernel and
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neural network algorithms) may be used without exceeding
the scope described herein. As appreciated by the skilled
artisan, typical neural networks employ, by way of example
not limitation, one or more layers of nonlinear activation
functions to predict an output for a received input, and may
include one or more hidden layers in addition to the input
and output layers. The output of each hidden layer in some
of these networks is used as input to the next layer in the
network. Examples of neural networks include, by way of
example and not limitation, generative neural networks,
convolutional neural networks and recurrent neural net-
works.

[0035] Some embodiments of a health monitoring system
monitor heart rate and activity data of an individual as
low-fidelity data (e.g., heartrate or PPG data) and detect a
condition (e.g. AFib) normally detected using high-fidelity
data (e.g., ECG data). For example, the heart rate of an
individual may be provided by a sensor continuously or in
discrete intervals (such as every five seconds). The heart rate
may be determined based on PPG, pulse oximetry, or other
sensors. In some embodiments, the activity data may be
generated as a number of steps taken, an amount of move-
ment sensed, or other data points indicating an activity level.
The low-fidelity (e.g., heartrate) data and activity data can
then be input into a machine learning system to determine a
prediction of a high-fidelity outcome. For example, the
machine learning system may use the low-fidelity data to
predict an arrhythmia or other indication of a user’s cardiac
health. In some embodiments, the machine learning system
may use an input of segment of data inputs to determine a
prediction. For example, an hour of activity level data and
heart rate data may be input to the machine learning system.
The system can then use the data to generate a prediction of
a condition such as atrial fibrillation. Various embodiments
of the present invention are more thoroughly discussed
below.

[0036] Referring to FIG. 1A a trained convolution neural
network (CNN) 100 (one example of a feed forward net-
work), takes input data 102, (e.g., a picture of a boat) into
convolutional layers (aka hidden layers) 103, applies a series
of trained weights or filters 104 to the input data 106 in each
of the convolutional layers 103. The output of the first
convolutional layer is an activation map (not shown), which
is the input to the second convolution layer, to which a
trained weight or filter (not shown) is applied, where the
output of the subsequent convolutional layers results in
activation maps that represent more and more complex
features of the input data to the first layer. After each
convolutional layer a non-linear layer (not shown) is applied
to introduce non-linearity into the problem, which nonlinear
layers may include tanh, sigmoid or ReL.U. In some cases,
a pooling layer (not shown) may be applied after the
nonlinear layers, also referred to as a downsampling layer,
which basically takes a filter and stride of the same length
and applies it to the input, and outputs the maximum number
in every sub-region the filter convolves around. Other
options for pooling are average pooling and L.2-norm pool-
ing. The pooling layer reduces the spatial dimension of the
input volume reducing computational costs and to control
overfitting. The final layer(s) of the network is a fully
connected layer, which takes the output of the last convo-
lutional layer and outputs an n-dimensional output vector
representing the quantity to be predicted, e.g., probabilities
of image classification 20% automobile, 75% boat 5% bus
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and 0% bicycle, i.e., resulting in predictive output 106 (O*),
e.g. this is likely a picture of a boat. The output could be a
scalar value data point being predicted by the network, a
stock price for example. Trained weights 104 may be
different for each of the convolutional layers 103, as will be
described more fully below. To achieve this real-world
prediction/detection (e.g., it’s a boat), the neural network
needs to be trained on known data inputs or training
examples resulting in trained CNN 100. To train CNN 100
many different training examples (e.g., many pictures of
boats) are input into the model. A skilled artisan in neural
networks will fully understand the description above pro-
vides a somewhat simplistic view of CNNs to provide some
context for the present discussion and will fully appreciate
the application of any CNN alone or in combination with
other neural networks will be equally applicable and within
the scope of some embodiments described herein.

[0037] FIG. 1B demonstrates training CNN 108. In FIG.
1B convolutional layers 103 are shown as individual hidden
convolutional layers 105, 105' up to convolutional layer
105"~" and the final n™ layer s a fully connected layer. It will
be appreciated that last layers may be more than one fully
connected layer. Training example 111 is input into convo-
lutional layers 103, a nonlinear activation function (not
shown) and weights 110, 110" through 110" are applied to
training example 111 in series, where the output of any
hidden layer is input to the next layer, and so on until the
final n™ fully connected layer 105" produces output 114.
Output or prediction 114 is compared against training
example 111 (e.g., picture of a boat) resulting in difference
116 between output or prediction 114 and training example
111. If difference or loss 116 is less than some preset loss
(e.g., output or prediction 114 predicts the object is a boat),
the CNN is converged and considered trained. If the CNN
has not converged, using the technique of backpropagation,
weights 110 and 110" through 110" are updated in accordance
with how close the prediction is to the known input. The
skilled artisan will appreciate that methods other than back
propagation may be used to adjust the weights. The second
training example (e.g., different picture of a boat) is input
and the process repeated again with the updated weights,
which are then updated again and so on until the n?” training
example (e.g., n” picture of n™ boat) has been input. This is
repeated over and over with the same n-training examples
until the convolutional neural network (CNN) is trained or
converges on the correct outputs for the known inputs. Once
CNN 108 is trained, weights 110, 110' through 110" are fixed
and used in trained CNN 100, which are weights 104 as
depicted in FIG. 1A. As explained, there are different
weights for each convolutional layer 103 and for each of the
fully connected layers. The trained CNN 100 or model is
then fed image data to determine or predict that which it is
trained to predict/identify (e.g., a boat), as described above.
Any trained model, CNN, RNN, etc. may be trained further,
i.e., modification of the weights may be permitted, with
additional training examples or with predicted data output
by the model which is then used as a training example. The
machine learning model can be trained “offline”, e.g. trained
once on a computational platform separate from the platform
using/executing the trained model, and then transferred to
that platform. Alternatively, embodiments described herein
may periodically or continually update the machine learning
model based on newly acquired training data. This updated
training may occur on a separate computational platform
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which delivers the updated trained models to the platform
using/executing the re-trained model over a network con-
nection, or the training/re-training/update process may occur
on the platform itself as new data is acquired. The skilled
artisan will appreciate the CNN is applicable to data in a
fixed array (e.g., a picture, character, word etc.) or a time
sequence of data. For example, sequenced health-indicator
data and other-factor data can be modeled using a CNN.
Some embodiments utilize a feed-forward, CNN with skip
connections and a Gaussian Mixture Model output to deter-
mine a probability distribution for the predicted health-
indicator, e.g., heart rate, PPG, or arrhythmia.

[0038] Some embodiments can utilize other types and
configurations of neural network. The number of convolu-
tional layers can be increased or decreased, as well as the
number of fully-connected layers. In general, the optimal
number and proportions of convolutional vs. fully-con-
nected layers can be set experimentally, by determining
which configuration gives the best performance on a given
dataset. The number of convolutional layers could be
decreased to 0, leaving a fully-connected network. The
number of convolutional filters and width of each filter can
also be increased or decreased.

[0039] The output of the neural network may be a single,
scalar value, corresponding to an exact prediction for the
primary time sequence. Alternatively, the output of the
neural network could be a logistic regression, in which each
category corresponds to a specific range or class of primary
time sequence values, are any number of alternative outputs
readily appreciated by the skilled artisan.

[0040] The use of a Gaussian Mixture Model output in
some embodiments is intended to constrain the network to
learning well-formed probability distributions and improve
generalization on limited training data. The use of a multiple
elements in some embodiments in the Gaussian Mixture
Model is intended to allow the model to learn multi-modal
probability distributions. A machine learning model com-
bining or aggregating the results of different neural networks
could also be used, where the results could be combined.
[0041] Machine learning models that have an updatable
memory or state from previous predictions to apply to
subsequent predictions is another approach for modeling
sequenced data. In particular some embodiments described
herein utilize a recurring neural network. Referring to the
example of FIG. 2A a diagram of a trained recurrent neural
network (RNN) 200 is shown. Trained RNN 200 has updat-
able state (S) 202 and trained weights (W) 204. Input data
206 is input into sate 202 where weights (W) 204 are
applied, and prediction 206 (P*) is output. In contrast to
linear neural networks (e.g., CNN 100), state 202 is updated
based on the input data, thereby serving as memory from the
previous state for the next prediction with the next data in
sequence. Updating the sates gives RNNGs a circular or loop
feature. To better demonstrate, FIG. 2B shows trained RNN
200 unrolled, and its applicability to sequenced data.
Unrolled, the RNN appears analogous to a CNN, but in an
unrolled RNN each of the apparently analogous layers
appears as a single layer with an updated state, where the
same weights are applied in each iteration of the loop. The
skilled artisan will appreciate the single layer may itself
have sub-layers, though for clarity of explanation a single
layer is depicted here. Input data (I,) 208 at time t is input
into state-at-time t (S,) 210 and trained weights 204 are
applied within cell-at-time t (C,) 212. The output of C, 212
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is prediction-at time step t+1 (P,,,*) 214 and updated state
S,,; 216. Similarly, in C,,, 2201,, , 218 is inputinto S,,, 216,
the same trained weights 204 are applied, and the output of
C,,; 220 is P, ,* 222. As noted above S,,, is updated from
S, therefor S, , has memory from S, from the previous time
step. For example and not by way of limitation, this memory
may include previous health-indicator data or previous
other-factor data from one or more previous time steps. This
process continues for n-steps, where 1, 224 is input into
S,.,, 226 and the same weights 204 are applied. The output
of cell C,,, is prediction P, * Notably, the states are
updated from previous time steps giving RNNs the benefit of
memory from a previous state. This characteristic makes
RNNs an alternative choice to make predictions on
sequenced data for some embodiments. Though, and as
described above, there are other suitable machine learning
techniques for performing such predictions on sequenced
data, including CNNs.

[0042] RNNs, like CNNs, can handle a string of data as
input, and output a predicted string of data. A simple way to
explain this aspect of using an RNN is using the example of
natural language prediction. Take the phrase: The sky is
blue. The string of words (i.e., data) has context. So as the
state is updated, the string of data is updated from one
iteration to the next, which provides context to predict blue.
As just described RNNs have a memory component to aid in
making predictions on sequenced data. However, the
memory in the updated state of an RNN may be limited in
how far it can look back, akin to short-term memory. When
predicting sequenced data where a longer look back, akin to
long term memory, is desired, tweaks to the RNNs just
described may be used to accomplish this. A sentence, where
the word to be predicted is unclear from the words closely
preceding or surrounding, is again a simple example to
explain: Mary speaks fluent French. It is unclear from the
words closely preceding that French is the correct predic-
tion; only that some language is the correct prediction, but
which language? The correct prediction may lie in the
context of words separated by a larger gap than the single
string of words. Long Short Term Memory (LSTM) net-
works are a special kind of RNN, capable of learning these
long(er)-term dependencies.

[0043] As described above, RNNs have a relatively simple
repeating structure, for example they may have a single layer
with a nonlinear activation function (e.g., tanh or sigmoid).
LSTMs similarly have a chain like structure, but (for
example) have four neural network layers, not one. These
additional neural network layers give LSTMs the ability to
remove or add information to the state (S) by using struc-
tures called cell gates. Id. FIG. 3 shows a cell 300 for a
LSTM RNN. Line 302 represents the cell state (S), and can
be viewed as an information highway; it is relatively easy for
information to flow along the cell state unchanged. Id. Cell
gates 304, 306, and 308 determine how much information to
allow through the state, or along the information highway.
Cell gate 304 first decides how much information to remove
from the cell state S,, so-called forget-gate layer. Id. Next,
cell gate 306 and 306' determines which information will be
added to the cell state, and cell gate 308 and 308’ determines
what will be output from the cell state as prediction P, *.
The information highway or cell state is now updated cell
state S,,, for use in the next cell. LSTMs permits RNNs to
have a more persistent or long(er)-term memory. LSTMs
provide additional advantages to RNN based machine learn-

Mar. 14, 2019

ing models in that output predictions take into account a
context separated from the input data by longer space or
time, depending on how the data is sequenced, than the
simpler RNN structure.

[0044] In some embodiments utilizing an RNN, the pri-
mary and secondary time sequences may not be provided to
the RNN as vectors at each time step. Instead, the RNN may
be provided only the current value of the primary and
secondary time sequence(s), along with the future values or
aggregate functions of the secondary time sequence(s)
within the prediction interval. In this manner, the RNN uses
the persistent state vector to retain information about the
previous values for use in making predictions

[0045] Machine learning is well suited for continuous
monitoring of one or multiple criteria to identify anomalies
or trends, big and small, in input data as compared to
training examples used to train the model. Accordingly,
some embodiments described herein input a user’s health-
indicator data and optionally other-factor data into a trained
machine learning model that predicts what a healthy per-
son’s health-indicator data would look like at the next time
step and compares the prediction with the user’s measured
health-indicator data at the future time step. If the absolute
value of the difference (e.g., loss as described below)
exceeds a threshold, the user is notified his or her health-
indicator data is not in a normal or healthy range. The
threshold is a number set by the designer and, in some
embodiments, may be changed by the user to allow a user to
adjust the notification sensitivity. The machine learning
model of these embodiments may be trained on health-
indicator data alone or in combination with corresponding
(in time) other-factor data from a population of healthy
people, or trained on other training examples to suit the
design needs for the model.

[0046] Data from health-indicators, like heart rate data, are
sequenced data, and more particularly time sequenced data.
Heartrate, for example and not by way of limitation, can be
measured in a number of different ways, e.g., measuring
electric signals from a chest strap or derived from a PPG
signal. Some embodiments take the derived heartrate from
the device, where each data point (e.g., heart rate) is pro-
duced at approximately equal intervals (e.g., 5 s). But, in
some cases and in other embodiments the derived heart rate
is not provided in roughly equal time steps, for example
because the data needed for the derivation is not reliable
(e.g., PPG signal is unreliable because the device moved or
from light pollution). The same may be said of obtaining the
secondary sequence of data from motion sensors or other
sensors used to collect the other-factor data.

[0047] The raw signal/data (electric signal from ECG,
chest strap, or PPG signals) itself is a time sequence of data
that can be used in accordance with some embodiments. For
the purpose of clarity, and not by way of limitation, this
description uses PPG to refer to the data representing the
health-indicator. The skilled artisan will readily appreciate
that either form of the data for the health-indicator, raw data,
waveform or number derived from raw data or waveform,
may be used in accordance with some embodiments
described herein.

[0048] Machine learning models that may be used with
embodiments described herein include by way of example
not limitation Bayes, Markov, Gausian processes, clustering
algorithms, generative models, kernel and neural network
algorithms. Some embodiments utilize a machine learning
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model based on a trained neural network, other embodi-
ments utilize a recurrent neural network, and additional
embodiments use LTSM RNNs. For the purpose of clarity,
and not by way of limitation, recurrent neural networks will
be used to describe some embodiments of the present
description.

[0049] FIGS. 4A-4C show hypothetical plots against time
for PPG (FIG. 4A), steps taken (FIG. 4B) and air tempera-
ture (FIG. 4C). PPG is an example of health-indicator data,
where steps, activity level, and air temperature are examples
other-factor data for other factors that may impact the
health-indicator data. As will be appreciated by the skilled
artisan, the other-data may be obtained from any of many
known sources including without limitation accelerometer
data, GPS data, a weight scale, user entry etc., and may
include without limitation air temperature, activity (running,
walking, sitting, cycling, falling, climbing stairs, steps etc.),
BMI, weight, height, age etc. The first dotted line running
vertically across all three plots represents time t at which the
user data is obtained for input into a trained machined
learning model (discussed below). The hashed plot lines in
FIG. 4A represent predicted or probable output data 402, and
solid lines 404 in FIG. 4A represent measured data. FIG. 4B
is a hypothetical plot of number of a user’s steps at various
times, and FIG. 4C is a hypothetical plot of air temp at
various times.

[0050] FIGS. 5A-5B depict a schematic for a trained
recurrent neural network 500 to receive the input data
depicted in FIGS. 4A-4C, i.e., PPG (P), steps (R) and air
temperature (T). It is again emphasized that these input data
(P, R and T) are merely examples of health-indicator data
and other-factor data. It will also be appreciated that data for
more than one health-indicator may be input and predicted,
and more or less than two other-factor data may be used,
where the choice depends on for what the model is being
designed. It will be further appreciated by the skilled artisan
that other-factor data is collected to correspond in time with
the collection or measurement of the health-indicator data.
In some cases, e.g. weight, other-factor data will remain
relatively constant over certain periods of time.

[0051] FIG. 5A depicts trained neural network 500 as a
loop. P, T and R are input into state 502 of RNN 500, where
weights W are applied, and RNN 500 outputs predicted PPG
504 (P*). In step 506 the difference P-P* (AP*) is calculated,
and at step 508 it is determined if |AP*| is greater than a
threshold. If yes, step 510 notifies/alerts the user his/her
health-indicator is outside the bounds/threshold predicted as
normal or predicted for a healthy person. The alert/notifi-
cation/detection could be, for example and not by way of
limitation, a suggestion to see/consult a doctor, a simple
notification like a haptic feedback, request to take additional
measurement like and ECG, or simple note without recom-
mendation, or any combination thereof. If [AP*| is less than
or equal to the threshold, step 512 does nothing. In both
steps 510 and 512 the process is repeated with new user data
at the next time step. In this embodiment, the state is updated
following the output of the predicted data, and may use the
predicted data in updating the state.

[0052] In another embodiment, not shown, a primary
sequence of heartrate data (e.g., derived from a PPG signal)
and a secondary sequence of other-factor data are provided
to the trained machine learning model, which may be an
RNN a CNN, other machine learning models, or a combi-
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nation of models. In this embodiment, the machine learning
model is configured to receive as input at reference time t:

[0053] A. A vector (V) of length 300 of the last 300
health-indicator samples (e.g., heart rate in beats per
minute) up to and including any health-indicator data at
time t;

[0054] B. At least one vector (V) of length 300 con-
taining the most recent other-factor data, e.g., step
count, at the approximate time of each sample in V;

[0055] C. Avector (V) of length 300 where the entry
at index 1, V (1), contains the time difference between
the timestamps of health-indicator sample V(i) and
VY, (i-1); and

[0056] D. A scalar prediction interval other-factor rate
O, .. (step rate for example and not by way of limita-
tion) representing the mean other-factor rate (e.g., step
rate) measured over the time period from t to t+t, where
T may be, for example and not by way of limitation, 2.5
minutes and is the future prediction interval.

[0057] The output of this embodiment may be, for
example, a probability distribution characterizing the pre-
dicted heart rate measured over the time period from t to t+t.
In some embodiments, the machine learning model is
trained with training examples that includes continuous time
sequences of health-indicator data and other-factor data
sequences. In one alternative embodiment the notification
system assigns a timestamp to each predicted health-indi-
cator (e.g., heart rate) distribution of t+t/2, thus centering the
predicted distribution within the predictive interval (t). The
notification logic, in this embodiment, then considers all
samples within a sliding window (W) of length W, =2*(t) or
5 mins in this example and calculates three parameters:

[0058] 1. Mean value of all health-indicator sequence
data H,, within the time window

[0059] 2. Mean value of all model predictions of the
health-indicator H,¥, which predictions timestamp
falls within the time window; and

[0060] 3. Median value of the root-mean-square of each
predicted health-indicator distribution within the time
window (RMS ,7); where

[0061] 4. in one embodiment if H>T,F+(y)xRMS 7
or H<HF~()xRMS ;7 where 1 is a threshold, a
notification is generated.

[0062] In this embodiment, an alert is generated when the
measured health-indicator is more than a certain multiple of
the standard deviation away from the mean of the predicted
health-indicator values within a particular window W. The
window W can be applied in a sliding fashion across the
sequences of measured and predicted health-indicator val-
ues, with each window overlapping the previous window in
time by a designer specified fraction, e.g., 0.5 mins.
[0063] The notification may take any number of different
forms. For example and not by way of limitation, it may
notify the user to obtain an ECG and/or blood pressure, it
may direct the computing system (e.g. wearable etc.) to
automatically obtain an ECG or blood pressure (for
example), it may notify the user to see a doctor, or simply
inform the user the health-indicator data is not normal.
[0064] The choice of V4, in this embodiment, as input
into the model is intended to allow the model to utilize
information contained in the variable spacing between
health-indicator data in V, where the variable spacing may
result from algorithms deriving health-indicator data from
less than consistent raw data. For example, heart rate
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samples are produced by the Apple Watch algorithm only
when it has sufficiently reliable raw PPG data to output a
reliable heart rate value, which results in irregular time gaps
between heart rate samples. In similar fashion this embodi-
ment utilizes the vector for other-factor data (V,,) with the
same length as the other vectors to handle different and
irregular sample rates between the primary sequence
(health-indicator) and secondary sequence (other-factor).
The secondary sequence, in this embodiment, is remapped
or interpolated onto the same time points as the primary time
sequence.

[0065] Furthermore, in some embodiments, the configu-
ration of data from secondary time sequences presented as
input to a machine learning model from a future prediction
time interval (e.g. after t) may be modified. In some embodi-
ments, the single scalar value containing the average other-
factor data rate over the prediction interval, could be modi-
fied with multiple scalar values, e.g. one for each secondary
time sequence. Or, a vector of values could be used over the
prediction interval. Additionally, the prediction interval may
itself be adjusted. A shorter prediction interval, for example,
may provide faster response to changes and improved detec-
tion of events whose fundamental timescale is short(er), but
may also be more sensitive to interference from sources of
noise, like motion artifacts.

[0066] Similarly, the output prediction of the machine
learning model itself does not need to be a scalar. For
example some embodiments may generate a time series of
predictions for multiple times t within the time interval
between t and t+, and the alerting logic may compare each
of these predictions with the measured value within the same
time interval.

[0067] In this preceding embodiment, the machine learn-
ing model itself may comprise, for example, a 7-layer
feed-forward neural network. The first 3 layers may be
convolutional layers containing 32 kernels each with a
kernel width of 24 and a stride of 2. The first layer may have
as input the arrays V,, V,, and V,, in three channels. The
final 4 layers may be fully-connected layers, all utilizing
hyperbolic tangent activation functions except the last layer.
The output of the third layer may be flattened into one array
for input into the first fully connected layer. The final layer
outputs 30 values parameterizing a Gaussian Mixture Model
with 10 mixtures (mean, variance, and weight for each
mixture). The network uses a skip connection between the
first and third fully connected layers, such that the output of
layer 6 1s summed with the output of layer 4 to produce the
input to layer 7. Standard batch normalization may be used
on all layers but the last layer, with a decay of 0.97. The use
of skip connections and batch normalization can improve the
ability to propagate gradients through the network.

[0068] The choice of machine learning model may affect
the performance of the system. The machine learning model
configuration may be separated into two types of consider-
ations. First is the model’s internal architecture, meaning the
choice of model type (convolutional neural network, recut-
rent neural network, random forests, etc. generalized non-
linear regression), as well as the parameters that characterize
the implementation of the model (generally, the number of
parameters, and/or number of layers, number of decision
trees, etc.). Second is the model’s external architecture—the
arrangement of data being fed into the model and the specific
parameters of the problem the model is being asked to solve.
The external architecture may be characterized in part by the
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dimensionality and type of data being provided as input to
the model, the time range(s) spanned by that data, and the
pre-or-post processing done on the data.

[0069] Generally speaking, the choice of external archi-
tecture is a balance between increasing the number of
parameters and amount of information provided as input,
which may increase the predictive power of the machine
learning model, with the available storage and computa-
tional capacity to train and evaluate a larger model, and the
availability of sufficient amounts of data to prevent overfit-
ting.

[0070] Numerous variations of the model’s external archi-
tecture discussed in some embodiments are possible. The
number of input vectors, as well as the absolute length
(number of elements) and time span covered, may be
modified. It is not necessary that each input vector be the
same length or cover the same span of time. The data does
not need to be equally sampled in time—for example and not
by way of limitation, one might provide a 6-hour history of
heart rate data, in which data less than one hour before t is
sampled at a rate of 1 Hz, data more than 1 hour before t but
less than 2 hours before t is sampled at a rate of 0.5 Hz, and
data older than 2 hours is sampled at a rate of 0.1 Hz, where
t is the reference time.

[0071] FIG. 5B shows trained RNN 500 unrolled. Tnput
data 513 (P,, R, and T)) is input into state-at-time t (S,) 514
and trained weights 516 are applied. The output of cell (C,)
518 is prediction-at-time t+1 (P, ;*) 520 and updated state
S,.; 522. Similarly, in C,,, 524, input data (P,,,, R,,,, and
T,,,) 513' is input into S,,; 522 and trained weights 516 are
applied and the output of C,,; 524 is P, ,* 523. As noted
above S,,, results from updating S, therefor S,,; has
memory from S, from the operation in cell (C,) 518 at the
previous time step. This process continues for n-steps, where
input data (P,, R, and T,) 513" is input into S, 530 and
trained weights 516 are applied. The output of cell C, is
prediction 532 P, *. Notably, trained RNNs apply the same
weights throughout, but, and importantly, the states are
updated from previous time steps giving RNNs the benefit of
memory from a previous time step. The skilled artisan will
appreciate that the order-in-time of inputting the dependent
health-indicator data may vary and would still produce the
desired result. For example, the measured health-indicator
data from a previous time step (e.g., P, ;) and the other-
factor data from the current time step (e.g., R, and T,) can be
input into the state at the current time step (S,), where the
model predicts the health-indicator at the current time step
P*, which is compared to the measured health-indicator data
at the present time step to determine if the user’s health-
indicator is normal or in a healthy range, as described above.
[0072] FIG. 5C shows an alternative embodiment of a
trained RNN to determine whether a user’s health-indicator
sequenced data, PPG in our example, is in a band or
threshold for a healthy person. The input data in this
embodiment is a linear combination I=o,P*+(1-c,)P,,
where P* is the predicted health-indicator value at time t
and P, is the measured health-indicator at time t. In this
embodiment o ranges from 0-1 nonlinearly as a function of
loss (L), where the loss and « are discussed in more detail
below. What is worth noting now is when o is near zero, the
measured data P, is input into the network, and when « is
near one, predicted data (P,*) is input into the network for
making a prediction at the next time step. Other-factor data
(O,) at time t may optionally also be input.



US 2019/0076031 A1

[0073] 1, and O, are input into state S, which, in some
embodiments, outputs a probability distribution () of the
predicted health-indicator data (P,,,*) at time step t+1
Beee,, )’“), where 8 . is the probability distribution
function of predicted health-indicator (P*). In some embodi-
ments, the probability distribution function is sampled to
select a predicted health-indicator value at t+1 (P,,,*). As
appreciated by the skilled artisan ., may be sampled
using different methods depending on the goals of the
network designer, which methods may include taking the
mean value, max value or a random sampling of the prob-
ability distribution. Evaluating ™" using the measured data
at time t+1 provides the probability the state S, ; would have
predicted for the measured data.

[0074] To illustrate this concept, FIG. 5D shows a hypo-
thetical probability distribution for a range of hypothetical
health-indicator data at time t+1. This function is sampled,
for example at maximum probability 0.95, to determine a
predicted health-indicator at time t+1 (P,,,*). The probabil-
ity distribution (p™") is also evaluated using the measured or
actual health-indicator data (P, %), and a probability is
determined that the model would have predicted if the actual
data had been input into the model. In this example B
=145 0.85.

[0075] Aloss may be defined to help determine whether to
notify a user his or her health status is not in a normal range
as predicted by the trained machine learning model. The loss
is chosen to model how close the predicted data is to the
actual or measured data. The skilled artisan will appreciate
many ways to define loss. In other embodiments described
herein, for example, the absolute value of the difference
between the predicted data and the actual data (IAP*]) is a
loss. In some embodiments, the loss (L) may be L=-1n[f
], where Lt+1:—ln[[3(Pmacz)’+1]. L is a measure of how close
the predicted data is to the measured or actual data. B,
ranges from 0 to 1, where 1 means the predicted value and
measured value are the same. Therefore, a low loss indicates
the predicted value is probably the same as or close to the
measured value; in this context it means the measured data
looks like it comes from a healthy/normal person. In some
embodiments, thresholds for L are set, e.g., L>5, where the
user is notified the health-indicator data is outside the range
considered healthy. Other embodiments may take an average
of losses over a period of time and compare the average to
a threshold. In some embodiments, the threshold itself may
be a function of a statistical calculation of the predicted
values or an average of the predicted values. In some
embodiments, the following equation may be used to notify
the user the health-indicator is not in a healthy range:

(P )~ Pronge ) 12 g

[0076] (P,,,.,.) is determined by a method of averaging
the measured health-indicator data over a time range

[0077] (P,,,.*) is determined by a method of averag-
ing predicted health-indicator data over the same time
range;

[0078]  (oer,ea) is the median of the sequence of stan-
dard deviations derived from the network over the same
time range; and

[0079] @, is a function of the standard deviation
evaluated at P,,,...* and may serve as the threshold.

[0080] The methods of averaging that may be used
include, by way of example not limitation, average, arith-

+1
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metic mean, median and mode. In some embodiments,
outliers are removed so as not to skew the calculated
number.

[0081] Referring back to the input data (I=a,P,*+(1-a,)
P,) for the embodiment depicted in FIG. 5C, ., is defined as
a function of L and ranges from 0 to 1. For example, a(L)
may be a linear function, or a non-linear function, or may be
linear over some range of L and non-linear over a separate
range of L. In one example, as shown in FIG. 5E, the
fanction a(L) is linear for L between 0 and 3, quadratic for
L between 3 and 13, and 1 for L greater than 13. For this
embodiment, when L is between 0 and 3 (i.e., when the
predicted health-indicator data and measured health-indica-
tor data nearly match), the input data I,,, will be approxi-
mately the measured data P,, |, as a-1 will be near zero.
When L is large, e.g., greater than 13, a(L) is 1, which
makes the input data [,,=P,,,*, the predicted health-indi-
cator at time t+1. When L is between 1 and 13, a(L) varies
quadratically, and the relative contributions of predicted and
measured health-indicator data to the input data will also
vary. The linear combination of predicted health-indicator
data and measured health-indicator data weighted by a(L)
permits, in this embodiment, weighting the input data
between predicted and measured data at any particular time
step. In all these examples the input data may also include
the other-factor data (O,). This is only one example of
self-sampling, where some combination of predicted data
and measured data are used as input to the trained network.
The skilled artisan will appreciate many others may be used.

[0082] Machine learning models in embodiments use a
trained machine learning model. In some embodiments, the
machine learning models use a recurrent neural network,
which requires a trained RNN. As an example, and not by
way of limitation, FIG. 6 depicts an unrolled RNN to
demonstrate training a RNN in accordance with some
embodiments. Cell 602 has initial state S, 604 and weight
matrix W 606. Step-rate data R, air temperature data T, and
initial PPG data P, at the time step zero are input into state
S,, weight W is applied, and a predicted PPG (P, *) at the
first time step is output from cell 602, and AP, * is calculated
using PPG obtained at time step 1 (P, ). Cell 602 also outputs
updated state at time step 1 608 (S,), which goes into cell
610. Step rate data R, , air temperature data T, and PPG data
P, at time step 1 are input into S;, weight 606 W is applied,
and a predicted PPG (P,*) at the time step 2 is output from
cell 610, and AP,* is calculated using PPG (P,) obtained at
time step 2. Cell 610 also outputs updated state at time step
2 612 (S,), which goes into cell 614. Step rate data R, air
temperature data T, and PPG data at time step 3 (P) are
input into S,, weight 606 W is applied, and a predicted PPG
(P5*) at time step 3 is output from cell 614, and AP * is
calculated using PPG obtained at time step 3 (P). This is
continued until state at time-step-n 616 is output and AP, *
is calculated. The AP*’s are used in back propagation to
adjust the weight matrix, similar to the training of convo-
lutional neural networks. However, unlike convolutional
networks, the same weight matrix in recurrent neural net-
works is applied at each iteration; it is only modified in back
propagation during training. Many training examples with
health-indicator data and corresponding other-factor data are
input into RNN 600 over and over until it converges. As
discussed previously, LTSM RNNs may be used in some
embodiments where the states of such networks provide a
longer term contextual analysis of input data, which may
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provide better prediction when the network learns long(er)-
term correlations. As also mentioned and the skilled artisan
will readily appreciate other machine learning models will
fall within the scope of embodiments described herein, and
may include by way of example not limitation CNN or other
feed-forward networks.

[0083] FIG. 7A depicts a system 700 that predicts whether
a user’s measured health-indicators are within or outside a
threshold of normal for that of a healthy person under similar
other-factors. System 700 has machine learning model 702
and health detector 704. Embodiments for machine learning
model 702 include a trained machine learning model, a
trained RNN, CNN or other feed forward network for
example (and not by way of limitation). The trained RNN,
other network or combination of networks may be trained on
training examples from a population of healthy people from
whom health-indicator data and corresponding (in time)
other-factor data has been collected. Alternatively, the
trained RNN, other network or combination of networks
may be trained on training examples from a particular user,
making it a personalized trained machine learning model.
The skilled artisan will appreciate training examples from
different populations may be selected depending on the use
or design for the trained network and system in general. The
skilled artisan will also readily appreciate that the health-
indicator data in this and other embodiments may be one or
more health-indicators. For example and not by way of
limitation, one or more of PPG data, heartrate data, blood
pressure data, body temperature data, blood oxygen concen-
tration data and the like could be used to train the models and
to predict the health of a user. Health detector 704 uses
prediction 708 from machine learning model 702 and input
data 710 to determine whether a loss, or other metric
determined by analyzing the predicted output with the
measured data, exceeds a threshold considered normal and
thus unhealthy. System 700 then outputs a notification or the
state of a user’s health. This notification may take many
forms as discussed herein. Input generator 706 continuously
obtains data with a sensor (not shown) from a user wearing
or in contact with the sensor, where the data represents one
or more health-indicators of the user. Corresponding (in
time) other-factor data may be collected by another sensor or
acquired through other means as described herein or as
readily apparent to the skilled artisan.

[0084] Input generator 706 may also collect data to deter-
mine/calculate other-factor data. Input generator, for
example and not by way of limitation, may include a smart
watch, wearable or mobile device (e.g., Apple Watch® or
FitBit® smart phone, tablet or laptop computer), a combi-
nation of smart watch and mobile device, a surgically
implanted device with the ability to transmit data to a mobile
device or other portable computing device, or a device on a
cart in a medical care facility. Preferably user input genera-
tor 706 has a sensor (e.g., PPG sensor, electrode sensor) to
measure data related to one or more health-indicators. The
smart watch, tablet, mobile phone or laptop computer of
some embodiments may carry the sensor or the sensor may
be remotely placed (surgically embedded, contacted to the
body remote from the mobile device, or some separate
device) where, in all these cases, the mobile device com-
municates with the sensor in order to gather health-indicator
data. In some embodiments, system 700 may be provided on
the mobile devices alone, in combination with other mobile
devices, or in combination with other computing systems via
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communication through a network through which these
devices may communicate. For example and not by way of
limitation, system 700 may be a smart watch or wearable
with machine learning model 702 and health detector 704
located on the device, e.g., the memory of the watch or
firmware on the watch. The watch may have user input
generator 706 and communicate with other computing
devices (e.g. mobile phone, tablet, lap top computer or desk
top computer) via direct communication, wireless commu-
nication (e.g., WiFi, sound, Bluetooth, etc) or through a
network (e.g., internet, intranet, extranet etc.) or a combi-
nation thereof, where trained machine learning model 702
and health detector 704 may be located on the other com-
puting devices. The skilled artisan will appreciate that any
number of configurations of system 700 may be utilized
without exceeding the scope of embodiments described
herein.

[0085] Referring to FIG. 7B smart watch 712, in accor-
dance with an embodiment, is depicted. Smart watch 712
includes watch 714 which contains all the circuitry and
microprocessors, and processing devices (not shown) known
to the skilled artisan. Watch 714 also includes display 716,
on which a user’s health-indicator data 718 may be dis-
played, in this example heart rate data. Also displayed on
display 716 may be the predicted health-indicator band 720
for the normal or the healthy population. In FIG. 7B the
user’s measured heart rate data does not exceed the pre-
dicted healthy band, so in this particular example no noti-
fication would be made. Watch 714 may also include watch
band 722, and high-fidelity sensor 724, for example an ECG
sensor. Alternatively, watch band 722 may be an expandable
cuff to measure blood pressure. Low-fidelity sensors 726
(shown in shadow) are provided on the back of watch 714
to collect user health-indicator data, such as PPG data,
which can be used to derive heart rate data or other data like
blood pressure, for example. Alternatively, as will be appre-
ciated by the skilled artisan, a fitness band may be used in
some embodiments, such as FitBit or Polar, where the fitness
bands have similar processing power and other-factor mea-
surement devices (e.g., ppg and accelerometers).

[0086] FIG. 8 depicts an embodiment of a method 800 for
continuously monitoring a user’s health status. Step 802
receives the user input data, which may include data for one
or more health-indicators (aka primary sequence of data)
and corresponding (in time) data for other-factors (aka
secondary sequence of data). Step 804 inputs the user data
into a trained machine learning model, which may include a
trained RNN, CNN, other feed-forward network as
described herein or other neural network known to the
skilled artisan. In some embodiments, the health-indicator
input data may be one or a combination of predicted
health-indicator data and measured health-indicator data,
e.g., a linear combination, as described in some embodi-
ments herein. Step 806 outputs data for one or more pre-
dicted health-indicators at a time step, which outputs may
include, by way of example not limitation, a single predicted
value, a probability distribution as a function of predicted
values. Step 808 determines a loss based on the predicted
health-indicator, where, for example and not by way of
limitation, the loss may be a simple difference between
predicted and measured health-indicators, or some other
appropriately selected loss function (e.g. negative log of a
probability distribution evaluated at the value for the mea-
sured health-indicator). Step 810 determines if the loss
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exceeds a threshold considered normal or unhealthy, where
the threshold may be, for example and not by way of
limitation, a simple number picked by the designer, or a
more complex function of some parameter related to the
prediction. If greater than the threshold, step 812 notifies the
user that his or her health indicator exceeds a threshold
considered normal or healthy. The notification, as described
herein, may take many forms. In some embodiments, this
information may be visualized to the user. For example and
not by way of limitation the information can be displayed on
a user interface such as a graph that shows (i) measured
health-indicator data (e.g., heart rate) and other-factor data
(e.g., step count) as a function of time, (ii) a distribution of
predicted health-indicator data (e.g., predicted heart rate
values) generated by the machine learning model. In this
way, the user can visually compare the measured data points
to the predicted data points and determine by visual inspec-
tion whether their heart rate, for example, falls into the range
expected by the machine learning model.

[0087] Some embodiments described herein have men-
tioned using a threshold to determine whether to notify a
user or not. In one or more of these embodiments, the user
may change the threshold to adjust or tune the system or
method to more closely match the user’s personal health
knowledge. For example, if the physiological indicator used
is blood pressure and the user has higher blood pressure,
then embodiments may frequently alert/notify the user that
his health-indicator is outside normal or healthy range from
a model trained on a healthy population. Thus, certain
embodiments permit the user to increase the threshold value
so the user is not notified so frequently that his/her health-
indicator data exceeds what is considered normal or healthy.

[0088] Some embodiments preferably use the raw data for
the health-indicators. If the raw data is processed to derive
a specific measurement, e.g., heart rate, this derived data
may be used in accordance with embodiments. In some
situations, the provider of a health monitoring apparatus
does not have control of the raw data, rather what is received
is processed data in the form of a calculated health-indicator,
e.g., heart rate or blood pressure. As will be appreciated by
the skilled artisan, the form of the data used to train a
machine learning model should match the form of the data
collected from the user and input into the trained model,
otherwise the predictions could prove erroneous. For
example, the Apple Watch gives heart rate measurement data
at unequal time steps, and does not provide raw PPG data.
In this example, a user wears an Apple Watch that outputs
heart rate data in accordance with Apple’s PPG processing
algorithm with heart rate data at unequal time steps. The
model is trained on this data. Apple deciding to change its
algorithm for providing the heart rate data may render the
model trained on data from the previous algorithm obsolete
to use on data input from the new algorithm. To account for
this potential issue, some embodiments resample the irregu-
larly spaced data (heart rate, blood pressure data, or ECG
data etc.) onto a regularly spaced grid and sample from
regularly spaced grid when collecting data to train the
model. If Apple, or other supplier of data, changes its
algorithm, the model needs only to be retrained on newly
collected training examples, but the model does not need to
be reconstructed to account for the algorithm change.

[0089] In a further embodiment, the trained machine
learning model may be trained on the user’s data, resulting
in a personalized trained machine learning model. This
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trained personalized machine learning model can be used in
place of or in combination with the machine learning models
trained on a healthy population of people described herein.
If used by itself, a user’s data is input into the personalized
trained machine learning model, which would output a
prediction of that individual’s health-indicator in the next
time step that is normal for that user, which is then compared
with the actual/measured data from the next time step in a
manner consistent with embodiments described herein to
determine whether the user’s health-indicators had differed
by some threshold from what is predicted normal for that
user. In addition, this personalized machine learning model
could be used in combination with the machine learning
mode] trained on training examples from a population of
healthy people to generate predictions and associated noti-
fications as related to both what is predicted normal for that
individual user and predicted normal for the healthy popu-
lation of people.

[0090] FIG. 9A depicts a method 900 in accordance with
another embodiment, and FIG. 9B shows a hypothetical plot
902 of heart rate (by way of example not limitation) as a
fanction of time for the purpose of explanation. Step 904
(FIG. 9A) receives user heart rate data (or other health-
indicator data) and, optionally, corresponding (in time)
other-factor data, and inputs this data into a personalized-
trained machine learning model. In some embodiments, the
personalized-trained model is trained on the user’s indi-
vidual health-indicator data and, optionally, corresponding
(in time) other-data as described herein. Thus, in step 906
the personalized-trained machine learning model predicts
normal heart rate data for that individual user under condi-
tions of the other-factor(s), and step 908 identifies aberra-
tions or anomalies in the user’s health-indicator data as
compared to what is predicted as normal for that particular
user. Some embodiments receive the user’s health-indicator
data from a wearable device (e.g., Apple Watch, smart
watch, FitBit®, etc.) on the user, or from another mobile
device (e.g., tablet, computer, etc.) in communication with a
sensor on the user (e.g., Polar® strap, PPG sensor etc.),
which is discussed throughout this description.

[0091] Aloss may be defined to help determine whether to
notify a user, in step 908, that the user’s measured data is
anomalous to what is predicted as normal for that particular
user. The loss is chosen to model how close the prediction
is to the actual or measured data. The skilled artisan will
appreciate many ways to define loss. In other embodiments
described herein and equally applicable here, for example,
the absolute value of the difference between the predicted
value and the absolute value [AP*| is a form of a loss. In
some embodiments, the loss (L) may be L=-1n[f ], where
L, =1n[p (Pmmf“]. L, generally, is a measure of how close
the predicted data is to the measured data. ), the prob-
ability distribution in this example, ranges from 0 to 1,
where 1 means the predicted data and measured data are the
same. Therefore, a low loss, in some embodiments, indicates
the predicted data are probably the same as or close to the
measured data. In some embodiments, thresholds for L are
set, e.g., L>5, where the user is notified an anomalous
condition exists from that predicted for that particular user.
This notification may take many forms, as described else-
where herein. As also described elsewhere herein, other
embodiments may take an average of losses over a period of
time and compare the average to a threshold. In some
embodiments, as described in more detail elsewhere herein,
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the threshold itself may be a function of a statistical calcu-
lation of the predicted data or an average of the predicted
data. Loss has been described in more detail elsewhere
herein, and for the sake of brevity will not be discussed
further here. The skilled artisan will also appreciate the input
and predicted data may be scalar values, or segments of data
over a time period. For example and not by way of limita-
tion, a system designer may be interested in 5 minute data
segments, and would input all the data prior to time t and all
other-data for t+5 min, predict the health-indicator data for
t+5 mins and determine a loss between measured health-
indicator data for the t+5 min segment against the predicted
health-indicator data for the t+5 min segment.

[0092] Step 908 determines if an anomaly is present or
not. As discussed this may be determined if the loss exceeds
a threshold. As previously described, the threshold is set by
choice of the designer and based on the purpose of the
system being designed. In some embodiments the threshold
may be modified by the user, but preferably not so in this
embodiment. If an anomaly is not present, the process is
repeated at step 904. If an anomaly is present, step 910
notifies or alerts the user to obtain a high-fidelity measure-
ment, an ECG or blood pressure measurement for example
and not by way of limitation. In step 912, the high-fidelity
data is analyzed by an algorithm, a health professional or
both and is described as normal or not normal, and if not
normal some diagnosis may be assigned, e.g., AFib, tachy-
cardia, bradycardia, atrial flutter, or high/low blood pressure
depending on the high-fidelity measurement obtained. It is
noted for clarity, that notification to record high-fidelity data
is equally applicable and possible in other embodiments, and
in particular embodiments using general models described
above. The high-fidelity measurement, in some embodi-
ments, may be obtained directly by the user using a mobile
monitoring system, such as ECG or blood pressure systems,
which may be associated with the wearable device in some
embodiments. Alternatively, the notification step 910 causes
automatic acquisition of the high-fidelity measurement. For
example, the wearable device may communicate with a
sensor (hard-wired or via wireless communication) and
obtain ECG data, or it may communicate with a blood
pressure cuff-system (e.g., wrist band of a wearable or an
armband cuff) to automatically obtain a blood pressure
measurement, or it may communicate with an implanted
device such as a pace maker or ECG electrodes. Systems for
remotely obtaining an ECG are provided, for example, by
AliveCor, Inc., such systems include (without limitation)
one or more sensors contacting the user in two or more
locations, where the sensor collects electrical cardiac data
that is transmitted, either wired or wirelessly, to a mobile
computing device, where an app generates an ECG strip
from the data, which can be analyzed by algorithms, a
medical professional or both. Alternatively, the sensor may
be a blood pressure monitor, where the blood pressure data
are transmitted, either wired or wirelessly, to the mobile
computing device. The wearable itself may be a blood
pressure system having a cuff with ability to measure
health-indicator data and optionally with an ECG sensor
similar to that described above. The ECG sensor may also
include an ECG sensor such as that described in co-owned
U.S. Provisional Application No. 61/872,555, the contents
of which is incorporated herein by reference. The mobile
computing device may be, for example and not by way of
limitation, a computer tablet (e.g., iPad), smart phone (e.g.,
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iPhone®), wearable (e.g., Apple Watch) or a device (maybe
mounted on a cart) in a healthcare facility. The mobile
computing device could be, in some embodiments, a laptop
computer or a computer in communication with some other
mobile device. The skilled artisan will appreciate that a
wearable or smartwatch will also be considered mobile
computing devices in terms of the capabilities provided in
the context of embodiments described herein. In the case of
a wearable, the sensor may be placed on the band of the
wearable where the sensor may transmit the data wirelessly
or by wire to the computing device/wearable, or the band
may also be a blood pressure monitoring cuff, or both as
previously described. In the case of a mobile phone, the
sensor may be pads attached to or remote from the phone,
where the pads sense electrical cardiac signals and wire-
lessly or by hardwire communicate the data to the wearable
or other mobile computing device. More detailed descrip-
tions for some of these systems are provided in one or more
of U.S. Pat. Nos. 9,420,956; 9,572,499; 9,351,654; 9,247,
911, 9,254,095, and 8,509,882 and one or more of US Patent
Application Publication Numbers 2015/0018660; 2015/
0297134; and 2015/0320328, all of which are incorporated
herein in their entirety and for all purposes. Step 912
analyzes the high-fidelity data and provides a description or
diagnosis, as previously described.

[0093] In step 914, diagnosis or categorization of the
high-fidelity measurement is received by a computing sys-
tem, which may be in some embodiments the mobile or
wearable computing system used to collect the user’s heart
rate data (or other health-indicator data), and in step 916 the
low-fidelity health-indicator data sequence (heart rate data in
this example) is labeled with the diagnosis. In step 918, the
labeled user’s low-fidelity data sequence is used to train a
high-fidelity machine learning model, and optionally other-
factor data sequence is also provided to train the model. The
trained high-fidelity machine learning model, in some
embodiments, has the capability to receive measured low-
fidelity health-indicator data sequence (e.g., heart rate data
or PPG data) and optionally other-factor data and give a
probability or predict or diagnose or detect when a user is
experiencing an event typically diagnosed or detected using
high-fidelity data. The trained high-fidelity machine learning
model is able to do this because it has been trained on user’s
health-indicator data (and optionally other-factor data)
labeled with diagnoses of the high-fidelity data. Thus, the
trained model has the ability to predict when a user is having
an event associated with one or more of the labels (e.g., Afib,
high blood pressure etc.) solely based on measured low-
fidelity health-indicator input data sequence, e.g. heart rate
or ppg data (and optionally other-factor data). As the skilled
artisan will appreciate, the training of the high-fidelity
model can take place on the user’s mobile device, remote
from the user’s mobile device, a combination of the two, or
in a distributed network. For example and not by way of
limitation, the user’s health-indicator data could be stored in
a cloud system, and this data can be labeled in the cloud
using the diagnosis from step 914. The skilled artisan will
readily appreciate any number of ways and manners to store,
label and access this information. Alternatively, a global
trained high-fidelity model could be used, which would be
trained on labeled training examples from a population of
people experiencing these conditions typically diagnosed or
detected with high-fidelity measurements. These global
training examples would provide low-fidelity data
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sequences (e.g., heart rate) labeled with conditions diag-
nosed using a high-fidelity measurement (e.g., Afib called
from a ECG by a medical professional or an algorithm).
[0094] Referring now to FIG. 9B, plot 902 shows a
schematic of heart rate plotted as a function of time. Aber-
rations 920 from the user’s normal heart rate data occurred
at times t;, t,, t5, t, ts, ts, t5, ts. Normal, as described above,
means that the predicted data for this particular user was
within a threshold of the measured data, where the aberra-
tions are outside the threshold. At aberrations from normal
some embodiments prompt the user to obtain a more defini-
tive or high-fidelity reading, by way of example not limita-
tion an ECG reading, identified as ECG,, ECG,, ECG;,
ECG,, ECG4, ECG,, ECG., ECGy. As described above the
high-fidelity reading could be automatically obtained, the
user may obtain it, and it could be things other than an ECG,
e.g., blood pressure. High-fidelity readings are analyzed by
algorithm, health professional or both to identify the high-
fidelity data as normal/abnormal and to further identify/
diagnose abnormal, AFib for example and not by way of
limitation. This information is used to label the health-
indicator data (e.g., heart rate or PPG data) at the point(s) of
anomaly 920 in the user’s sequenced data.

[0095] The distinction between high-fidelity and low-fi-
delity data is one where high-fidelity data or measurements
are typically used to make a determination, detection or
diagnosis, where low-fidelity data cannot readily be used for
such. For example, an ECG scan may be used to identify,
detect or diagnose arrhythmias, whereas heart rate or PPG
data do not typically provide this capability. As the skilled
artisan will appreciate, the description herein relating to
machine learning algorithms (e.g., Bayes, Markov, Gausian
processes, clustering algorithms, generative models, kernel
and neural network algorithms) apply equally to all embodi-
ments described herein.

[0096] In some situations users remain asymptomatic
despite that issues may be present, and even if symptoms
present it may be impractical to obtain the high-fidelity
measurement necessary to make a diagnosis or detection.
For example and not by way of limitation, arrhythmias
particularly AF may not present and even when symptoms
do present it is notoriously difficult to record an ECG at that
moment, and without expensive, bulky and sometimes inva-
sive monitoring devices it is incredibly difficult to continu-
ously monitor the user. As discussed elsewhere herein, it is
important to understand when a user experiences AF
because AF, at a minimum, may be a causal factor in stroke
among other serious conditions. Similarly, and as discussed
elsewhere, AF burden may have similar import. Some
embodiments allow for continuous monitoring of arrhyth-
mias (e.g., AF) or other serious conditions using only the
continuous monitoring of low-fidelity health-indicator data,
such as heart rate or ppg along with optional other-factor
data.

[0097] FIG. 10 depicts a method 1000 in accordance with
some embodiments of health monitoring systems and meth-
ods. Step 1002 receives measured or actual user low-fidelity
health-indicator data (e.g., heart rate or PPG data from a
sensor on a wearable), and optionally receives correspond-
ing (in time) other-factor data, which may impact the
health-indicator data as described herein. As discussed else-
where herein the low-fidelity health-indicator data may be
measured by a mobile computing device, such as a smart
watch, other wearable, or computer tablet. In step 1004, the
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user’s low-fidelity health-indicator data (and optionally the
other-factor data) is input into a trained high-fidelity
machine learning model, which, in step 1006, outputs a
predicted identification or diagnosis for the user based on the
measured low-fidelity health-indicator data (and optionally
corresponding (in time) other-factor data). Step 1008 asks if
the identification or diagnosis is normal, which, if yes, the
process starts over. If the identification or diagnosis is not
normal, step 1010 notifies the user of the problem or
detection. Optionally, the system, method or platform may
be set up to notify any combination of the user, family,
friends, healthcare professionals, emergency 911, or the like.
Which of these people are notified may depend on the
identification, detection or diagnosis. If the identification,
detection or diagnosis is life threatening, then certain people
may be contacted or notified that may not be notified if the
diagnosis is not life threatening. In addition, in some
embodiments, the measured health-indicator data sequence
is input into the trained high-fidelity machine learning model
and the amount of time a user is experiencing an abnormal
event (e.g., difference between onset and cessation of the
predicted abnormal event) is calculated, permitting a better
understanding of the abnormal burden on the user. In par-
ticular, AF burden may be highly important to understand in
preventing stroke and other serious conditions. Thus, some
embodiments allow continuous monitoring of abnormal
events with a mobile computing device, a wearable com-
puting device or other portable device capable of only
acquiring low-fidelity health-factor data, and optionally
other-factor data.

[0098] FIG. 11 depicts example data 1100 analyzed based
on low-fidelity data to generate a high-fidelity output pre-
diction or detection, according to some embodiments as
described herein. While described with reference to detec-
tion of atrial fibrillation, similar data may be generated for
additional predictions of high-fidelity diagnosis based on
low-fidelity measurements. The first chart 1110 shows heart
rate calculations over time for a user. The heart rate may be
determined based on PPG data or other heart rate sensors.
The second chart 1120 shows activity data for a user during
the same time period. For example, the activity data may be
determined based on step count, or other measurements of
movement of the user. The third chart 1130 shows a classifier
output from a machine learning model and a horizontal
threshold for when a notification is generated. A machine
learning model may generate the prediction based on an
input of low-fidelity measurements. For example, the data in
the first chart 1110 and the second chart 1120 may be
analyzed by a machine learning system as described further
above. The result of the machine learning system analysis
may be provided as the atrial fibrillation probability shown
in chart 1130. When the probability is over a threshold value,
shown in this case as above 0.6 confidence, a health moni-
toring system can trigger a notification or other alert for the
user, a physician, or other users associated with the user.

[0099] In some embodiments, the data in charts 1110 and
1120 may be provided as continuous measurements to a
machine learning system. For example, the heart rate and
activity levels may be generated as measurements every 5
seconds in order an accurate measurement. A segment of
time with multiple measurements can then be input to a
machine learning model. For example, the previous hour of
data can be used as an input to the machine learning model.
In some embodiments, shorter or longer periods of time may
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be provided rather than one hour. As shown in FIG. 11, the
output chart 1130 provides an indication of periods of time
in which a user is undergoing an abnormal health event. For
example, the periods when the prediction is over a certain
confidence level may be used by a health monitoring system
to determine atrial fibrillation. This value can then be used
to determine an atrial fibrillation burden on the user during
the measured time period.

[0100] In some embodiments, a machine learning model
to generate the predicted output in chart 1130 may be trained
based on labeled user data. For example, the labeled user
data may be provided based on high-fidelity data (such as an
ECG reading) taken at a time period when low-fidelity data
(e.g., PPG, heart rate) and other data (e.g., activity level or
steps) is also available. In some embodiments, the machine
learning model is designed to determine if there was likely
atrial fibrillation during a preceding time period. For
example, the machine learning model may take an hour of
low-fidelity data as an input and provide a likelihood there
was an event. Accordingly, training data may include hours
of recorded data for a population of individuals. The data can
be health-event-labeled-times when a condition was diag-
nosed based on high-fidelity data. Accordingly, if there was
a health-event labeled time based on high-fidelity data, the
machine learning model may determine that any one hour
window of low-fidelity data with that event that is input into
the untrained machine learning model should provide a
prediction of the health-event. The untrained machine learn-
ing model can then be updated based on comparing the
prediction with the label. After repeating for a number
iterations and determining that the machine learning model
has converged, it may be used by a health monitoring system
to monitor for atrial fibrillation of users based on low-
fidelity data. In various embodiments, other conditions than
atrial fibrillation may be detected using low-fidelity data.

[0101] FIG. 12 depicts a method 1200 in accordance with
some embodiments as described herein The method 1200
may be performed by processing logic that comprises hard-
ware (e.g., circuitry, dedicated logic, programmable logic,
microcode, etc.), software (e.g., instructions run on a pro-
cessing device to perform hardware simulation), or a com-
bination thereof. In one embodiment, processing logic is
executed by a kernel of an operating system associated with
the hardware described herein. It should be noted that the
operations of the methods described herein may be per-
formed in any order and combination.

[0102] In one embodiment, at step 1202, processing logic
receives measured or actual user low-fidelity health-indica-
tor data (e.g., heart rate or PPG data from a sensor on a
wearable) at a first time, and optionally receives correspond-
ing (e.g., in time) other-factor data, which may impact the
health-indicator data, as described herein. In one embodi-
ment, an example of other-factor data may include an
activity level of the user.

[0103] As discussed herein, the low-fidelity health-indi-
cator data may be collected and measured by a low-fidelity
health-indicator data sensor (e.g., a PPG) and a correspond-
ing mobile computing device, such as a smartwatch, other
wearable (e.g., a fitness band), computer tablet, a laptop
computer, etc. In one embodiment, the low-fidelity health-
indictor data sensor is located on the mobile computing
device. In other embodiments, the low-fidelity health-in-
dictor data sensor is remotely located from the mobile
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computing device, and operatively coupled via a communi-
cation network (e.g., Bluetooth, WiFi, Near-field communi-
cation (NFC), etc.) or wires.

[0104] At step 1204, the user’s low-fidelity health-indica-
tor data (and optionally the other-factor data) is input, by
processing logic, into a trained high-fidelity machine learn-
ing model, which outputs a predicted identification or diag-
nosis for the health (e.g., cardiac) of the user based on the
measured low-fidelity health-indicator data (and optionally
corresponding (e.g., in time) other-factor data). For
example, processing logic may input a set of data including
the measured low-fidelity health-indicator data, and option-
ally including the other-factor data, into a trained high-
fidelity machine learning model, to generate a prediction
whether the health of the user outside a normal range, based
on a low-fidelity health-indicator threshold. In various
embodiments, the trained high-fidelity machine learning
model may include one or more of: a generative neural
network, a recurrent neural network (RNN), a feed-forward
neural network, etc.

[0105] At step 1206, processing logic determines whether
the prediction is outside the normal range. In one embodi-
ment, the prediction is based on a comparison of a prob-
ability being outside the normal range to a threshold value
(e.g., a sensitivity threshold) over a period of time (e.g., a
time threshold). For example, to determine that the predic-
tion is outside the normal range, processing logic may
determine that a probability that the prediction is outside the
normal range is above a first sensitivity threshold for a first
time threshold. In various embodiments, it is contemplated
that variations of the sensitivity threshold value, such as an
average value over a period of time, may be evaluated over
the first time threshold. In such cases, suitable variations of
the sensitivity threshold value, in addition to the raw sen-
sitivity threshold value, are considered to be represented by
the term “sensitivity threshold” described herein. Further-
more, for the purposes of the present disclosure, it is
contemplated that the low-fidelity health-indicator threshold
includes one or more of: a sensitivity threshold or a time
threshold.

[0106] If it is determined at step 1206 that the prediction
(e.g., the predicted identification or diagnosis) is inside the
normal range, the process starts over at step 1202. If the
prediction is outside the normal range (e.g., the prediction
includes an indication of atrial fibrillation, for example), at
step 1208 processing logic automatically receives measured
high-fidelity health-indicator data obtained by a high-fidelity
health-indicator data sensor (e.g., an ECG sensor). Alterna-
tively, the processer may alert the user to obtain a measure-
ment from the high-fidelity data sensor, which measured
high-fidelity health-indicator data is received by the pro-
cessing logic as described above. Processing logic may
optionally automatically send a request for the measurement
and receipt of such high-fidelity health-indicator data (e.g,,
to the high-fidelity health-indicator data sensor) upon deter-
mining that the prediction is outside the normal range.
[0107] At step 1210, processing logic determines whether
the measured high-fidelity health- indicator data is normal or
abnormal, i.e., whether the measured high-fidelity health-
indicator data indicates that the health of the user is normal
or abnormal. If the measured high-fidelity health-indicator
data is abnormal, processing logic may notify the user of the
abnormality and continue to step 1202. Optionally, process-
ing logic may be set up to notify any combination of the user,
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family, friends, healthcare professionals, emergency 911, or
the like, of the abnormality as well as any additional suitable
information, such as the location of the user. Which of these
people are notified, and what information is sent, may
depend on the specific identification, detection or diagnosis.
If the identification, detection or diagnosis is life threaten-
ing, then certain people may be contacted or notified that
may not be notified if the diagnosis is not life threatening, for
example. In addition, in some embodiments, the measured
health-indicator data sequence is input into the trained
high-fidelity machine learning model and the amount of time
a user is experiencing an abnormal event (e.g., difference
between onset and cessation of the predicted abnormal
event) is calculated, permitting a better understanding of the
abnormal burden on the user. In particular, AF burden may
be important to understand in preventing stroke and other
serious conditions. Thus, some embodiments may allow
continuous monitoring of abnormal events with a mobile
computing device, a wearable computing device or other
portable device capable of acquiring low-fidelity health-
factor data, and optionally other-factor data.

[0108] If the measured high-fidelity health-indicator data
is normal at step 1210, processing logic modifies, by a
processing device, the low-fidelity health-indicator thresh-
old at step 1212. In one embodiment, the low-fidelity
health-indicator threshold corresponds to the first sensitivity
threshold, and to modify the low-fidelity health-indicator
threshold processing logic modifies the first sensitivity
threshold to a second sensitivity threshold (e.g., a first value
of the first sensitivity threshold to a second value) to
decrease a notification sensitivity (e.g., that determines
when a user is notified of a possible abnormality). For
example, in one embodiment, processing logic may increase
the first sensitivity threshold to a higher second sensitivity
threshold, and thus decrease the notification sensitivity so
that the user receives fewer notifications of abnormalities,
which notification may be more indicative of when a user is
actually experiencing an abnormality. In one embodiment,
the modification to the low-fidelity health-indicator thresh-
old may be temporary, and upon the expiration of a time
interval (e.g., one day, one week, one month, etc.), the value
corresponding to the low-fidelity health-indicator threshold
may be modified back to the original value, or some other
value. For example, processing logic may modify the second
sensitivity threshold back to the first sensitivity threshold in
response to the expiration of a time interval.

[0109] In another embodiment, the low-fidelity health-
indicator threshold corresponds to the first time threshold,
and to modify the low-fidelity health-indicator threshold
processing logic may modify the first time threshold to a
second time threshold. It should be noted that there are a
multitude of methods by which a new low-fidelity health-
indicator threshold may be determined, and the present
disclosure provides some non-limiting examples of such
methods. For example, the new low-fidelity health-indicator
threshold may be determined randomly, as a percentage of
a previous low-fidelity health-indicator threshold, based on
historical data, based on a selection from predetermined
low-fidelity health-indicator thresholds, based on a machine
learning model, based on user-specific data, based on gen-
eral-population data, etc. The system and methods described
herein are equally capable of utilizing additional, equally
suitable methods for determining a new low-fidelity health-
indicator threshold.
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[0110] In one embodiment, modification of the sensitivity
threshold may not done in real-time on the wearable device,
but instead done asynchronously on some other processing
system (e.g. in the cloud) and the new sensitivity thresholds
may be downloaded to the device. Similarly, on the device
itself, when determining if and by how much to modify the
sensitivity threshold, processing logic may analyze not just
the immediately prior notification and high-fidelity measure-
ment, but might also consider multiple prior notifications
and measurements (e.g. each notification and ECG recorded
in the past week, for example), and modify the sensitivity
threshold by applying a formula that considers all, or some
portion, of that data.

[0111] Tt should be noted that each of the operations
described with respect to method 1200 may be performed
automatically (e.g., without human intervention). Specifi-
cally, the modification of the low-fidelity health-indicator
threshold may be done automatically, upon one or more
determinations that particular conditions have been met, as
described herein. In one non-limiting example of detecting
atrial fibrillation from a PPG, a globally-trained high-fidelity
machine learning model operating on PPG data may respond
differently to different individuals due to biological varia-
tion, skin color, etc. Advantageously, this mechanism allows
the model to initially be set at high sensitivity so as to ensure
abnormal conditions are detected, and to dynamically adjust
its sensitivity downwards (e.g., increasing specificity) in
order to adjust to the specific requirements and/or particu-
larities of each individual. Advantageously, this model may
lead to a higher population sensitivity/specificity than a
global model without such adjustments.

[0112] FIG. 13 illustrates a diagrammatic representation of
a machine in the example form of a computer system 1300
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a local area network (LAN), an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be
a personal computer (PC), a tablet PC, a set-top box (STB),
a Personal Digital Assistant (PDA), a cellular telephone, a
web appliance, a server, a network router, a switch or bridge,
a hub, an access point, a network access control device, or
any machine capable of executing a set of instructions
(sequential or otherwise) that specify actions to be taken by
that machine. Further, while only a single machine is illus-
trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein. In one embodi-
ment, computer system 1300 may be representative of a
server, mobile computing device, wearable, or the like
configured to perform health monitoring as described herein.

[0113] The exemplary computer system 1300 includes a
processing device 1302, a main memory 1304 (e.g., read-
only memory (ROM), flash memory, dynamic random
access memory (DRAM)), a static memory 1306 (e.g., flash
memory, static random access memory (SRAM), etc.), and
a data storage device 1318, which communicate with each
other via a bus 1330. Any of the signals provided over
various buses described herein may be time multiplexed
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with other signals and provided over one or more common
buses. Additionally, the interconnection between circuit
components or blocks may be shown as buses or as single
signal lines. Each of the buses may alternatively be one or
more single signal lines and each of the single signal lines
may alternatively be buses.

[0114] Processing device 1302 represents one or more
general-purpose processing devices such as a microproces-
sor, central processing unit, or other processing device.
More particularly, the processing device may be complex
instruction set computing (CISC) microprocessor, reduced
instruction set computer (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, or processor
implementing other instruction sets, or processors imple-
menting a combination of instruction sets. Processing device
1302 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processing device 1302 is configured to execute processing
logic 1326, which may be one example of a health-monitor
1350 and related systems for performing the operations and
steps discussed herein.

[0115] The data storage device 1318 may include a
machine-readable storage medium 1328, on which is stored
one or more set of instructions 1322 (e.g., software)
embodying any one or more of the methodologies of func-
tions described herein, including instructions to cause the
processing device 1302 to execute a health-monitor 1350
and related processes as described herein. The instructions
1322 may also reside, completely or at least partially, within
the main memory 1304 or within the processing device 1302
during execution thereof by the computer system 1300; the
main memory 1304 and the processing device 1302 also
constituting machine-readable storage media. The instruc-
tions 1322 may further be transmitted or received over a
network 1320 via the network interface device 1308.
[0116] The machine-readable storage medium 1328 may
also be used to store instructions to perform a method for
monitoring user health, as described herein. While the
machine-readable storage medium 1328 is shown in an
exemplary embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database, or associated caches and serv-
ers) that store the one or more sets of instructions. A
machine-readable medium includes any mechanism for stor-
ing information in a form (e.g., software, processing appli-
cation) readable by a machine (e.g., a computer). The
machine-readable medium may include, but is not limited to,
magnetic storage medium (e.g., floppy diskette); optical
storage medium (e.g., CD-ROM); magneto-optical storage
medium; read-only memory (ROM), random-access
memory (RAM); erasable programmable memory (e.g.,
EPROM and EEPROM); flash memory; or another type of
medium suitable for storing electronic instructions.

[0117] The preceding description sets forth numerous spe-
cific details such as examples of specific systems, compo-
nents, methods, and so forth, in order to provide a good
understanding of several embodiments of the present dis-
closure. It will be apparent to one skilled in the art, however,
that at least some embodiments of the present disclosure
may be practiced without these specific details. In other
instances, well-known components or methods are not
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described in detail or are presented in simple block diagram
format in order to avoid unnecessarily obscuring the present
disclosure. Thus, the specific details set forth are merely
exemplary. Particular embodiments may vary from these
exemplary details and still be contemplated to be within the
scope of the present disclosure.

[0118] Additionally, some embodiments may be practiced
in distributed computing environments where the machine-
readable medium is stored on and or executed by more than
one computer system. In addition, the information trans-
ferred between computer systems may either be pulled or
pushed across the communication medium connecting the
computer systems.

[0119] Embodiments of the claimed subject matter
include, but are not limited to, various operations described
herein. These operations may be performed by hardware
components, software, firmware, or a combination thereof.
[0120] Although the operations of the methods herein are
shown and described in a particular order, the order of the
operations of each method may be altered so that certain
operations may be performed in an inverse order or so that
certain operation may be performed, at least in part, con-
currently with other operations. In another embodiment,
instructions or sub-operations of distinct operations may be
in an intermittent or alternating manner.

[0121] The above description of illustrated implementa-
tions of the invention, including what is described in the
Abstract, is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. While specific
implementations of, and examples for, the invention are
described herein for illustrative purposes, various equivalent
modifications are possible within the scope of the invention,
as those skilled in the relevant art will recognize. The words
“example” or “exemplary” are used herein to mean serving
as an example, instance, or illustration. Any aspect or design
described herein as “example” or “exemplary” is not nec-
essarily to be construed as preferred or advantageous over
other aspects or designs. Rather, use of the words “example”
or “exemplary” is intended to present concepts in a concrete
fashion. As used in this application, the term “or” is intended
to mean an inclusive “or” rather than an exclusive “or”. That
is, unless specified otherwise, or clear from context, “X
includes A or B” is intended to mean any of the natural
inclusive permutations. That is, if X includes A; X includes
B; or X includes both A and B, then “X includes A or B” is
satisfied under any of the foregoing instances. In addition,
the articles “a” and “an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from
context to be directed to a singular form. Moreover, use of
the term “an embodiment” or “one embodiment” or “an
implementation” or “one implementation” throughout is not
intended to mean the same embodiment or implementation
unless described as such. Furthermore, the terms “first,”
“second,” “third,” “fourth,” etc. as used herein are meant as
labels to distinguish among different elements and may not
necessarily have an ordinal meaning according to their
numerical designation.

[0122] It will be appreciated that variants of the above-
disclosed and other features and functions, or alternatives
thereof, may be combined into may other different systems
or applications. Various presently unforeseen or unantici-
pated alternatives, modifications, variations, or improve-
ments therein may be subsequently made by those skilled in
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the art which are also intended to be encompassed by the
following claims. The claims may encompass embodiments
in hardware, software, or a combination thereof.

[0123] In addition to the embodiments described above,
the present disclosure includes, without limitation, the fol-
lowing example implementations.

[0124] Some example implementations provide a method
of monitoring a user’s cardiac health. The method can
include, receiving measured health-indicator data and other-
factor data of a user at a first time, inputting, by a processing
device, the health-indicator data and other-factor data into a
machine learning model, wherein the machine learning
model generates predicted health-indicator data at the next
time step, receiving the user’s data at the next time step,
determining, by the processing device, a loss at the next time
step, wherein the loss is a measure between the predicted
health-indicator data at the next time step and the user’s
measured health-indicator data at the next time step, deter-
mining that the loss exceeds a threshold, and outputting, in
response to determining that the loss exceeds a threshold, a
notification to the user.

[0125] Insome example implementations of the method of
any example implementations the trained machine learning
model is a trained generative neural network. In some
example implementations of the method of any example
implementations the trained machine learning model is a
feed-forward network. In some example implementations of
the method of any example implementations the trained
machine learning model is a RNN. In some example imple-
mentations of the method of any example implementations
the trained machine learning model is a CNN.

[0126] Insome example implementations of the method of
any example implementations the trained machine learning
model is trained on training examples from one or more of:
a healthy population, a population with heart disease, and
the user.

[0127] Insome example implementations of the method of
any example implementations the loss at the next time step
is the absolute value of the difference between the predicted
health-indicator data at the next time step and the user’s
measured health-indicator at the next time step.

[0128] Insome example implementations of the method of
any example implementations the predicted health-indicator
data is a probability distribution, and wherein the predicted
health-indicator data at the next time step is sampled from
the probability distribution.

[0129] Insome example implementations of the method of
any example implementations the predicted health-indicator
data at the next time step is sampled according to a sampling
technique selected from the group consisting of: the pre-
dicted health-indicator data at maximum probability; and
random sampling the predicted health-indicator data from
the probability distribution.

[0130] Insome example implementations of the method of
any example implementations the predicted health-indicator
data is a probability distribution (f}), and wherein the loss is
determined based on a negative logarithm of the probability
distribution at the next time step evaluated with the user’s
measured health-indicator at the next time step. In some
example implementations of the method of any example
implementations the method further includes self-sampling
of the probability distribution.

[0131] Insome example implementations of the method of
any example implementations the method further includes
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averaging the predicted health-indicator data over a period
of time steps, averaging the user’s measured health-indicator
data over the period of time steps, and determining the loss
based on an absolute value difference between the predicted
health-indicator data and the measured health-indicator data.
[0132] Insome example implementations of the method of
any example implementations the measured health-indicator
data comprises PPG data. In some example implementations
of the method of any example implementations the mea-
sured health-indicator data comprises heart rate data.
[0133] Insome example implementations of the method of
any example implementations the method further includes
resampling irregularly spaced heart rate data onto a regularly
spaced grid, wherein the heart rate data is sampled from the
regularly spaced grid.

[0134] Insome example implementations of the method of
any example implementations the measured health-indicator
data is one or more health-indicator data selected from the
group consisting of: PPG data, heart rate data, pulse oxime-
ter data, ECG data, and blood pressure data.

[0135] Some example limitations provide an apparatus
comprising a mobile computing device comprising a pro-
cessing device, a display. a heath-indicator data sensor, and
a memory having instructions stored thereon that, when
executed by the processing device, cause the processing
device to: receive measured health-indicator data from the
health-indicator data sensor at time and other-factor data at
a first time, input health-indicator data and other-factor data,
into a trained machine learning model, and wherein the
trained machine learning model generates predicted health-
indicator data at a next time step, receive measured health-
indicator data and other-factor data at the next time step,
determine a loss at the next time step, wherein the loss is a
measure between the predicted health-indicator data at the
next time step and the measured health-indicator data at the
next time step, and output a notification if the loss at the next
time step exceeds a threshold.

[0136] In some example implementations of any example
apparatus the trained machine learning model comprises a
trained generative neural network. In some example imple-
mentations of any example apparatus the trained machine
learning model comprises a feed-forward network. In some
example implementations of any example apparatus the
trained machine learning model is a RNN. In some example
implementations of the method of any example implemen-
tations the trained machine learning model is a CNN.
[0137] In some example implementations of any example
apparatus the trained machine learning model is trained on
training examples from one of the group consisting of: a
healthy population, a population with heart disease and the
user.

[0138] In some example implementations of any example
apparatus the predicted health-indicator data is a point
prediction of the user’s health-indicator the next time step,
and wherein the loss is the absolute value of the difference
between the predicted health-indicator data and the mea-
sured health-indicator data at the next time step.

[0139] In some example implementations of any example
apparatus the predicted health-indicator data is sampled
from a probability distribution generated from the machine
learning model.

[0140] In some example implementations of any example
apparatus the predicted health-indicator data is sampled
according to a sampling technique selected from the group
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consisting of: a maximum probability; and random sampling
from the probability distribution.

[0141] In some example implementations of any example
apparatus the predicted health-indicator data is a probability
distribution (p), and wherein the loss is determined based on
anegative logarithm of f evaluated with the user’s measured
health-indicator at the next time step.

[0142] In some example implementations of any example
apparatus the processing device is further to define a func-
tion o. ranging from 0 to 1, wherein I, comprises a linear
combination the user’s measured health-indicator data and
the predicted health-indicator data as a function of .
[0143] In some example implementations of any example
apparatus the processing device is further to perform self-
sampling of the probability distribution.

[0144] In some example implementations of any example
apparatus the processing device is further to: average, using
an averaging method, the predicted health-indicator data
sampled from the probability distribution over a period of
time steps, average, using the averaging method, the user’s
measured health-indicator data over the period of time steps,
defining the loss the absolute value of the averaged predicted
health-indicator data and the measured health-indicator data.
[0145] In some example implementations of any example
apparatus the averaging method comprises one or more
methods selected from the group consisting of: calculating
an average, calculating an arithmetic mean, calculating a
median and calculating a mode.

[0146] In some example implementations of any example
apparatus the measured health-indicator data comprises PPG
data from a PPG signal. In some example implementations
of any example apparatus the measured health-indicator data
is heart rate data. In some example implementations of any
example apparatus the heart rate data is collected by resa-
mpling irregularly spaced heart rate data onto a regularly
spaced grid, and the heart rate data is sampled from the
regularly spaced grid. In some example implementations of
any example apparatus the measured health-indicator data is
one or more health-indicator data selected from the group
consisting of: PPG data, heart rate data, pulse oximeter data,
ECG data, and blood pressure data.

[0147] In some example implementations of any example
apparatus the mobile device is selected from the group
consisting of: a smart watch; a fitness band; a computer
tablet; and a laptop computer.

[0148] In some example implementations of any example
apparatus the mobile device further comprises a user high-
fidelity sensor, wherein the notification requests the user to
obtain high-fidelity measurement data, and wherein the
processing device is further to: receive an analysis of the
high-fidelity measurement data; label the user measured
health-indicator data with the analysis to generate labeled
user health-indicator data; and use labeled user health-
indicator data as a training example to train a trained
personalized high-fidelity machine learning model.

[0149] In some example implementations of any example
apparatus the trained machine learning model is stored on
the memory. In some example implementations of any
example apparatus the trained machine learning model is
stored on a remote memory, wherein the remote memory is
separate from the computing device and wherein the mobile
computing device is a wearable computing device. In some
example implementations of any example apparatus the
trained personalized high-fidelity machine learning model is
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stored on the memory. In some example implementations of
any example apparatus the trained personalized high-fidelity
machine learning model is stored on a remote memory,
wherein the remote memory is separate from the computing
device and wherein the mobile computing device is a
wearable computing device.

[0150] In some example implementations of any example
apparatus the processing device is further to predict that the
user is experiencing atrial fibrillation and determine an atrial
fibrillation burden of the user.

[0151] Some example implementations provide a method
of monitoring a user’s cardiac health. The method can
include receiving measured low-fidelity user health-indica-
tor data and other-factor data at a first time, inputting data
comprising the user health-indicator data and other-factor
data at the first time, into a personalized high-fidelity trained
machine learning model, wherein the personalized high-
fidelity trained machine learning model makes a prediction
if the user’s health-indicator data is abnormal, and if the
prediction is abnormal, sending a notification that the user’s
health is abnormal.

[0152] Insome example implementations of the method of
any example implementations the trained personalized high-
fidelity machine learning model is trained on measured
low-fidelity user health-indicator data labeled with an analy-
sis of high-fidelity measurement data.

[0153] Insome example implementations of the method of
any example implementations the analysis of high-fidelity
measurement data is based on user specific high-fidelity
measurement data.

[0154] Insome example implementations of the method of
any example implementations the personalized high-fidelity
machine learning model outputs a probability distribution,
wherein the prediction is sampled from the probability
distribution.

[0155] Insome example implementations of the method of
any example implementations the prediction is sampled
according to a sampling technique selected from the group
consisting of the prediction at a maximum probability and
random sampling the prediction from the probability distri-
bution.

[0156] Insome example implementations of the method of
any example implementations an averaged prediction is
determined by averaging, using an averaging method, the
prediction over a period of time steps, and wherein the
averaged prediction is used to determine if the user’s health-
indicator data is normal or abnormal.

[0157] Insome example implementations of the method of
any example implementations the averaging method com-
prises one or more methods selected from the group con-
sisting of: calculating an average, calculating an arithmetic
mean, calculating a median and calculating a mode.

[0158] Insome example implementations of the method of
any example implementations the personalized high-fidelity
trained machine learning model is stored in a memory of a
user wearable device. In some example implementations of
the method of any example implementations the measured
health-indicator data and other-factor data are time segments
of data over a time period.

[0159] Insome example implementations of the method of
any example implementations the personalized high-fidelity
trained machine learning model is stored in a remote
memory, wherein the remote memory is located remotely
from a user wearable computing device.
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[0160] In some example implementation a health moni-
toring apparatus may include a mobile computing device
comprising a microprocessor, a display, a user heath-indi-
cator data sensor, and a memory having instructions stored
thereon that, when executed by the microprocessor, cause
the processing device to: receive measured low-fidelity
health-indicator data and other-factor data at a first time,
wherein measured health-indicator data is obtained by the
user health-indicator data sensor, input data comprising the
health-indicator data and other-factor data at the first time,
into a trained high-fidelity machine learning model, wherein
the trained high-fidelity machine learning model makes a
prediction if the user’s health-indicator data is normal or
abnormal; and in response to the prediction being abnormal,
send a notification to at least the user that the user’s health
is abnormal.

[0161] In some example implementations of health moni-
toring apparatus of any example implementation the trained
high-fidelity machine learning model is a trained high-
fidelity generative neural network. In some example imple-
mentations of health monitoring apparatus of any example
implementation wherein the trained high-fidelity machine
learning model is a trained recurrent neural network (RNN).
In some example implementations of health monitoring
apparatus of any example implementation the trained high-
fidelity machine learning model is a trained feed-forward
neural network. In some example implementations of health
monitoring apparatus of any example implementation the
trained high-fidelity machine learning model is a CNN.
[0162] In some example implementations of health moni-
toring apparatus of any example implementation the trained
high-fidelity machine learning model is trained on measured
user health-indicator data labeled with based on user specific
high-fidelity measurement data.

[0163] In some example implementations of health moni-
toring apparatus of any example implementation the trained
high-fidelity machine learning model is trained on low-
fidelity health-indicator data labeled based on high-fidelity
measurement data, wherein the low-fidelity health-indicator
data and the high-fidelity measurement data is from a
population of subjects.

[0164] In some example implementations of health moni-
toring apparatus of any example implementation the high-
fidelity machine learning model outputs a probability dis-
tribution, wherein the prediction is sampled from the
probability distribution.

[0165] In some example implementations of health moni-
toring apparatus of any example implementation the predic-
tion is sampled according to a sampling technique selected
from the group consisting of: the prediction at a maximum
probability; and random sampling the prediction from the
probability distribution.

[0166] In some example implementations of health moni-
toring apparatus of any example implementation an aver-
aged prediction is determined by averaging, using an aver-
aging method, the prediction over a period of time steps, and
wherein the averaged prediction is used to determine if the
user’s health-indicator data is normal or abnormal.

[0167] In some example implementations of health moni-
toring apparatus of any example implementation the mea-
sured health-indicator data and other-factor data are time
segments of data over a time period.

[0168] In some example implementations of health moni-
toring apparatus of any example implementation the aver-
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aging method comprises one or more methods selected from
the group consisting of: calculating an average, calculating
an arithmetic mean, calculating a median and calculating a
mode.

[0169] In some example implementations of health moni-
toring apparatus of any example implementation the per-
sonalized high-fidelity trained machine learning model is
stored in the memory. In some example implementations of
health monitoring apparatus of any example implementation
the personalized high-fidelity trained machine learning
model is stored in a remote memory, wherein the remote
memory is located remotely from the wearable computing
device. In some example implementations of health moni-
toring apparatus of any example implementation the mobile
device is selected from the group consisting of: a smart
watch; a fitness band; a computer tablet, and a laptop
computer.

What is claimed is:

1. An apparatus, comprising:

a processing device;

a low-fidelity heath-indicator data sensor operatively

coupled to the processing device;

a high-fidelity health-indicator data sensor operatively

coupled to the processing device; and

a memory having instructions stored thereon that, when

executed by the processing device, cause the process-

ing device to:

receive measured low-fidelity health-indicator data at a
first time, wherein the measured low-fidelity health-
indicator data is obtained by the low-fidelity health-
indicator data sensor;

input a set of data comprising the measured low-fidelity
health-indicator data into a trained high-fidelity
machine learning model, wherein the trained high-
fidelity machine learning model is to generate a
prediction whether a health of a user is outside a
normal range, based on a low-fidelity health-indica-
tor threshold;

in response to a determination that the prediction is
outside the normal range: receive measured high-
fidelity health-indicator data obtained by the high-
fidelity health-indicator data sensor; and

in response to a determination that the measured high-
fidelity health-indicator data is inside the normal
range: modify the low-fidelity health-indicator
threshold to decrease a notification sensitivity.

2. The apparatus of claim 1, wherein the low-fidelity
health-indicator threshold corresponds to a first sensitivity
threshold, and wherein to modify the low-fidelity health-
indicator threshold the processing device is to modify the
first sensitivity threshold to a second sensitivity threshold.

3. The apparatus of claim 2, the processing device further
to: modify the second sensitivity threshold to the first
sensitivity threshold in response to an expiration of a time
interval.

4. The apparatus of claim 2, wherein to determine that the
prediction is outside the normal range, the processing device
is to: determine that a probability that the prediction is
outside the normal range is above the first sensitivity thresh-
old for a first time threshold.

5. The apparatus of claim 4, wherein the low-fidelity
health-indicator threshold corresponds to the first time
threshold, and wherein to modify the low-fidelity health-
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indicator threshold the processing device is to modify the
first time threshold to a second time threshold.

6. The apparatus of claim 1, wherein the high-fidelity
health-indicator data sensor comprises an electrocardiogram
(ECG) sensor.

7. The apparatus of claim 1, wherein the low-fidelity
health-indicator data sensor comprises a photoplethysmog-
raphy (PPG) sensor.

8. The apparatus of claim 1, wherein the apparatus is one
of: a smartwatch, a fitness band, a computer tablet, or a
laptop computer.

9. The apparatus of claim 1, wherein the trained high-
fidelity machine learning model comprises one or more of:
a generative neural network, a recurrent neural network
(RNN), or a feed-forward neural network.

10. The apparatus of claim 1, wherein the set of data
further comprises a record of activity level of the user.

11. A method, comprising:

receiving measured low-fidelity health-indicator data at a

first time, wherein the measured low-fidelity health-
indicator data is obtained by a low-fidelity health-
indicator data sensor;

inputting a set of data comprising the measured low-

fidelity health-indicator data into a trained high-fidelity
machine learning model, wherein the trained high-
fidelity machine learning model is to generate a pre-
diction whether a health of a user is outside a normal
range, based on a low-fidelity health-indicator thresh-
old;

in response to determining that the prediction is outside

the normal range: receiving measured high-fidelity
health-indicator data obtained by a high-fidelity health-
indicator data sensor; and

in response to determining that the measured high-fidelity

health-indicator data is inside the normal range: modi-
fying, by a processing device, the low-fidelity health-
indicator threshold to decrease a notification sensitivity.
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12. The method of claim 11, wherein the low-fidelity
health-indicator threshold corresponds to a first sensitivity
threshold, and wherein to modify the low-fidelity health-
indicator threshold the method further comprises: modifying
the first sensitivity threshold to a second sensitivity thresh-
old.

13. The method of claim 12, further comprising: modi-
fying the second sensitivity threshold to the first sensitivity
threshold in response to an expiration of a time interval.

14. The method of claim 12, wherein to determine that the
prediction is outside the normal range. the method further
comprises: determining that a probability that the prediction
is outside the normal range is above the first sensitivity
threshold for a first time threshold.

15. The method of claim 14, wherein the low-fidelity
health-indicator threshold corresponds to the first time
threshold, and wherein to modify the low-fidelity health-
indicator threshold the method further comprises: modifying
the first time threshold to a second time threshold.

16. The method of claim 11, wherein the high-fidelity
health-indicator data sensor comprises an electrocardiogram
(ECG) sensor.

17. The method of claim 11, wherein the low-fidelity
health-indicator data sensor comprises a photoplethysmog-
raphy (PPG) sensor.

18. The method of claim 11, wherein the processing
device corresponds to one of: a smartwatch, a fitness band,
a computer tablet, or a laptop computer.

19. The method of claim 11, wherein the trained high-
fidelity machine learning model comprises one or more of:
a generative neural network, a recurrent neural network
(RNN), or a feed-forward neural network.

20. The method of claim 11, wherein the set of data further
comprises a record of activity level of the user.
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