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(57) ABSTRACT

Methods and systems for predicting deterioration of a
patient’s condition within a future time interval based on a
time series of values for monitored physiological variables
measured from a patient, and in some instances, providing
advanced notice to clinicians or caregivers when deteriora-
tion is forecasted or modifying treatment for the patient are
provided. In particular, deterioration of a patient’s condition
is based on a Hopf bifurcation model and is predicted using
a ratio of deviations for monitored physiological variables.
A ratio of deviations relates the standard deviation and root
mean square of successive differences for a set of physi-
ological values measured over time. The RoD for one or

Int. Cl. more variables, such as heart rate, respiratory rate, and blood
AG6IB 5/00 (2006.01) pressure, may be used to predict the likelihood of the
A61B 5/0205 (2006.01) patient’s condition deteriorating into an unstable state as
GI6H 50720 (2006.01) what occurs in a Hopf bifurcation.
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#

# Example RoD For Early Warning Signal

#

HEHH NS S SR S R R B B R SR R S SR S R S S R S B R R e g

# Function to detect a change in a 3D system
detect.3d <- function{traj,score = 'rod’, lkbk = NULLK
# traj = 3D trajectory stored as list, with variables named X', '¥', 2, and 't {time}

# choose scoring methed:

# rod => positive if RoD increases

# rod.wvar => positive if both RoD and D {or variancE] increase
# rod.rmssd => positive if both RoD and RMSSD increse

% <~ as.numerio{ unlist{ trajsSx )
y <- as.numeric{ unlist{ trajSy } }
z <- as.numeric{ unlist{ trajsz )}

tt <- as.numeric{ unlist{ trajstt)}

rod.x <- compRod{x, t1, lookback=licbk ) # returns vector of 0s {no change detected}, and is {change detected)
rod.y <- compRod{y, tt, lookback=lkbk )
rod.z <- compRod({z, tt, lookback=lkbk }
rods <~ lfist{rod = rod.xSscore + rod.ySscore + rod.28score,
rodvar =rodxSscorevar  +rod.ySscorevar  +rod.zSscore.var,
rod.rmssd =rod.x$score.rmssd  + rod.ySscore.rmssd  + rod.z8score.rmssd)

positive <- sum{rods{{score]]==3) > 0 # Boolean variable, True if there is a time when all coordinates x,y,z
register a change

return{positive)

}

#44 Calls these functions-——-
compRed <- function{ x, {1, st.ind=4, lookback=NULL }{
# x = vector {time series} of observations
# i1 = times of ohsewations
# st.ind = min.number of cbservations before you can register a positive
# lookback = limit observations to most recent

len <- lengthix}

if{lis.null{loakback}}{
¢1 <- unlist{ lapply { st.ind:len, function{jj rmssd{ x, ind=j, t=tt, lkbk=lookback ]})
¢2 <- unlist{ lapply { st.ind:len, function{j} sd.lkbl{ x, ind=j, t=tt, Ikble=lookback )} )
Jelse{
¢l <- unlist{ lapply { stind:len, function{j) rmssd{ x, ind=j, t=tt, lcbk=NULL}})
¢2 <- unlist{ lapply { st.ind:len, function{j) sd.lkbk{ x, ind=j, t=1t, lcbk=NULL}}}
¥

FIG. 10A.

Continues in FIG. 10B
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Continues FROM FIG. 10A

¢l <- ¢{rep{0,st.ind-1},c1}
£2 <- t{rep{,st.ind-1},¢2}
pos.inds2 <- which{c2 > 0}

£3 < rep{Q,len}

£3[pos.inds2] <- clfpos.inds2}/c2]pos.inds2]
pos.inds3 <- which{c3 > 0}

pos.inds3.l <- pos.nds3 + 1

¢f <- rep{0,len)

cdipos.inds3.1] < floor{c3{pos.inds3.1])/c3lpos.inds3]}
¢ < cdil:den]

4.1 <~ unlistilapply{ca, function{x) min{x,1}}}

54l
b <-cd4.l

¢l.1 < cifi{len-1}]
¢1.2 <- ¢1[2:len]
inds.rmssd <- which{c1.2 < ¢1.1)

€2.1 <- e2[1:{len-1}]
¢2.2 <= ¢2f2:len]
inds.var <- which{c2.2 < ¢2.1}

if{length{inds.var) > 0} ¢Slinds.var+1]<- 8 # reguire both RoD and SD toincrease
if{length{inds.rmssd} > 0} c6linds.rmssed+1] <- 0 # require both RoD and RMSSD to increase

y <- list{rmssd = ¢1, sd = ¢2, rod = ¢3, score = ¢4.1, score.var = ¢5, score.rmssd = ¢6)
returniy}

Continues IN FIG. 10C

FIG. 10B
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Continues FROM FIG, 10B

remssd <- function{xind t=NULLlkbk = NULLY

if{lis.null{lkbk}}{

min.ind <- min{which(t >= t{ind}-lkbk}} # will send error if lkbk = NULL but no 't' specified
}else{

min.ind <- 1

}
# <- ¥[min.ind:indj]
n.obs <- length{x)

if{n.obs > 1}{
ssds <- unlist{ lapply{2:n.obs, function{j} (x{il-x{j-1})*2 )}
ssd <- sumissds)
y <- sqri{ssd/{n.obs-1}}

}elsefy=0}

return{y}

}

sel lichk <- function{x, ind, t=NULLIkbk = NULL ¥
i His.nuli{lichik}}
min.ind <~ min{which{t >= t[ind]-lkbk}} # will send error if tkbk I= NULL but no 't specified
}else{
minind<-1

}

X% <= x{min.ind:ind]

returni{sdix}}

}

FIG. 10C
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EARLY WARNING SYSTEM AND METHOD
FOR PREDICTING PATIENT
DETERIORATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/508,808 titled “EARLY WARN-
ING SYSTEM AND METHOD FOR PREDICTING
PATIENT DETERIORATION,” filed on May 19, 2017,
which is hereby expressly incorporated by reference in its
entirety.

BACKGROUND

[0002] Early intervention and stabilization of a patient’s
deteriorating clinical condition is often critical, especially
for certain populations of patients susceptible to sudden
changes in a condition. For example, clinical deterioration in
pediatric patients often occurs rapidly. Accordingly, clini-
cians proactively monitor pediatric patients for early warn-
ing signs of deterioration. One current practice for such
monitoring is having nurses use the Pediatric Early Warning
System (PEWS) to monitor and score pediatric patients’
conditions based on visual observations of the patient.
However, the current PEWS scoring methods introduce
some variance based on the observing nurse, the nurse’s
experience, the hospital unit, or the patient’s underlying
condition, all of which effects the accuracy of the PEWS
score. Additionally, these current methods utilize visual
observations by a caregiver, which can only be done peri-
odically, and the time in which the current systems often
detects a future critical event in the patient’s condition is
sometimes insufficient to provide effective intervention.

SUMMARY

[0003] Systems, methods and computer-storage media are
provided for a decision support tool for predicting deterio-
ration of a patient based on a time series of monitored
physiological variables measured from a patient and, in
some instances, for providing advanced notice to clinicians
and caregivers when such deterioration is forecasted or
modifying treatment for the patient according to the pre-
dicted likelihood. In particular, an early warning decision
support system is provided for determining a likelihood of
significant or meaningful deterioration in patient conditions,
such as the condition of pediatric patients. Embodiments of
the disclosure described herein may provide a forecasted
risk for future deterioration within a time horizon compris-
ing a future time interval. In one embodiment, the future
time interval is from approximately thirty minutes to twenty
hours into the future and may be dependent on the frequency
of the physiological measurements and/or the particular
patient condition.

[0004] Aspects described herein include the a decision
support tool that forecasts deterioration of a patient’s con-
dition based on a bifurcation model, such as a Hopf bifur-
cation model. Bifurcation in a patient’s system can be
detected before the patient’s condition becomes noticeably
unstable, and measurements may be taken to prevent or
mitigate the effects of significant instability. Deterioration
occurring in a future time interval may be determined by
monitoring certain physiological variables for the patient,
such as heart rate, respiratory rate, and mean arterial pres-

Nov. 22,2018

sure, and using these physiological measurements to gener-
ate an indication or likelihood of future deterioration by the
patient. In particular, the likelihood of future deterioration is
based on a ratio of deviation determined for the physiologi-
cal variables and may be determined based on a standard
deviation and a root mean square of successive differences
using the patient’s monitored physiological measurements.
Based on the determined ratios of deviations for the patient,
a likelihood of the patient’s condition deteriorating within a
future time interval is determined, and a response may be
initiated to provide preventative or therapeutic interventions.
Accordingly, one aim of embodiments of this disclosure is
to improve upon conventional industry practice by deriving
accurate predictive capabilities to provide more effective
treatment and care.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is described in detail below
with reference to the attached drawing figures, wherein:
[0006] FIGS. 1A and 1B depict aspects of an illustrative
operating environment suitable for practicing an embodi-
ment of the disclosure;

[0007] FIG. 2 depicts a flow diagram of a method for
predicting likely deterioration of a patient’s condition during
a future time interval based on ratios of deviations and
suitable for implementation in an early warning decision
support system, in accordance with an embodiment of the
disclosure;

[0008] FIGS.3A-3C each depicta graphical illustration of
a type of transition in a system state;

[0009] FIGS. 4A-4E depict graphical illustrations of an
example bifurcation;

[0010] FIGS. 5A-5D depict graphical illustrations of an
example supercritical Hopf bifurcation in a dynamical sys-
tem;

[0011] FIGS. 6A-6C depict graphical illustrations of an
early warning detection system using ratio of deviations in
accordance with an embodiment of the disclosure;

[0012] FIGS.7A-7B depict various parameters of an early
warning detection system using ratio of deviations in accor-
dance with an embodiment of the disclosure;

[0013] FIGS. 8A-8E depict graphical illustrations of the
performance of an early warning detection system using
ratio of deviations in embodiments reduced to practice;
[0014] FIGS. 9A-9B depict Receiver Operating Charac-
teristic (ROC) curves representing accuracy and discrimi-
nating classificatory capability and the statistical perfor-
mance of embodiments reduced to practice for a normal
system and an excitable system; and

[0015] FIGS. 10A-10C depict an example embodiment of
a computer program routine using ratio of deviations as an
early warning signal for predicting deterioration of a
patient’s condition within a future time interval, in accor-
dance with an embodiment of the disclosure.

DETAILED DESCRIPTION

[0016] The subject matter of the present invention is
described with specificity herein to meet statutory require-
ments. However, the description itself is not intended to
limit the scope of this patent. Rather, the inventors have
contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or com-
binations of steps similar to the ones described in this
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document, in conjunction with other present or future tech-
nologies. Moreover, although the terms “step” and/or
“block” may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.

[0017] As one skilled in the art will appreciate, embodi-
ments of our invention may be embodied as, among other
things: a method, system, or set of instructions embodied on
one or more computer readable media. Accordingly, the
embodiments may take the form of a hardware embodiment,
a software embodiment, or an embodiment combining soft-
ware and hardware. In one embodiment, the invention takes
the form of a computer-program product that includes com-
puter-usable instructions embodied on one or more com-
puter readable media, as discussed further with respect to
FIGS. 1A-1B.

[0018] Accordingly, at a high level, this disclosure
describes, among other things, methods and systems for
providing an early warning that a patient’s condition is
likely to deteriorate at a future time. In some embodiments,
the methods and systems may be implemented as a decision
support computer application or tool and may be part of a
more comprehensive healthcare decision support application
for monitoring patients and providing decision support to
caregivers. Such decision support technology plays an
important part of modern medicine. Embodiments described
herein predict the occurrence of a future event indicating
probable patient deterioration based on a time series of
values for monitored physiological variables for a patient.
Some embodiments of the decision support tool further
provide advanced notice to clinicians or other caregivers
when such an event is forecasted and, in some embodiments,
recommend or automatically carry out modifications of a
treatment for the patient according to the predicted likeli-
hood.

[0019] In particular, embodiments include acquiring mea-
surements for physiological variables for a patient. The
measurements may be taken over a period of time and used
to construct a time series for each monitored variable for the
patient. Using the time series, a plurality of ratio of devia-
tions (RoDs) may be formed for each variable. Specifically,
an RoD may relate a standard deviation and a root mean
square of successive differences (RMSSD) using the
patient’s measurements. The RoDs formed for the patient
may then be used to determine a likelihood of the patient’s
condition deteriorating within a future time interval. In
exemplary aspects, this determined likelihood is based on a
Hopf bifurcation model. The RoDs for the physiological
variables are used to detect a bifurcation before the patient’s
condition has become noticeably unstable. In some aspects,
an increase in the RoD for a physiological variable corre-
sponds to an increased likelihood of the patient deteriorat-
ing. Each variable may be assigned a score based on whether
the RoD is increasing, and an aggregated score for all
monitored variables may be compared to a threshold to
determine the risk of the patient’s condition deteriorating
within a future time interval. In exemplary aspects, the
future time interval is between two hours and six hours,
which provides time for a clinical or other caregiver to be
notified of the risk and for intervening treatments to be
effective.
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[0020] Accordingly, one aim of embodiments of this dis-
closure relates to deriving accurate and timely predictions of
a patient’s deterioration through an early warning system.
As previously mentioned, hospitalized pediatric patients are
often at risk for sudden deterioration that can lead to
respiratory and/or cardiac arrest and death. Rapid response
teams have been put in place at many hospitals to respond
to these emergencies. Currently, many hospitals utilize a
pediatric early warning system (PEWS) that quantifies sub-
jective observations of a pediatric patient to monitor the
patient’s condition. Using the traditional PEWS system, a
nurse or other caregiver periodically observes the pediatric
patient and provides a score in different categories (e.g.,
behavior, cardiovascular, and respiratory) based on a scoring
guide. For instance, for one observation, a nurse may
observe the patient is irritable, is pale, and has respiratory
values greater than 20 above the normal parameters. Utiliz-
ing a scoring chart, the nurse may score the patient with a 2
for behavior, a 1 for cardiovascular, and a 2 for respiratory.
Such visual observations and chart-based scoring would
periodically continue until a threshold score is reached.

[0021] This current PEWS, however, has limitations.
Although the scoring chart quantifies the observations, the
scores are often based on subjective characterizations of a
patient (e.g., the patient’s behavior and skin tone). The
scores are, therefore, observer dependent and may vary
based on the observer’s experience. Utilizing subjective
characterizations of a patient’s condition may also result in
even intra-observer variance. Additionally, when there is a
shift change at the healthcare facility, a new observer does
not have the benefit of the previous visible observations.
Bven if the new observer has access to the scores determined
by the previous observer, the new observer may not fully
appreciate the patient’s previous condition based solely on
another’s subjective scoring.

[0022] Further, the current PEWS utilizes only the most
recent data point from an actual visible observation in
assigning a PEWS score. The scoring chart does not take
into account changes in the measured variables even though
change in a patient’s condition may be a powerful indicator
of a potentially rapidly deteriorating situation. Additionally,
because the scoring is based on visual observations, it carnot
be done on a continuous basis or in real time. Rather,
observations are often performed every two to four hours,
while the median time between a critical PEWS score and an
event is only 30 minutes. Observing patients only every two
to four hours increases the risk of a critical event occurring
before the patient is next observed and scored and provides
very little time for an effective preventative or therapeutic
response. At the same time, a more frequent rate for visual
observations is not practical due to limitations in staffing
resources.

[0023] Accordingly, embodiments of the disclosure as
described herein improves upon conventional industry prac-
tice by deriving accurate predictive capabilities to provide
more effective treatment and care. Embodiments predict a
patient’s deterioration within a future interval using elec-
tronically received values for physiological variables, such
as heart rate, respiratory rate, and mean arterial pressure.
Measured values for these variables represent new sources
of information for predicting patient deterioration that are
not used in the conventional PEWS. In this way, embodi-
ments do not rely on visual observations from a caregiver
and, therefore, are not at risk for the inherent subjective
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biases that influences the accuracy of previous systems.
Additionally, utilizing this information by automatically
acquiring measurements for physiological variables does not
require a caregiver to be present with the patient, which
allows for continuous or on-going monitoring in real time
and, consequently, earlier detection of a deterioration risk.
Further, although the physiological variables used, such as
heart rate, respiratory rate, and mean arterial pressure, are
non-conventional sources of information in a pediatric early
warning system, these variables may already be monitored
and recorded for other purposes, thus eliminating or reduc-
ing the need for additional testing to determine the patient’s
likelihood of deterioration.

[0024] Further, the physiological variables that are used
for predicting deterioration in embodiments of the disclosure
are not only unconventional in an early warning system for
pediatric patients, but values of those variables are used in
an unconventional way to predict deterioration. In aspects
herein, for instance, a ratio of deviations is formed for each
physiological variable based on the Hopf bifurcation model,
and a change in the ratio of deviations for each variable over
time is used to forecast deterioration. Because RoD and
Hopf bifurcation model do not require patient measurements
to be acquired on a regular or periodic basis or at a high
frequency, embodiments directed to the application of RoD
and Hopf bifurcation model in the pediatric early warning
system are more robust. Additionally, as described further
herein, application of changes in RoD for physiological
variables in the disclosed decision support tools provides a
more accurate forecast for deterioration of the patient’s
condition within a future time to allow for effective inter-
ventions. Further, initiating response actions, such as alerts,
recommendations to modify treatments, or scheduling
resources, based on an RoD-based prediction of deteriora-
tion is also not conventional or well-known and may be
performed with more advanced warning compared to tradi-
tional PEWS. These features improving the decision support
tools for pediatric early warning systems are each uncon-
ventional and not well-known and are further unconven-
tional in combination with one another.

[0025] Referring now to the drawings in general and, more
specifically, referring to FIG. 1A, an aspect of an operating
environment 100 is provided suitable for practicing an
embodiment of this disclosure. Certain items in block-
diagram form are shown more for being able to reference
something consistent with the nature of a patent than to
imply that a certain component is or is not part of a certain
device. Similarly, although some items are depicted in the
singular form, plural items are contemplated as well (e.g.,
what is shown as one data store might really be multiple
data-stores distributed across multiple locations). But show-
ing every variation of each item might obscure aspects of the
invention. Thus, for readability, items are shown and refer-
enced in the singular (while fully contemplating, where
applicable, the plural).

[0026] As shown in FIG. 1A, example operating environ-
ment 100 provides an aspect of a computerized system for
compiling and/or running an embodiment of a computer-
decision support tool for predicting likelihood of deteriora-
tion of a patient at a future time based on RoD. Environment
100 includes one or more electronic health record (EHR)
systems, such as hospital EHR system 160, communica-
tively coupled to network 175, which is communicatively
coupled to computer system 120. In some embodiments,
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components of environment 100 that are shown as distinct
components may be embodied as part of or within other
components of environment 100. For example, EHR sys-
tems 160 may comprise one or more EHR systems, such as
hospital EHR systems, health information exchange EHR
systems, ambulatory clinic EHR systems, and/or pediatric
EHR systems. Such EHR systems may be implemented in
computer system 120. Similarly, EHR system 160 may
perform functions for two or more of the EHR systems (not
shown).

[0027] Network 175 may comprise the Internet and/or one
or more public networks, private networks, other commu-
nications networks such as a cellular network, or similar
networks for facilitating communication among devices
connected through the network. In some embodiments,
network 175 may be determined based on factors such as the
source and destination of the information communicated
over network 175, the path between the source and desti-
nation, or the nature of the information. For example,
intra-organization or internal communication may use a
private network or virtual private network (VPN). More-
over, in some embodiments, items shown as being commu-
nicatively coupled to network 175 may be directly commu-
nicatively coupled to other items shown communicatively
coupled to network 175.

[0028] In some embodiments, operating environment 100
may include a firewall (not shown) between a first compo-
nent and network 175. In such embodiments, the firewall
may reside on a second component located between the first
component and network 175, such as on a server (not
shown), or reside on another component within network
175, or may reside on or as part of the first component.
[0029] Embodiments of EHR system 160 include one or
more data stores of health records, which may be stored on
storage 121, and may further include one or more computers
or servers that facilitate storing and retrieving health records.
In some embodiments, EHR system 160 may be imple-
mented as a cloud-based platform or may be distributed
across multiple physical locations. EHR system 160 may
further include record systems that store real-time or near
real-time patient (or user) information, such as wearable,
bedside, or in-home patient monitors, for example. Although
FIG. 1A depicts an exemplary EHR system 160, it is
contemplated that an embodiment relies on decision support
application 140 and/or monitor 141 for storing and retriev-
ing patient record information, such as information acquired
from monitor 141.

[0030] Example operating environment 100 further
includes a provider user/clinician interface 142 communi-
catively coupled through network 175 to EHR system 160.
Although environment 100 depicts an indirect communica-
tive coupling between user/clinician interface 142 and EHR
system 160 through network 175, it is contemplated that an
embodiment of user/clinician interface 142 is communica-
tively coupled to EHR system 160 directly. An embodiment
of user/clinician interface 142 takes the form of a user
interface operated by a software application or set of appli-
cations on a client computing device, such as a personal
computer, laptop, smartphone, or tablet computing device.
In an embodiment, the application includes the Power-
Chart® software manufactured by Cerner Corporation. In an
embodiment, the application is a Web-based application or
applet. A healthcare provider application may facilitate
accessing and receiving information from a user or health-
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care provider about a specific patient or set of patients for
which the likelihood(s) of deterioration of the patient or set
of patients at a future time are determined according to the
embodiments presented herein. Embodiments of user/clini-
cian interface 142 also facilitate accessing and receiving
information from a user or healthcare provider about a
specific patient or population of patients including patient
history; healthcare resource data; physiological variables
(e.g., vital signs), measurements, time series, and predictions
(including plotting or displaying the determined outcome
and/or issuing an alert) described herein; or other health-
related information, and facilitates the display of results,
recommendations, or orders, for example. In an embodi-
ment, user/clinician interface 142 also facilitates receiving
orders for the patient from the clinician/user based on the
results of monitoring and predictions. User/clinician inter-
face 142 may also be used for providing diagnostic services
or evaluation of the performance of various embodiments.

[0031] An embodiment of decision support application
140 comprises a software application or set of applications
(which may include programs, routines, functions, or com-
puter-performed services) residing on a client computing
device, on one or more servers in the cloud, or distributed in
the cloud and on a client computing device such as a
personal computer, laptop, smartphone, tablet, mobile com-
puting device, front-end terminals in communication with
back-end computing systems, or other computing device(s)
such as computing system 120 described below. In an
embodiment, decision support application 140 includes a
Web-based application or set of applications usable to man-
age user services provided by an embodiment of the inven-
tion. For example, in an embodiment, decision support
application 140 facilitates processing, interpreting, access-
ing, storing, retrieving, and communicating information
acquired from monitor 141, EHR system 160, or storage
121, including predictions and condition evaluations deter-
mined by embodiments of the invention as described herein.
In an embodiment, decision support application 140 sends a
notification (such as an alarm or other indication) directly to
user/clinician interface 142 through network 175. In an
embodiment, decision support application 140 sends a main-
tenance indication to user/clinician interface 142. In one
embodiment of decision support application 140, an inter-
face component may be used to facilitate access by a user
(including a clinician/caregiver or patient) to functions or
information on monitor 141, such as operational settings or
parameters, user identification, user data stored on monitor
141, and diagnostic services or firmware updates for monitor
141, for example.

[0032] As shown in example environment 100, in one
embodiment, decision support application 140 is communi-
catively coupled to monitor 141 via network 175. In an
embodiment, patient monitor 141 communicates directly (or
via network 175) to computer system 120 and/or user/
clinician interface 142.

[0033] In an embodiment, monitor 141 (sometimes
referred to herein as an patient-interface component) com-
prises one or more sensor components operable to acquire
clinical or physiological information about a patient, such as
various types of physiological measurements, physiological
variables, or similar clinical information associated with a
particular physical or mental state of the patient. Such
clinical or physiological information may be acquired by
monitor 141 periodically, continuously, as needed, or as they
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become available, and may be represented as one or more
time series of measured variables. In one embodiment,
monitor 141 comprises sensors for obtaining (and, in some
instances, pre-processing or interpreting) and recording vital
signs, which may be obtained continuously, periodically, or
at irregular intervals. For example, in an embodiment,
monitor 141 comprises a patient monitoring system for
acquiring commonly available vital signs (physiological
variables) such as respiratory rate, heart rate, and mean
arterial pressure (blood pressure). In some embodiments,
monitor 141 comprises patient bedside monitor, such moni-
tors used in hospitals. In an embodiment, one or more sensor
components of monitor 141 may comprise a user-wearable
sensor component or sensor component integrated into the
patient’s environment. Examples of sensor components of
monitor 141 include a sensor positioned on an appendage
(on or near the user’s head, attached to the user’s clothing,
worn around the user’s head, neck, leg, arm, wrist, ankle,
finger, etc.); skin-patch sensor; ingestible or sub-dermal
sensor; sensor component(s) integrated into the user’s living
environment (including the bed, pillow, or bathroom); and
sensors operable with or through a smartphone carried by
the user, for example. It is also contemplated that the clinical
or physiological information about the patient, such as the
monitored variables and/or clinical narratives regarding the
patient, used according to the embodiment of the invention
disclosed herein may be received from a patient’s historical
data in EHR system 160, or from human measurements,
human observations, or automatically determined by sensors
in proximity to the patient. For example, in one embodiment,
a nurse periodically measures a patients” blood pressure and
enters the measurement and/or observations via decision
support application 140 or interface 142. In another
example, a nurse or caregiver enters one or more progress
notes for a patient via decision support application 140 or
user/clinician interface 142. Similarly, values for vital sign
variables may be entered via decision support application
140 or vser/clinician interface 142.

[0034] Examples of physiological variables monitored by
monitor 141 can include vital sign variables, such as heart
rate (bradycardia and tachycardia), blood pressure (hypoten-
sion and hypertension), and respiratory rate, as described
herein. Additionally, in some embodiments, physiological
variables monitored by monitor 141 may include, by way of
example and not limitation, central venous pressure, other
vital signs or any type of measureable, determinable, or
observable physiological or clinical variable or characteris-
tic associated with a patient, which in some embodiments
may be used for forecasting a future value (of the measured
variable, a composite variable based on one or more mea-
sured variables, or other factor determined at least in part
from one or more measured variables) of a patient to
facilitate clinical decision making In an embodiment, moni-
tor 141 comprises a sensor probe, such as an EEG probe, and
a communication link that periodically transmits identifica-
tion information and probe data to decision support appli-
cation 140 so that the time series of monitored values is
stored on decision support application 140, enabling patient
decision support application 140 to form a raw binary alarm
indication and/or a physiological variable decision statistic.
In an embodiment, patient monitor 141 collects raw sensor
information and performs signal processing, forming a
physiological variable decision statistic, cumulative sum-
ming, trending, wavelet processing, thresholding, computa-
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tional processing of decision statistics, logical processing of
decision statistics, pre-processing or signal condition, etc.,
part or all of which may be performed on monitor 141,
decision support application 140, user/clinician interface
142, and/or computer system 120.

[0035] An embodiment of monitor 141 stores user-derived
data locally or communicates data over network 175 to be
stored remotely. In an embodiment, decision support appli-
cation 140 is wirelessly communicatively coupled to moni-
tor 141. Decision support application 140 may also be
embodied as a software application or app operating on a
user’s mobile device. In an embodiment, decision support
application 140 and monitor 141 are functional components
of the same device, such as a device comprising a sensor and
a user interface. In an embodiment, decision support appli-
cation 140 is embodied as a base station, which may also
include functionality for charging monitor 141 or download-
ing information from monitor 141.

[0036] Example operating environment 100 further
includes computer system 120, which may take the form of
a server, which is communicatively coupled through net-
work 175 to EHR system 160, and storage 121.

[0037] Computer system 120 comprises one or more pro-
cessors operable to receive instructions and process them
accordingly and may be embodied as a single computing
device or multiple computing devices communicatively
coupled to each other. In one embodiment, processing
actions performed by computer system 120 are distributed
among multiple locations such as one or more local clients
and one or more remote servers and may be distributed
across the other components of example operating environ-
ment 100. For example, a portion of computer system 120
may be embodied on monitor 141 or decision support
application 140 for performing signal conditioning of the
measured patient variable(s). In one embodiment, computer
system 120 comprises one or more computing devices, such
as a server, desktop computer, laptop, or tablet; cloud-
computing device or distributed computing architecture; a
portable computing device such as a laptop, tablet, ultra-
mobile P.C.; or a mobile phone.

[0038] Embodiments of computer system 120 include
computer software stack 125, which, in some embodiments,
operates in the cloud, as a distributed system on a virtual-
ization layer within computer system 120, and includes
operating system 129. Operating system 129 may be imple-
mented as a platform in the cloud and is capable of hosting
a number of services such as services 122, 124, 126, and
128, described further herein. Some embodiments of oper-
ating system 129 comprise a distributed adaptive agent
operating system. Embodiments of services 122, 124, 126,
and 128 run as a local or distributed stack in the cloud, on
one or more personal computers or servers such as computer
system 120, and/or a computing device running interface
140 and/or patient manager 142. In some embodiments,
user/clinician interface 142 operates in conjunction with
software stack 125.

[0039] In embodiments, model variables indexing service
122 provides services that facilitate retrieving frequent item
sets, extracting database records, and cleaning the values of
variables in records. For example, service 122 may perform
functions for synonymic discovery, indexing or mapping
variables in records, or mapping disparate health systems’
ontologies, such as determining that a particular medication
frequency of a first record system is the same as another
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record system. In some embodiments, model variables
indexing service 122 may invoke computation services 126.
Predictive models service 124 is generally responsible for
providing multi-variable models for predicting near-term
occurrence (early warning) of patient deterioration based on
sparse observations, such as the RoD-based approach
described in connection to method 200 of FIG. 2.

[0040] Computation services 126 perform statistical soft-
ware operations and include statistical calculation packages
suich as, in one embodiment, the R-System (the R-project for
Statistical Computing, which supports R-packages or mod-
ules tailored for specific statistical operations and which is
accessible through the Comprehensive R Archive Network
(CRAN) at http://cran.r-project.org) or similar services. In
an embodiment, computation services 126 and predictive
models service 124 include computer software services or
computer program routines such as the example embodi-
ments of computer program routines illustratively provided
in FIGS. 10A-10C. In one embodiment, computation set-
vices 126 comprises the R-System modules or packages
foreach and doParallel, for parallel processing to speed up
computation of future trajectories and deSolve for solving
differential equations to simulate various trajectories. In an
embodiment, computation services 126 and predictive mod-
els service 124 include the services or routines that may be
embodied as one or more software agents or computer
program routines, such as the example computer program
routines of FIGS. 10A-10C.

[0041] In some embodiments, stack 125 includes file
system or cloud-services 128. Some embodiments of file
system/cloud-services 128 may comprise an Apache
Hadoop and Hbase framework or similar frameworks opet-
able for providing a distributed file system and which, in
some embodiments, provide access to cloud-based services
such as those provided by Cerner Healthe Intent®. Addi-
tionally, some embodiments of file system/cloud-services
128 or stack 125 may comprise one or more stream pro-
cessing services (not shown). For example, such stream
processing services may be embodied using IBM InfoSphere
stream processing platform, Twitter Storm stream process-
ing, Ptolemy or Kepler stream processing software, or
similar complex event processing (CEP) platforms, frame-
works, or services, which may include the use of multiple
such stream processing services (in parallel, serially, or
operating independently). Some embodiments of the inven-
tion also may be used in conjunction with Cerner Millen-
nium®, Cerner CareAware® (including CareAware iBus®),
Cerner CareCompass®, or similar products and services.

[0042] Example operating environment 100 also includes
storage 121 (or data store 121), which, in some embodi-
ments, includes patient data for a candidate or target patient
(or information for multiple patients), including raw and
processed patient data; variables associated with patient
recommendations; recommendation knowledge base; rec-
ommendation rules; recommendations; recommendation
update statistics; an operational data store, which stores
events, frequent itemsets (such as “X often happens with Y”,
for example), and itemsets index information; association
rulebases; agent libraries, solvers and solver libraries, and
other similar information including data and computer-
usable instructions; patient-derived data; and healthcare
provider information, for example. It is contemplated that
the term “data” used herein includes any information that
can be stored in a computer-storage device or system, such
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as user-derived data, computer usable instructions, software
applications, or other information. In some embodiments,
storage 121 comprises data store(s) associated with EHR
system 160. Further, although depicted as a single storage
store, storage 121 may comprise one or more data stores, or
may be in the cloud.

[0043] Turning briefly to FIG. 1B, there is shown one
example embodiment of computing system 180 representa-
tive of a system architecture that is suitable for computer
systems such as computer system 120. Computing device
180 includes a bus 196 that directly or indirectly couples the
following devices: memory 182, one or more processors
184, one or more presentation components 186, input/output
(/O) ports 188, input/output components 190, radio 194,
and an illustrative power supply 192. Bus 196 represents
what may be one or more busses (such as an address bus,
data bus, or combination thereof). Although the various
blocks of FIG. 1B are shown with lines for the sake of
clarity, in reality, delineating various components is not so
clear, and metaphorically, the lines would more accurately
be grey and fuzzy. For example, one may consider a pre-
sentation component, such as a display device, to be an I/O
component. Also, processors have memory. As such, the
diagram of FIG. 1B is merely illustrative of an exemplary
computing system that can be used in connection with one
or more embodiments of the present invention. Distinction
is not made between such categories as “workstation,”
“server,” “laptop,” “hand-held device,” etc., as all are con-
templated within the scope of FIG. 1B and reference to
“computing system.”

[0044] Computing system 180 typically includes a variety
of computer-readable media. Computer-readable media can
be any available media that can be accessed by computing
system 180 and includes both volatile and nonvolatile
media, and removable and non-removable media. By way of
example, and not limitation, computer-readable media may
comprise computer storage media and communication
media. Computer storage media includes both volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer-readable instructions, data struc-
tures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM,
EEPROM,; flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk
storage, magpetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing system 180.
Computer storage media does not comprise signals per se.
Communication media typically embodies computer-read-
able instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer-readable media.
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[0045] Memory 182 includes computer-storage media in
the form of volatile and/or nonvolatile memory. The
memory may be removable, non-removable, or a combina-
tion thereof. Exemplary hardware devices include solid-state
memory, hard drives, optical-disc drives, etc. Computing
system 180 includes one or more processors that read data
from various entities such as memory 182 or I/O compo-
nents 190. Presentation component(s) 186 present data indi-
cations to a user or other device. Exemplary presentation
components include a display device, speaker, printing com-
ponent, vibrating component, etc.

[0046] In some embodiments, computing system 194
comprises radio(s) 194 that facilitates communication with
a wireless-telecommunications network. Illustrative wire-
less telecommunications technologies include CDMA,
GPRS, TDMA, GSM, and the like. Radio 194 may addi-
tionally or alternatively facilitate other types of wireless
communications including Wi-Fi, WiMAX, LTE, or other
VoIP communications. As can be appreciated, in various
embodiments, radio 194 can be configured to support mul-
tiple technologies and/or multiple radios can be utilized to
support multiple technologies.

[0047] 1/O ports 188 allow computing system 180 to be
logically coupled to other devices, including 1/O compo-
nents 190, some of which may be built in. Illustrative
components include a microphone, joystick, game pad,
satellite dish, scanner, printer, wireless device, etc. The /O
components 190 may provide a natural user interface (NUT)
that processes air gestures, voice, or other physiological
inputs generated by a user. In some instances, inputs may be
transmitted to an appropriate network element for further
processing. An NUI may implement any combination of
speech recognition, stylus recognition, facial recognition,
biometric recognition, gesture recognition both on screen
and adjacent to the screen, air gestures, head and eye
tracking, and touch recognition (as described in more detail
below) associated with a display of the computing system
180. The computing system 180 may be equipped with depth
cameras, such as stereoscopic camera systems, infrared
camera systems, RGB camera systems, touchscreen tech-
nology, and combinations of these, for gesture detection and
recognition. Additionally, the computing system 180 may be
equipped with accelerometers or gyroscopes that enable
detection of motion.

[0048] The architecture depicted in FIG. 1B is provided as
one example of any number of suitable computer architec-
tures, such as computing architectures that support local,
distributed, or cloud-based software platforms, and are suit-
able for supporting computer system 120.

[0049] Returning to FIG. 14, in some embodiments, com-
puter system 120 is a computing system made up of one or
more computing devices. In some embodiments, computer
system 120 includes one or more software agents and, in an
embodiment, includes an adaptive multi-agent operating
system, but it will be appreciated that computer system 120
may also take the form of an adaptive single agent system or
a non-agent system. Computer system 120 may be a dis-
tributed computing system, a data processing system, a
centralized computing system, a single computer such as a
desktop or laptop computer, or a networked computing
system.

[0050] Turning now to FIG. 2, one example embodiment
of a method for predicting deterioration of a patient’s
condition for a future time interval is provided and is
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referred to generally as method 200. In particular, example
method 200 utilizes ratios of deviations for determining the
probability of a future event, such as a bifurcation indicating
deterioration. In some embodiments, method 200 is suitable
for implementation as a computer-performed decision sup-
port tool or application for providing early waming of
patient deterioration and, thus, increasing the odds of patient
survival by enabling caregivers to intervene sooner than
conventional technology would otherwise allow. In some
embodiments, aspects of method 200 may be carried out
using the example computer program routine depicted in
FIGS. 10A-10C.

[0051] With reference to FIG. 2 and method 200, gener-
ally, the method 200 of predicting deterioration of a patient’s
condition for a future time interval utilizes ratio of devia-
tions to detect a bifurcation event. Bifurcation represents a
change in a system. FIGS. 3A-3C illustrate some basic types
of transitions within a system as a condition within the
system changes. FIG. 3A depicts a transition with a gradual,
continuous slope such that the system experiences gradual
changes as the condition changes. FIG. 3B depicts another
system experiencing at least a sudden change represented by
the more pronounced slope. The transitions in FIGS. 3A and
3B are reversible such that as the condition reverts back to
a previous state, the system may also revert to a previous
state. F1G. 3C, however, represents a sudden and irreversible
transition. In mathematics, a sudden and irreversible change
in the state of a system is called a critical transition or a
catastrophic bifurcation. These changes have a tipping point
(i.e., a “point of no return”), which is represented by point
F1 in FIG. 3C.

[0052] A bifurcation is a change in the number or nature
of solutions. FIGS. 4A-4E provide a graphical illustration of
an example bifurcation using the quadratic equation. In this
example, bifurcation occurs when the discriminant changes
sign. For example, in FIG. 4A, the discriminant equals four
and, consequently, there are two real solutions. In FIG. 4B,
the discriminant equals one, and there are still two real
solutions. In FIG. 4C, the discriminant equals zero, and there
is only one real solution. FIG. 4C represents the bifurcation
point because the number of solutions has changed. In FIG.
4D, the discriminant is negative one, and there are no real
solutions. At this point, bifurcation is complete. As the
discriminant continues in the same trend and is negative
four, there are still zero solutions, as shown in FIG. 4E.
[0053] While some bifurcations are catastrophic (irrevers-
ible), other types of bifurcations, such as a supercritical
Hopf bifurcation, are reversible and, thus, do not have an
actual tipping point. A Hopf bifurcation is a critical point
where a system’s stability changes and a periodic solution
arises. Such bifurcations still involve the deterioration of a
stable state, and even though they are not technically irre-
versible, it is often difficult to reverse the system in practice.
Accordingly, in many applications, such as clinical condi-
tions of pediatric patients, it is still desirable to identify the
changes in stability, such as a Hopf bifurcation.

[0054] A Hopf bifurcation occurs when the change in
stability of an equilibrium coincides with either the emer-
gence or disappearance of a periodic orbit. A subcritical
Hopf bifurcation occurs where the periodic orbit exists
before the bifurcation point and includes three stages: (1) a
strongly stable equilibrium coexisting with an unstable
periodic orbit; (2) weakly unstable equilibrium; and (3)
strongly unstable equilibrium. A supercritical Hopf bifurca-
tion, on the other hand, occurs where the periodic orbit exists
after the bifurcation point and comprises the following
stages: (1) strongly stable equilibrium point; (2) weakly
stable equilibrium point; and (3) unstable equilibrium point
with stable periodic orbit. Although aspects described herein
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may apply to a subcritical bifurcation, a supercritical bifur-
cation is depicted in FIGS. 5A-5D. As shown in FIGS.
5A-5D, when lambda is less than 0, there is a stable
equilibrium state. At 0, there is a weakly stable equilibrium
point, which is the bifurcation point 510. As lambda is
greater than 0, there is an unstable equilibrium, represented
by the dashed line, and a stable periodic orbit 516 around the
unstable equilibrium point. The periodic orbit 516 is some-
times referred to herein as spiraling out. The maximum and
minimum x values of the periodic orbit 516 are indicated as
the amplitude of stable periodic orbit curves in FIG. 5A.
[0055] Inthe context of a patient’s physiological state, the
level of stress on a patient’s body may be determined over
time using one or more physiological variables, such as
respiratory rate, heart rate, and blood pressure. Such level
may determine the equilibrium state, and how sick a patient
is may determine the equilibrium state and whether or not
such a state is stable. At times, the patient may be able to
compensate for certain stresses. As the patient’s condition
deteriorates, however, there may reach a point, such as
bifurcation point 510, in which the patient can not compen-
sate normally and the patient’s vitals (the physiological
variables) may spiral out of control, which may lead to
critical conditions such as cardiac arrest.

[0056] In dynamic Hopf bifurcation, there is a hysteresis
effect in that the trajectory may remain near the newly
unstable equilibrium for some time before the periodic orbit
occurs. The hysteresis effect 512 is the period of “stable”
instability between the bifurcation point 510 and a point 514
at which the periodic orbit begins (also referred to herein as
the deterioration point). During the time of the hysteresis
effect 512, there may be small oscillations, but these small
oscillations are less detrimental and easier to reverse than
the larger oscillations within the periodic orbit 516. Because
of the hysteresis effect, there may be time to prevent the
periodic orbits 516 even if the bifurcation point 510 is not
detected until after it has occurs. Reversing the bifurcation
after it nears the periodic orbit, however, may still require a
significant change in the parameters, such as a patient’s
physiological variables.

[0057] To detect a Hopf bifurcation and predict a likeli-
hood of the patient’s condition deteriorating within a future
time interval, a ratio of deviations (RoD) is determined for
a plurality of measured physiological variables. RoD may be
defined as a root mean square of successive differences
(RMSSD) divided by the standard deviation. For instance,
Let X, be a univariate time series where k=1, , 0, ..

. The RoD relates the RMSSD, v, and the standard deVlatlon
g, as provided in the equations below:
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where u=E[X]. RoD is defined as

[0058] An increase in RoD may indicate a change in the
nature of oscillations such that RoD predicts passage
through a Hopf bifurcation, including passage though the
bifurcation point 510 and the deterioration point 514. As
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used in embodiments wherein, the change in oscillations
indicates a patient’s condition is deteriorating. RoD may be
used instead of autocorrelation to detect bifurcation. Auto-
correlation is a measure of how similar values in a times
series are to values that proceed them. For instance, high
autocorrelation means high values are likely to be followed
by more high values where low autocorrelation means high
values are likely to be followed by low values, for example.
Autocorrelation has been used as an early warning signal for
catastrophic bifurcations in contexts outside the pediatric
warning system. However, in addition to other deficiencies
described herein, autocorrelation can only detect the change
in oscillations when the periodicity or lag is known, which
is unlikely in the context of monitoring pediatric patients.

[0059] In accordance with some aspects herein, If X, isa
weakly stationary process, which is one that requires

lim 0'2(tn) < oo

such that the time series is convergent, then

lim RoDA(z,) = 2(1 — px(1)), 4)

where p,(1) is the lag-1 autocorrelation of X,.

[0060] To prove this proposition, consider that both stan-
dard deviation and RMSSD are independent of the mean, so
it may be assumed that E[X]=0 without the loss of gener-
ality. Since X, is weakly stationary, the following is true:
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[0061] Accordingly, it cannot be concluded that for suffi-
ciently long time series, the following exists:

RoD*=2(2(1-2px(1)) (&)
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An AR(1) coeflicient and RoD may be computed for any
finite time series; however, the result may rely on o2
(eventually) being time-independent.

[0062] By examining a ratio of two distinct measures of
dispersion, RoD may detect a change in the nature of
deviations in a time series. Specifically, RoD detects a
change in the variable X, at time t, when RoD(t,)>RoD(,,_,).
Only a single increase in RoD is required to detect the
change in contrast with the standard practice for other early
warning signals, such as autocorrelation, which requires an
increasing trend. Accordingly, RoD, which detects a change
in the nature of jumps in a time series, is better for detection
with low-frequency observations (with long periods of time
between observations) than autocorrelation and provides a
clear application for higher dimensions, such as with mul-
tiple variables. Another benefit of RoD over autocorrelation
is that it may be used with non-uniform observation rates in
which there is a large variation in the time between obser-
vations, whereas autocorrelation requires a known lag and
performs better with uniform periods. RoD may be also used
with high-frequency observations by sampling techniques.

[0063] In some embodiments, RoD may be paired with a
tandem value to increase the accuracy of detected bifurca-
tions. In exemplary aspects, the tandem value is the standard
deviation; however, it is contemplated that other values,
such as RMSSD, may also be used. The tandem metric used
may depend on the application, a priori knowledge of the
underlying system, or properties of the observations (espe-
cially on short time series). In other embodiments, to reduce
the number of false positives, a restriction on the range of
values a given physiological variable can take is set, and a
value not meeting those restrictions is required before a
critical point is detected.

[0064] For a univariate time series X, the underlying
model may be assumed to be of the form:

X, =a, X 48, (6)

A change in a, will affect the stability of the system, possibly
causing an increase in RoD depending on the magnitude and
direction of the change. Alternatively, RoD could detect a
change due to a rare event where §, takes a value far from
its mean.

[0065] Because deterioration detection may be triggered
due to a random event rather than deterioration of a stable
state, in some aspects, RoD is applied to multivariate
systems. Consider the multivariate linear system:

Kg=ai) X @ 08, ¥
where,
[0066] X (OD=(X,(D),..., X (O)ER? &®)=(¢ @), ..
-, & ,(0)ER?, and A(t)=(a,(1)).
[0067] By calculating the RoD for each variable X(1)
individually, we are able to detect changes in particular
subsystems. If a change is detected in only one variable, it
may be attributable to a noise term. However, if a change is
detected in all variables (or all variables of a subsystem), it
is likely indicative of a structural change in the system.
Furthermore, in embodiments in which RoD is used on short
time series with long times between observations, the effects
of noise may be expected to subside before the next obser-
vation if the system were stable. Accordingly, in some
aspects herein, a patient’s measurements for multiple physi-
ological variables, such as respiratory rate, heart rate, and
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mean arterial pressure, are measured and used to determine
an RoD, rather than rely on a single variable.

[0068] Note that the changes are detected by observing an
increase in the RoD of each univariate time series. An
increase in the RoD may roughly correspond with a decrease
in autocorrelation. If the underlying system loses stability
due to decreasing autocorrelation, the trajectory would be
expected to develop oscillations of increasing amplitude.
Thus, RoD is an appropriate mechanism for detecting Hopf
bifurcations.

[0069] In light of the foregoing and turning back to
method 200 of FIG. 2, an embodiment for utilizing RoD as
an early warning signal for predicting a patient’s deteriora-
tion at a future time interval is provided. First, at step 210,
a plurality of measurements of physiological variables for a
patient is received. The plurality of measurements may have
been acquired for the patient period of time. In exemplary
aspects, the physiological variables include respiratory rate,
heart rate, and mean arterial pressure (blood pressure).
Using all three variables together increases the accuracy of
this early warning method because it reduces the risk of false
positives. If one or even two of these variables are at
sub-optimal levels, it is not necessarily a signal of bifurca-
tion occurring. For instance, if a patient is having difficulty
breathing, the respiratory rate may be outside of the normal
range, and the patient’s heart rate may also be abnormal due
to the patient’s heart may working to compensate for the
respiratory problems. These issues may not necessarily be
sufficiently serious to indicate a critical deterioration of the
patient’s condition. However, when considering all three of
respiratory rate, heart rate, and blood pressure, the detected
changes using the RoD are more likely to be indicative of
bifurcation (i.e., deterioration to an instable state). These
example variables are not intended to be limiting as it is
contemplated that other physiological variables may be
used. Additionally, in some embodiments, there may be
more than three physiological variables monitored.

[0070] The measurements for the physiological variables
may be received from the patient’s EHR, such as a medical
EHR within EHR system 160 in FIG. 1, or other data
storage, or may be received directly from a monitoring
device, such as patient monitor 141. In some aspects, the
physiological variables are being monitored independently
of the early-warning signal system. In other words, rather
than require additional testing or acquisition of additional
data to perform method 200, method 200 may leverage data
that is often already being recorded in the normal course of
monitoring and treating a patient, such as heart rate, respi-
ratory rate, and blood pressure, to detect deterioration of the
patient within a future time interval. Embodiments of step
210 may acquire the vital signs measurements continuously,
periodically, or at non-regular intervals. In some embodi-
ments, the date/time information for each measurement is
stored with the measured variable values.

[0071] Next, as step 220, a time series from the plurality
of measurements is constructed for each physiological vari-
able measured. The time series may be constructed by
appending the most recent physiological variable measure-
ments to the historical measurements, using the associated
date/time information. In some embodiments, the historical
measurements comprise measurements obtained within a
recent timeframe such as the previous several hours, last six
hours, the previous day, or the previous week. In such
embodiments, only historical measurements from within this
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recent timeframe are retrieved and used for the constructing
time series. In some aspects, the time series is evaluated to
determine whether it is of sufficient length. In one embodi-
ment, where the time series is determined to be greater than
a pre-determined length, method 200 proceeds to step 230.
But if the time series is not long enough, then method 200
returns to step 210 where additional measurements may be
acquired. In one embodiment, the pre-determined length
comprises six samples.

[0072] At step 230, a plurality of standard deviations for
each physiological variable is determined based on the
constructed time series. Standard deviation may be calcu-
lated using equation (2) provided above. Similarly, a plu-
rality of root mean square of successive differences
(RMSSDs) for each physiological variable is determined at
step 240. The RMSSDs may be calculated in accordance
with equation (1) provided above. Then, at step 250, the
RoD for each physiological variable is formed using equa-
tion (3) provided above. Specifically, the RoD is found by
dividing the RMSSD with the respective standard deviation.
Accordingly, in embodiments in which the physiological
variables comprise heart rate, respiratory rate, and blood
pressure, an RoD for blood pressure is formed by dividing
the RMSSD for blood pressure measurements over the
standard deviation for the blood pressure measurements; an
RoD for heart rate is formed by dividing the RMSSD for
heart rate measurements over the standard deviation for the
heart rate measurements; and an RoD for respiratory rate is
formed by dividing the RMSSD for respiratory rate mea-
surements over the standard deviation for the respiratory rate
measurements.

[0073] In aspects, the RoD for each variable is determined
multiple times throughout the time series. Accordingly, there
may be an RoD determined at t=10 and an RoD for the same
variable at t=20. Based on these RoDs, the variable will be
given an RoD score, which indicates a change in the RoD for
that variable. In some aspects, the RoD score is either “0” or
“17, with a score of “1” being given when the RoD for a
variable has increased when compared to the RoD of an
earlier time. Accordingly, each physiological variable may
be assigned an RoD score that is either a “0” or a “1”.
[0074] Once the RoD score is assigned for each physi-
ological variable, at step 260, a likelihood of deterioration in
the patient’s condition within a future time interval is
determined. In some embodiments, the future time interval
is within a range of thirty minutes to twenty hours. For
example, the RoD scores may be used to predict a patient has
a likelihood of deteriorating within eight hours. The future
time interval may comprise other time intervals in other
embodiments.

[0075] In some aspects, determining the likelihood com-
prises aggregating the RoDs scores for each variable and
comparing the aggregate RoD score to a threshold. The
threshold may be pre-determined or may be context depen-
dent. In some aspects, a pre-determined threshold is based
on the number of physiological variables measured for the
patient. For instance, in embodiments in which an RoD is
calculated for respiratory rate, heart rate, and blood pressure,
there may be a pre-determined threshold of 3. As such, a
high likelihood of deterioration in the future is determined
when all three variables have an RoD score of 1, such that
the RoDs for each variable are increasing. In other embodi-
ments, more physiological variables are measured, and in
such embodiments, the pre-determined threshold may be
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greater. Additionally, in some embodiments, the pre-deter-
mined threshold is not equal to the number of variables, but
rather, the variables are used as a guide to determine the
pre-determined threshold.

[0076] In some aspects, a tandem metric is also used in
determining a likelihood of deterioration. In exemplary
embodiments, the tandem metric is RMSSD. The RMSSD
value may be used as a tandem metric to confirm the RoD
scores, or, in an exemplary aspect, a change in RMSSD is
used. For instance, an RoD score of “1” may be assigned to
a physiological variable only when there is an increase in
both the RoD and the RMSSD for that variable. This tandem
metric, such as RMSSD, acts as a confirmatory metric to
reduce the risk of false positives and false negatives. It is
also contemplated that other metrics may be used for the
tandem metric, such as standard deviation.

[0077] At step 270, a response action based on the like-
lihood determined at step 260 is initiated. The response
action being initiated may be based on the aggregate RoD
score exceeding the threshold. One such response action
may be a notification that is emitted or otherwise commu-
nication to a caregiver responsible for the patient’s care. For
instance, when the aggregate RoDs for the measured physi-
ological variables satisfies the threshold, indicating a sig-
nificant risk for deterioration exists, a notification of the
determined risk, such as described previously, may be
generated and communicated via a bedside alarm, user/
clinician interface (such as interface 142 described in FIG.
1A), or may be communicated to a smartphone or personal
computing device of a caregiver, thereby alerting them of an
impending deterioration of the patient’s condition. In one
embodiment, the notification comprises an event signal and
includes the likelihood of future deterioration. Additionally,
some embodiments of step 270 may comprise storing the
result of the determination in EHR associated with the
patient and further may include providing the patient’s EHR
(or facilitating access to the EHR) in the notification,
[0078] In addition or alternative to the notification, a set of
one or more actions relating to preventative and/or thera-
peutic responses may be initiated. For example, as described
herein, a recommendation for modifying a care plan or
treatment procedure associated with the patient may be
provided based on the determined likelihood. For example,
a recommendation may comprise increasing patient moni-
toring or level of care, operating on the patient, or admin-
istering a therapeutic intervention, such as a medication or
procedure. The recommendation may be provided in con-
junction with a notification of the likelihood of deteriorating
condition, and/or may be provided via a user/clinician
interface, such as interface 142, described in connection
with FIG. 1A.

[0079] Yet another action that may be initiated based on
the determined likelihood comprises automatically modify-
ing computer code executed in a healthcare software pro-
gram for treating the patient, thereby transforming the
program at runtime. For example, in one embodiment, the
modification comprises modifying (or generating new) com-
puter instructions to be executed at runtime in the program,
the modification may correspond to a change in a care plan,
treatment procedure, or therapeutic intervention to be
administered to the patient due to the determined likelihood
of deterioration. In one instance, the modification comprises
changing the executed computer instructions corresponding
to monitoring the patient’s condition, such as increasing the
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frequency of obtaining physiological measurements of the
patient, or increasing sensitivity of monitoring physiological
changes in a patient.

[0080] A further action that may be initiated based on the
determined likelihood comprises scheduling healthcare
resources for the patient. For example, in one embodiment,
an operating room (OR) resource may be automatically
reserved for the patient, OR staff may be notified and/or
automatically scheduled, and transportation/support staff or
resources for getting the patient to the OR may be called. In
one embodiment, this action comprises modifying or updat-
ing a resource/scheduling electronic record in a resource/
scheduling system, such as operated as part of a hospital
system. In one embodiment, the action comprises, upon a
sufficient determined likelihood of a deterioration, initiating
a computer instruction that modifies the scheduling health-
care resources, which may include computer instructions for
automatically alerting, scheduling, and/or notifying staff,
reserving rooms, transportation, or other equipment/space,
and which may include changing the priority of the patient
(when compared to other patients) for receiving these
resources. In some embodiments, the initiated actions may
be based on the level of risk (i.e., the probability that the
patient’s condition will deteriorate within a future interval),
and/or how impending the event is likely to occur (e.g. how
far into the future time interval, which may provide a sense
of urgency).

[0081] FIGS. 6A-6C depict an example of a time series
600 from which RoD is determined for use as an early
warning signal, and further described below in the example
reduction to practice. Observations 610, also referred to
herein as measurements for a physiological variable, are
being recorded over a time span. At observation 612, the
RoD increases for both variables (x and y), which occurs at
approximately t=45. Vertical line 614 represents the time at
which the system undergoes dynamic Hopf bifurcation,
which is at approximately t=50. Observation 612 represents
a sample time series that randomly occur between four and
eight time units after the previous observations. FIGS. 6B
and 6C provide alternative views of the time series 600 at
different points in time.

[0082] The time series 600 is based on an example of the
Hopf normal form with additive white noise. The equations
of the Hopf normal form are:

dx={MEw-y+ 205 (P42 -x (P42 | dind 17,

dy=[x+ MO+ 21 (P+02) -y (P +y2 ) 1di+nd v, ®)

Additionally, n=0.25. The system was simulated from t=0 to
=100 using time steps of 0.05, and A(t) was ramped linearly
from -1 at t=0 to 1 at t=100, so the system underwent a
dynamic Hopf bifurcation at (t, A)=(50, 0). The time series
for both x and y were sampled at times t,, where t,=0 and
t=t+unif(4, 8) to generate sample time series (x,, y,). The x,
are depicted by triangles representing observations 610 and
612, for example, in FIGS. 6A-6C. Let X,={xo, X,, . . ., X,}
and define Y, similarly, and the RoD was computed for X,
and Y,, for each n. A change in the variable x was detected
if both RoD(X , | )>RoD(X ) and o(X,,, )>o(X ,) (and simi-
larly for y). Time series 600 in FIG. 6A is the time series for
variable x, but a similar one may be constructed in graphical
form for variable y.

[0083] The RoD detection system described herein may
operate in accordance with various tuning parameters, such
as those illustrated in FIGS. 7A-7B. These tuning param-
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eters may determine the frequency with which measure-
ments are taken and the amount of measurements used for
computation of each standard deviation and RMSSD. For
example, as shown in FIG. 7A, one parameter may include
a mean sample time, which refers to the mean time between
observations. For instance, window 712 is the time in which
an observation is being sampled from, and there is a mean
sample time shown by vertical line 724 such that the next
possible observation may occur after the end of the window
712. In some aspects, the mean sample time is approxi-
mately from two to eight hours.

[0084] Another tuning parameter may be window length.
As referred to herein, window length indicates the period in
the past in which observations are used for determining the
RoD. Looking at FIG. 7B, if the current observation is
observation 722 at t=45, window 714 shows the window
length (or look back period) of 25 time units. With a window
length of 25, there are four observations (716, 718, 720, and
722) that are used to compute the RoD at t=45. The RoD at
t=55 would be determined back on a different set of four
observations (718, 720, 722, and 724).

[0085] These tuning parameters—mean sample time and
window length—may be pre-determined or set by a user as
part of method 200 for detecting deterioration in a patient.
These parameters may also be set to an optimal level based
on other factors, such as the time units and the observation
frequency. In some aspects, the optimal parameters are
determined in a training process based on looking at the
ROC curves, such as those provided in FIGS. 9A-9B, for
time series based on different conditions. Observing systems
in training may be useful to determine window length,
noise-to-signal ratio, and mean sampling time.

EXAMPLE REDUCTION TO PRACTICE

[0086] With reference to FIGS. 8A-8E, 9A-9B, and 10A-
10B and continuing reference to method 200 of FIG. 2,
examples are provided of an embodiment of the disclosure
constructively reduced to practice. Here, a computer system,
such as computer system 120 running the operating system
129, was utilized with the open-source statistical software
package R, and the ‘deSolve’ package in R. In this example
embodiment, the performance of RoD as an early warning
signal was tested on two different parameterizations of the
Van der Pol system.

[0087] In certain parameter regimes, the Van der Pol
system is an excitable system such that a small perturbation
(in a particular direction) can lead to a big oscillation.
Excitability is related to a separation of time scales and a
phenomenon known as canard explosion. As used herein,
canard explosion refers to a Hopf bifurcation in which the
amplitude of the periodic orbits grows exponentially in
terms of distance in parameter space from the bifurcation.

[0088] The variant of the Van der Pol system examined in
the reduction to practice is provided below:

Laro ©
dx=-(3x-x" = y)dt + cdW,

a
dy = [x - A(D)]dt + odW,

dz = (x = 2)dt + cdW,
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where a is a time scale parameter that affects the growth rate
of the amplitude of periodic orbits. System (9) with a=10 is
referred to herein as ‘normal’ because the amplitudes grow
as expected according to a normal Hopf bifurcation. System
(9) with a=1 is referred to herein as ‘excitable’ or ‘with
canard explosion’ because the amplitudes grow much faster
than normal.

[0089] In the reduction to practice, 200 simulations of
each parameterization were run for each of five prescribed
noise intensities (0=0, 0.01, 0.05, 0.1, 0.25). In half of the
runs, A was increased to pass through a Hopf bifurcation,
and the other half of the simulations were control runs where
A was held constant (i.e., Mt)=A). The initial value A(0)
=h;=1.2 was chosen so that the system had an attracting
equilibrium point, and the equilibrium point was used as the
initial condition for the model. Each simulation ran for 2000
dimensionless time units with steps of 0.05 units. For the
simulations in which A was increased, dA/dt was chosen so
that A(1000)=h.~1 (i.e., A passed through the critical value
exactly half-way through the simulation).

[0090] For high-frequency observations, RoD was not
computed on the whole trajectory. Instead, the trajectories
were observed iteratively at random times, so that t,, =t +AT
where t,=0, AT=unif(a, p), and f>c>0. For each system,
experiments varying (ct, f§) were run, generating 100 time
series from each trajectory for each of the values in Table 1
below. Additionally, the window length over which obser-
vations were used to calculate the RoD was varied, and
windows of 250, 500, 750, and 1000 time units were used.

TABLE 1

Values used for experiments generating
observations at random times.

Experiment a p Mean Sampling Time = (o + p)/2
1 20 40 30
2 25 50 375
3 25 75 50
4 50 100 75
[0091] One goal was to detect bifurcations before they

occur at t=1000, the window of 1000 time units representing
an experiment using the entire trajectory. FIGS. 8A-8E
illustrate the results of these experiments for each param-
eterization, noise intensities (sigma), window length, and
observation rate when using RoD with RMSSD.

[0092] FIG. 8A depicts the rates of true positives on
sampled time series in an excitable system, and FIG. 8B
depicts the rates of false positives on the sampled time series
in the excitable system. FIG. 8C depicts the rates of true
positives on sample time series in a normal system, and FIG.
8D depicts the rates of false positives on the sampled time
series in the normal system. Additionally, FIG. 8E illustrates
the time to detection (as measured by the normalized first
positive time) when using sparse observations. In this
example reduced to practice, time to detection was approxi-
mately thirty minutes to twenty hours prior to the critical
point, and the median time to detection was eight hours. As
shown in these figures, noise may play a role in the perfor-
mance of the detection system. The false positive rate may
be affected by the presence of noise, but not the magnitude.
Additionally, stronger noise may improve the true positive
rate before bifurcation occurs.
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[0093] The previously described reduction to practice
dealt with low-frequency data (i.e., sparse observations).
Embodiments have also been reduced with high-frequency
data using the same trajectories as those simulated with
low-frequency data. Even with high-frequency data, the data
was sampled and RoD computed on random samples instead
of using all of the observations in a given window. The same
random samples of observations were used as with low-
frequency simulations, but the samples utilized them differ-
ently. Previously, each sample of observations were treated
as if it were the only data available to generate a binary
prediction as to whether or not the system would undergo a
Hopf bifurcation. With the high-frequency simulations, it
was known that 100 predictions for each trajectory were
generated, and they were used to determine a probability that
the system would undergo a bifurcation.

[0094] Because a probability for each trajectory was being
determined, performance could be measured using area
under the curve (AUC) where ‘the curve’ refers to the
receiver operating characteristic (ROC) curve. The ROC
curve depicts the performance of a binary classifier as the
threshold used to separate positive predictions from negative
ones is varied. It was observed that a probability of 0.5 was
not required to determine which trajectories were expected
to undergo bifurcation. Accordingly, false positives from
individual samples were no longer a concern, but rather, the
concern was on trajectories as a whole, allowing RoD to be
used alone as a test statistic (i.e., without RMSSD or SD as
a tandem metric). It was found that RoD performed well as
a classifier when using a window length of 500 (half of the
full trajectory before bifurcation) with (a, p)=(25, 75),
vielding an average of 10 observations in each RoD calcu-
lation. FIGS. 9A and 9B depict the ROC curve for a normal
system and an excitable system with (c, f)=(25, 75) and a
window length of 500. The AUCs with these parameters
were 0.937 for the normal system and 0.98 for the excitable
system.

[0095] In general, RoD performed well as a classifier in
each of the experiments with between 8 and 14 observations
expected to fall in each window. A window length of 500
with an average of 10 observations per window provided the
best results, but the second-best performance also came with
an average of 10 observations per window (and a window
length of 750). Table 2 below lists the AUC for each of the
experiments in which the expected number of observations
per window was in the interval.

TABLE 2

Values used for experiments generating observations at random times.

a AUC a p Window a AUC

1 0867 25 50 500 10 0830

1 0980 25 75 500 10 0937

1 0876 30 100 750 10 ool

1 0840 30 100 1000 10 0800
[0096] Many different arrangements of the various com-

ponents depicted, as well as components not shown, are
possible without departing from the spirit and scope of the
present invention. Embodiments of the technology disclosed
herein, for example, may be used for advance detection or
early warning in systems having multiple variables that
affect a dynamical system. For instance, RoD may be used
to forecast events relating to bifurcation in dynamical sys-
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tems, such as climate prediction, weather forecasting,
chemical reaction networks, competition and population
dynamics (e.g., predatory-prey systems), neural excitation,
power grids (or similar electrical systems), seismology (or
similar mechanical systems), and reaction-diffusion sys-
tems. Embodiments of the present invention have been
described with the intent to be illustrative rather than restric-
tive. Alternative embodiments will become apparent to those
skilled in the art that do not depart from its scope. A skilled
artisan may develop alternative means of implementing the
aforementioned improvements without departing from the
scope of the present invention.
[0097] It will be understood that certain features and
subcombinations are of utility and may be employed without
reference to other features and subcombinations and are
contemplated within the scope of the claims. Not all steps
listed in the various figures need be carried out in the specific
order described. Accordingly, the scope of the invention is
intended to be limited only by the following claims.
What is claimed is:
1. One or more computer storage media having computer-
executable instructions embodied thereon that when
executed, provide a decision support system for anticipating
deterioration in a patient, the method comprising:
electronically receiving a plurality of measurements of
physiological variables for a patient, the plurality of
measurements being acquired over a time span;

constructing a time series from the plurality of measure-
ments for each physiological variable measured,;

determining a plurality of standard deviations for each
physiological variable based on the time series;

determining a plurality of root mean square of successive
differences (RMSSD) for each physiological variable
based on the time series;
forming a plurality of ratios of deviations (RoDs) for each
set of standard deviations and RMSSD for each physi-
ological variable using the standard deviations and the
RMSSDs;

determining a likelihood of deterioration in the patient’s
condition within a future time interval based on the
ratio of deviations for each physiological variable; and

automatically initiating a response action based on the
likelihood of deterioration.

2. The media of claim 1, wherein the physiological
variables comprise respiratory rate, heart rate, and blood
pressure.

3. The media of claim 1, wherein determining a likelihood
of deterioration in the patient’s condition comprises:

assigning an RoD score for each variable based at least on

whether RoD has increased;

aggregating the RoD scores for each physiological vari-

able; and

comparing the aggregate RoD to a threshold score.

4. The media of claim 3, wherein assigning an RoD score
for each variable is further based on a tandem metric.

5. The media of claim 4, wherein the tandem metric is a
change in RMSSD.

6. The media of claim 1, wherein the future time interval
is within a range of thirty minutes to twenty hours.

7. The media of claim 1, wherein a set of measurements
used to determine the standard deviation and the RMSSD is
based on a window length, the window length being an
amount of time units prior to a current measurement.
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8. The media of claim 1, wherein each RoD is formed
from a standard deviation determined from a set of mea-
surements and an RMSSD determined from the set of
measurements.

9. The media of claim 1, wherein the likelihood of
deterioration in the patient’s condition within a future time
interval is based on a Hopf bifurcation model.

10. The media of claim 1, wherein the response action
comprises one or more of: automatically generating and
communicating an electronic notification to a caregiver of
the patient; generating and providing a recommendation for
modifying a care plan or treatment procedure associated
with the patient; modifying computer code executed in a
healthcare software program for treating the patient; or
scheduling healthcare resources for the patient.

11. The media of claim 10, wherein the modified com-
puter code executed in a healthcare software program com-
prises a software healthcare agent associated with a plan of
care for the patient.

12. The media of claim 10, wherein the notification
includes information indicating the determined likelihood of
deterioration in the patient’s condition within a future time
interval.

13. A system for forecasting deterioration of a patient
within a future time interval, the system comprising:

one more processors;

computer storage media with computer-usable instruc-

tions that, when executed by the one or more proces-

sors, implement a method comprising:

electronically receiving a plurality of measurements of
physiological variables for a patient, the plurality of
measurements being acquired over a time span;

constructing a time series from the plurality of mea-
surements for each physiological variable measured,

determining a plurality of standard deviations for each
physiological variable based on the time series;

determining a plurality of root mean square successive
of differences (RMSSD) for each physiological vari-
able based on the time series;

forming a plurality of ratios of deviations (RoDs) for
each set of standard deviations and RMSSDs for
each physiological variable using the standard devia-
tion and the RMSSDs;

determining a likelihood of deterioration in the
patient’s condition within a future time interval
based on the ratio of deviations for each physiologi-
cal variable; and

automatically initiating a response action based on the
likelihood of deterioration.

14. The system of claim 13, wherein the physiological
variables comprise respiratory rate, heart rate, and blood
pressure.
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15. The system of claim 13, wherein determining a
likelihood of deterioration in the patient’s condition com-
prises:

assigning an RoD score for each variable based on at least

whether RoD has increased;

aggregating the RoD scores for each physiological vari-

able;
and comparing the aggregate RoD to a threshold score.
16. The system of claim 13, wherein the system further
comprises one or more sensors configured to automatically
acquire the physiological data from the patient.
17. The system of claim 13, wherein the system further
comprises a data store configured for storing and logging
indications of forecasted deterioration events for the patient.
18. The system of claim 13, wherein a rate at which the
measurements of the physiological variables are acquired
from the patient is a non-uniform rate.
19. The system of claim 13, wherein the response action
comprises one or more of: automatically generating and
communicating an electronic notification to a healthcare
provider responsible for the care of the patient; generating
and providing a recommendation for modifying a care plan
or treatment procedure associated with the patient; modify-
ing computer code executed in a healthcare software pro-
gram for treating the patient; or scheduling healthcare
resources for the patient.
20. A computerized method implementing a decision-
support instrument for forecasting deterioration of a pedi-
atric patient’s condition, the method comprising:
electronically receiving a plurality of measurements of
physiological variables for a patient, the plurality of
measurements being acquired over a time span;
constructing a time series from the plurality of measure-
ments for each physiological variable measured,;
for each physiological variable, forming a first ratio of
deviations (RoD) based on a first standard deviation
and a first root mean square of successive differences
for the physiological variable using the time series;

for each physiological variable, forming a second RoD
based on a second standard deviation and a second root
mean square of successive differences for the physi-
ological variable using the time series;
assigning an RoD score to each physiological value based
on at least the first RoD and the second RoD;

determining a likelihood of deterioration in the patient’s
condition within a future time interval based on an
aggregate RoD score; and

automatically initiating a response action based on the

likelihood of deterioration.
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