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METHOD OF CHARACTERIZING
SPECTROMETER INSTRUMENTS AND
PROVIDING CALIBRATION MODELS TO
COMPENSATE FOR INSTRUMENT
VARIATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a Continuation-in-part of U.S. patent
application Ser. No. 09/359,191; filed on Jul. 22, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to variation in spectrometer instru-
ments. More particularly the invention relates to character-
izing spectrometer instruments by classifying their spectral
responses into a limited number of clusters and developing
calibration transfer models between clusters that compen-
sate for instrument variations.

2. Description of the Prior Art

Many of the analytical applications for spectrometers
require calibration data sets that are time-consuming and
expensive to create. Typically, these calibrations are highly
specific. For example, apparently identical instruments pro-
duced by the same manufacturer may exhibit minor instru-
ment variations; such variations may be seen when one
instrument is built with a component that varies slightly
from the same component in another instrument. In addition,
a calibration set for an instrument produced by one manu-
facturer is generally not suitable for a similar instrument
produced by another manufacturer. Furthermore, repairs to a
single instrument can cause the instrument’s spectral
response to vary. As an instrument ages, it’s spectral
response may change. An instrument’s speciral response
may vary according to fluctuations in the operating envi-
ronment. In applications requiring analysis of very low
concentration analytes, non-invasive blood glucose
prediction, for example, even minor instrument variation can
introduce an unacceptable degree of error into the analysis.
Providing another calibration model that takes the instru-
ment’s current spectral response into account can compen-
sate for instrument variation. However, development of new
calibration models is time-consuming, labor-intensive and
costly.

In the development of spectroscopy-based analyzers for
biomedical applications, there is a need for production of
thousands to as many as millions of analyzers for a specific
application. No methodology exists for providing calibra-
tions for large numbers of instruments quickly and inexpen-
sively.

Therefore, efforts have been directed at transferring cali-
brations from one analyzer to another. See, for example, E.
Bouveresse, C. Hartmann,. D. Massart, I. Last, K. Prebble,
Standardization of near-infrared spectrometric instruments,
Anal. Chem., vol. 68, pp. 982-990 (1996) and M. Defemez,
R. Wilson, Infrared spectroscopy: instrumental factors
affecting the long-term validity of chemometric models,
Anal. Chem., vol. 69, pp. 1288-1294 (1997), and E.
Bouveresse, D. Massart, P. Dardenne, Calibralion transfer
across near-infrared spectrometric instruments using
Shenk’s algorithm: effects of different standardization
samples, Analytica Chimica Acta, vol. 297, pp. 405-416,
(1994) and Y. Wang, D. Veltkamp, B. Kowalski, Multivari-
ate instrument calibration, Anal. Chem., vol. 63, pp.
2750-2756 (1991).
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Most of the reported methods of calibration transfer have
been applied in situations involving high-concentration
analytes, wherein the signal-to-noise ratio is high. Because
these currently known methods act as a smoothing function
when transferring calibrations, they degrade the signal to
noise that can be observed, thus hindering analysis of low
concentration analytes. Additional problems of changes in
resolution or bandwith across time or between instruments
have not been addressed.

Furthermore, the currently known methods have only
been successfully applied in situations involving a small
number of instruments. The reported methods are not
capable of modeling the complexity encountered when large
numbers of instruments are involved.

A need exists for the calibration of large numbers of
analyzers. It would be desirable to provide a means of
reducing the complexity inherent in the transfer of calibra-
tions to large numbers of analyzers. It would also be
advantageous to provide a means of transferring calibrations
without significant degradation of the signal-to-noise ratio,
rendering calibration transfer practical in analysis of low
concentration analytes.

SUMMARY OF THE INVENTION

The invention provides a method of characterizing large
numbers of spectrometer instruments by classifying their
spectra into a limited number of previously defined clusters
according to similarity of spectral features and performance
characteristics. The method may also be used to track
variation over time within a single instrument. The spectral
features used for classification may be related to known
instrument parameters, or they may be abstract features
derived using a variety of computational methods. The
clusters are defined in advance based on an exemplar data
set, using either supervised or unsupervised methods. Cali-
bration models for each cluster compensate for instrument
varlation, either across instruments or across time within a
single instrument.

In a preferred embodiment of the invention, calibration
models are provided using a method of calibration transfer
wherein the clusters are mapped to each other, so that a
calibration transferred from one cluster to another need only
model the difference between the two clusters. In an alter-
nate embodiment, a different calibration is separately cal-
culated for each cluster. In either embodiment, the number
of calibration transfers is significantly reduced since each
cluster represents a multitude of instruments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a block schematic diagram of a method
of characterizing spectrometer instruments by clustering
according to spectral features, according to the invention;

FIG. 2 provides a flow diagram of a method of generating
calibration models by transferring a master calibration to
slave calibration models, according to the invention;

FIGS. 3A and 3B illustrate decreases in spectral cutoff
related to decreases in detector temperature in a spectrom-
eter instrument; and

FIG. 4 illustrates changes in light throughput related to
changes in source temperature in a spectrometer instrument.

DETAILED DESCRIPTION

The invention provides a method of characterizing spec-
trometer instruments by classifying spectral responses from
a large number of spectrometers (analyzers) into a limited
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number of previously defined clusters. The clusters consti-
tute groups that are defined based on the similarity of
specific features.

Grouping of instruments according to spectral features
and performance characteristics reduces the spectral varia-
tion between instruments in a given group. Therefore, spec-
tral measurements corresponding to an individual cluster are
more homogeneous than those from the entire group of
analyzers. Calibrations created for each cluster may then be
utilized for subsequent analysis. The calibration created for
a cluster will have instrument variations included in the
model that mirror variations resulting from the particular
analyzer employed for the subsequent analysis. Calibration
models specific to the clusters are expected to be less
complex and have an improved level of accuracy. Therefore,
multivariate analysis will require fewer factors to model
instrument variation resulting in earlier factors modeling the
sample and earlier factors modeling small absorbing ana-
lytes. The net result is that fewer factors are required for
sample analysis and a more robust algorithm is created.

In one embodiment of the invention, a separate calibration
data set is required for every cluster, requiring a large
number of samples in a calibration set for every cluster. In
the preferred embodiment, sufficient samples for a calibra-
tion model are only required in a single cluster. Principal
features defining that cluster and other clusters are
determined, and the clusters are mapped to each other,
revealing the specific differences from one cluster to another.
Subsequently, the calibration from the initial cluster is
transferred to another cluster based upon the specific differ-
ences between clusters.

The parent application to the current application, S. Malin
and T. Ruchti, An intelligent system for noninvasive blood
analyte prediction, U.S. patent application Ser. No. 09/359,
191 (Jul. 22, 1999), provides a detailed description of a
method of classifying spectral measurements into previously
defined clusters through similarities observed in absorbance
spectra. The classification system of the sampled tissue
volume of the subjects is herein expanded to include clas-
sification of instrumentation variations.

Referring now to FIG. 1, a general method of classifying
spectral measurements into previously defined clusters is
represented. Briefly the steps of the method are:

1. Measurement. (11)

2. Classification (12), in which the measured spectrum is
assigned membership in any one of a number of
predefined clusters 13.

3. Calibration (14), in which calibration models suited to
each cluster are provided.

4. Identifying outliers (15)

Measurement

In general, instrumental variations may affect spectral
response by producing either signal intensity changes, band-
width changes, wavelength changes, or combinations
thereof. These instrumental variations may include:

1. wavelength shifts,

. nonlinear wavelength shifts;

. wavelength expansions;

. wavelength contractions;

. nonlinear wavelength expansions;
. source intensity drifts;

. blackbody profile changes;

. bandwidth changes;

. resolution changes;

ReRo BN B e SN i Y

20

25

35

40

45

50

55

60

65

10. baseline deviations;
11. change with time;
12. temperature effects;
13. detector response;

14. differences in optical components (e.g. long-pass

filters or fiber optics);

15. variation related to mounting of references;

16. differences in the optical interface to the sample (fiber

spacing);

17. linearity;

18. detector cut-off;
and many others, which will be apparent to those skilled in
the art. Spectra used for classification will typically be those
of commonly known standards. Standards particularly use-
ful for classifying shifts observed in the wavelength axis
include polystyrene, rare earth oxides: holmium oxide,
erbium oxide or dysprosium oxide, for example; or combi-
nations thereof. Standards such as the diffuse reflectance
standards supplied by Labsphere, Inc. (North Sutton N.H.)
may be used to classify shifts in the intensity axis. Spectra
of samples may also be used for classification. Additional
intensity and wavelength standards will be known to those
skilled in the art.

In the specific case of near-IR noninvasive glucose deter-
mination these standards cover the near-IR spectral region.
Additional spectroscopy and chromatography-spectroscopy
hyphenated techniques such as AA (atomic absorption
spectroscopy) or GC-MS (gas chromatography mass
spectroscopy) will each require their own standards which
are known by those skilled in the art. Additionally, spectra
of tissue phantoms collected on an instrument may also be
used to characterize that instrument. Tissue phantoms are
helpful in characterizing an instrument because spectra of
these phantoms simulate noninvasive spectra of living tis-
sue. There are tissue phantoms that simulate the absorption
coefficients of various skin tissues; while others simulate the
scattering coefficients of the body. Some common simulants
include:

1. milk and milk products

2. milk products in combination with India ink, used to
adjust the absorption coefficient;

3. emulsions of fatty substances in water maintained in
solution with an emulsifier such as lecithin. One such
commercial product is INTRALIPID, supplied by
Kabivitrum AB (Stockholm, Sweden);

4. Intra-serum and Intra-gel. See K. Hazen, J. Welch, S.
Malin, T. Ruchti, A Lorenz, T. Troy, S. Thenadil, T.
Blank, Intra-serum and intra-gel for modeling human
skin tissue, U.S. patent application Ser. No. 09/502,877
(Feb. 10, 2000).

Other scattering and absorbing mediums are known to
those skilled in the art. Concentrations of these tissue
simulants may be adjusted to match the scattering and
absorption coefficients of body tissues such as skin or
internal organs.

It will also be apparent that a set of exemplar measure-
ments is required for cluster definition and development of
calibration models, in addition to the actual spectral mea-
surements utilized for classification.

Classification

New spectral measurements are passed to a pattern clas-
sification system that classifies the measurements into pre-
viously defined clusters having a high degree of internal
constistency through spectral features related to instrumen-
tal variation.
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The classification itself includes the following steps:

1. Feature extraction; and

2. Classification of features according to a classification

model.
Feature Extraction

The process of feature extraction is more fully described
in the parent application to the current application, U.S.
patent application Ser. No. 09/359,191, supra. Feature
extraction is any mathematical transformation that enhances
a particular aspect or quality of the data that is useful for
interpretation. Features may be of two categories:

1. Abstract, and

2. Simple.

Instruments may be classified by abstract features, mean-
ing that they may be classified using computational meth-
ods. These methods may be supervised or unsupervised.
Examples include plotting primary principal components
versus one another and identifying clusters of results; dis-
criminant analysis, such as measurement of the Mahalanobis
distance, and k-means clustering. Additional methods will
be readily apparent to those skilled in the art.

It is important to note that the clustering techniques listed
above are not mutually exclusive. Clustering of raw spectra
into one or more groups may be achieved through one or
more of these methods and with combinations of these
approaches.

Simple features are derived from an a priori understand-
ing of the system, and can be related directly to an instru-
ment parameter or component (or parameters or
components). For example, the measured bandwith, noise
characteristics, or linearity and detector cutoffs.

Cluster Definition

As indicated above, clusters must have been previously
defined, using a data set of exemplar spectral measurements.
Cluster definition is the assignment of the measurements in
the exploratory data set to clusters. After cluster definition,
the measurements and class assignments are used to deter-
mine the mapping from the features to cluster assignment.

cluster definition is performed using either supervised or
unsupervised methods. In the supervised case, clusters may
be defined using specific knowledge of the system. For
example, source intensity and detector temperatures have
specific effects on the spectra, as demonstrated further
below. The use of a priori information in this manner is the
first step in supervised pattern recognition, which develops
classification models when the class assignment is known.

Attentively, clusters may be defined in an unsupervised
manner using abstract features such as clustering within
plots of principal component scores ‘x’ versus spectral
loading ‘y’. The result is that within a given cluster, all of the
spectra have the same characteristics (interferences, instru-
ment variations or sample issues). Clusters formed from
features with physical meaning can be interpreted based on
the known underlying phenomenon causing variation in the
feature space.

Classification

Subsequent to class definition, a classifier is designed
through supervised pattern recognition. A model is created,
based on cluster definitions, that transforms a measured set
of features to an estimated classification. The classification
model is a method for determining a set of similarity
measures with the predefined clusters. A decision rule
assigns membership on the basis of a set of measures
calculated by a decision engine.

Calibration

Once the spectra have been classified into clusters, cali-

bration models 14 are required for each cluster. Provision of
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6

the clusters is by one of two methods. In the preferred
embodiment, a master calibration is developed for a first
cluster, subsequently the master calibration is transferred to
slave calibrations, one for each remaining cluster. An alter-
nate embodiment, described further below, individually cal-
culates calibrations for each cluster.

In the case of spectra collected utilizing a master and slave
instrument, the term “calibration transfer,” as commonly
used in the art, may have different meanings. Calibration
transfer may refer to transforming the slave spectral to look
like the master spectra or vice versa. Additionally, spectra
from both the master and the slave can be transferred to a
common standard spectrum not present in the master or
slave data sets. Furthermore, calibration transfer can refer to
preprocessing steps, multivariate adjustments of the sample
spectra, or adjustments to the predicted analyte concentra-
tions based upon standards.

Referring now to FIG. 2, the process of calibration
transfer is shown. Calibrations 14 are required for each of n
clusters. A master calibration 21 is calculated for a first
cluster; then, to provide calibrations for each of the remain-
ing n clusters, the master calibration is transferred to slave
calibrations. In this case, Calibration transfer refers to the
process of transforming spectra on a slave instrument to
match the characteristics of the master such that the master
calibration can be applied to the slave spectra. For clusters,
calibration transfer refers to the process of transforming
spectra on a slave instrument to match the characteristics of
the master such that a new calibration is generated that
satisfies the specification of a cluster other than the one for
which the master cluster was developed. The clusters may
also be organized into groups of clusters, so that the master
calibration is transferred to slave calibrations 23, which in
turn are transferred to the slave calibration for the various
clusters within each group.

Prior art methods of calibration transfer have been unsuc-
cessful at modeling the complexity involved in providing
calibration models for large numbers of instruments. Clas-
sifying the spectral measurements in to clusters having a
high degree of internal consistency reduces the complexity
of the problem to a level that makes it possible to apply
calibration transfer to large numbers of instruments. Clus-
tering the acquired spectra into a limited number of sub-
groups allows the calibration transfer issues to be broken up
into subsets so that only a subset of the overall issues needs
to be addressed between any two clusters. The result is that
within a given cluster, all of the spectra have the same
characteristics. A calibration is generated for a given cluster
using spectra of samples containing the limited number of
characteristics of that cluster. This eliminates having to deal
with all of the variations possible in the raw measurements,
significantly reducing the complexity that needs to be mod-
eled by the calibration. Thus, the calibration utilized for a
given cluster will have instrument variations included in the
model that are similar to variations resulting from the
analyzer employed. As cach cluster has its own
specification, the calibration transfer technique need only
deal with the differences between those two clusters. For
example, if the only difference between the clusters is a
linear x-axis shift, then the calibration transfer technique
need only deal with that parameter. This allows a more
specific calibration transfer technique to be employed that is
more robust, resulting in fewer factors, since fewer instru-
ment variations need to be modeled. This will result in
analysis of lower concentration analytes due to retention of
signal to noise in the calibration transfer step.

Typically, calibration transfer techniques have to address
instrument-to-instrument variations, such as wavelength
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shifts, nonlinear wavelength shifts, wavelength expansions
(contraction), nonlinear wavelength expansions, source
intensity drifts, blackbody profile changes, bandwidth
(resolution) changes, baseline deviations, change with time,
temperature effects and others known to those skilled in the
art.

However, in addition to instrumentation issues in calibra-
tion transfer, sample composition and sample handling con-
siderations are very important in calibration transfer.
Therefore, every sample analyzed for prediction of results
should be an interpolation within the matrix space of the
calibration data set; otherwise the calibration may not cal-
culate an accurate prediction of analyte concentration. For
example, if the calibration data set contains glucose samples
ranging from 40 to 400 mg/dL, then predictions on samples
with glucose outside of this range are suspect.

Thus, an important additional benefit of the invented
classification algorithm is that outlier spectra may be
identified, as shown in FIG. 1. Each cluster has its own set
of classification requirements. If a spectrum does not fall
within the parameters of a given cluster, another cluster must
be found which has parameters allowing analysis of that
spectrum. If no cluster is found, then the sample is reported
as an outlier rather than having a value reported for the
analyte that may not be correct. In this manner, analysis on
samples or instruments for which no satisfactory calibration
model has been developed is prevented.

Spectra classified as outliers may assume two forms. In
some instances, the outlier spectrum is close to a given
cluster. In such a case, conventional calibration transfer
techniques may be applied to this spectrum to transform the
spectrum such that it falls within one of the clusters for
which calibrations exist. In case of failure, the spectrum
remains classified as an outlier, as will spectra that are
characterized as gross outliers.

Classification and calibration transfer need not be limited
to differences in instrumentation; it may also be applied to
sample spectra for analyte prediction. For example, a cluster
may be defined for healthy 18 to 30 year old men. A
noninvasive glucose model may be built for this narrow
demographic. Aseparate cluster may be for 18 to 30 year old
non-pregnant women. Differences between the two clusters
such as body fat and sampled volume may be addressed and
a calibration transfer technique may be optimized for those
differences based on relatively few spectra, thus allowing a
glucose model initially generated for a narrow demographic
to be gradually expanded.

The foregoing embodiment does not require calibrations
to be built for every cluster, and thereby provides the
important advantage of sparing the considerable time,
money and effort required for building a separate calibration
for every cluster. The actual calibration transfer technique
employed may be selected from the many algorithms known
to those skilled in the art.

An alternative embodiment classifies spectra into clusters,
as in the preferred embodiment, and builds individual cali-
brations for each cluster. The requirement for calibration
transfer is eliminated at the expense of the requirement for
more spectra. However, an additional measure of reliability
is gained by having clusters with well-defined and narrow
parameters. As in the previous embodiment, fewer instru-
ment variations need to be modeled so that early factors can
focus on analyte information, resulting in a more robust
model.

While the foregoing description of the invention has been
directed to characterizing different instruments, the invented
method also finds application in classifying spectra from a
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single instrument according to known variations in instru-
ment components or known environmental variations. Two
examples are described.

1. The cutoff of the 2.6 I m InGaAs detector employed in
many near-IR analyzers blue shifts as the temperature
of the detector decreases. Air spectra collected on a
NICOLET 860, supplied by the Nicolet Instrument
Corporation (Madison Wis.) with the InGaAs detector
ranging from O to -20° C. are presented in FIG. 3A.
The spectral cutoff region from 2400 to 2600 nm is
expanded in FIG. 3B. The cut-off decreases as the
detector temperature decreases. Using reference or air
spectra, a simple analysis, such as determining the
wavelength at which 10% of the peak intensity is
observed, allows the instrument to be classified as to
whether the detector is properly cooled and to the
extent that it was cooled.

2. As a tungsten halogen source increases in temperature,
the blackbody emission increases in magnitude and
additional light throughput is observed. For example, in
diffuse reflectance spectra of a 5% Labsphere diffuse
reflectance standard, the overall intensity is observed to
increase as the source temperature increases, as shown
in FIG. 4. This effect can be used to classify the
instrument in terms of the source temperature and total
light throughput.

It is a relatively simple task to characterize the instrument
in terms of additional components. Examples are slit width,
affecting bandwidth or room temperature, affecting total
light throughput. There are, however, a limited number of
components to a spectrometer; it has been observed that
instruments group into a relatively small number of clusters.

Once an instrument, or a given spectrum, is classified into
a cluster, the appropriate calibration routine can be
employed. A single analyzer may be loaded with multiple
calibration routines, as the instrument may vary during its
lifetime. In fact, environmental factors may cause the appro-
priate calibration to change with every spectrum collected.

This instrument classification approach was designed for
use on noninvasive glucose analyzers where glucose is
measured using diffuse reflectance spectra of skin on the
human body. However, the same technology can be applied
to any form of noninvasive analysis including but not
limited to: noninvasive analysis of albumin, globulin, urea,
creatinine, oxygen, hemoglobin A, C and electrolytes such
as Na*, K*, CI". The technology may also be utilized in
biomedical applications.

The classification approach disclosed here finds applica-
tion in various fields of endeavor, the agricultural field, for
example. Exemplary agricultural applications are: analysis
of fat in milk, protein or moisture analysis in wheat, or
analysis of sugars in fruits. The classification approach may
also benefit pharmaceutical companies in the analysis of
intact tablets or in the characterization of raw materials.
Finally, petrochemical companies may utilize the method in
classification of fuels, fuel by-products and in raw fuel
materials. In general, this technique is useful wherever a
large number of analyzers are utilized to quantify analytes in
samples.

Although the invention is described herein with reference
to the preferred embodiment, one skilled in the art will
readily appreciate that other applications may be substituted
for those set forth herein without departing from the spirit
and scope of the present invention. Accordingly, the inven-
tion should only be limited by the claims included below.

What is claimed is:

1. A method of characterizing spectrometer instruments
according to instrument variation, comprising the steps of:
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providing standard spectrum from at least one spectrom-

eter instrument; and

classifying said at least one spectrometer instrument into

at least one of a plurality of predefined clusters on the
basis of features extracted from said at least one
spectrum; and

providing at least one calibration models for each of said

predefined clusters that models instrument variation of
instruments classified to the cluster.

2. The method of claim 1 wherein said instrument varia-
tion comprises any of:

wavelength shifts;

nonlinear wavelength shifts;

wavelength expansions;

wavelength contractions;

nonlinear wavelength expansions;

source intensity drifts;

blackbody profile changes;

bandwidth changes;

resolution changes;

baseline deviations;

changes over time;

temperature effects;

detector response;

differences in optical components;

variation related to mounting of references;

differences in the optical interface to the sample;

linearity; and

detector cut-off.

3. The method of claim 1, wherein said standard spectra
are measured on a plurality of spectrometer instruments.

4. The method of claim 1, wherein said standard spectral
are measured on a single spectrometer instrument at suc-
cessive time intervals.

5. The method of claim 1, wherein said classifying step
comprises the steps of:

extracting features; and

classifying said features according to a classification

model and decision rule.

6. The method of claim 5, wherein said feature extraction
step comprises any mathematical transformation that
enhances a particular aspect or quality of data that is useful
for interpretation.

7. the method of claim 5, wherein said classification
model comprises means for determining a set of similarity
measures with predefined classes.

8. The method of claim 5, wherein said decision rule
comprises means for assigning class membership on the
basis of a set of measures calculated by a decision engine.

9. The method of claim 1, wherein individual features are
divided into two categories, said categories comprising:

abstract features wherein said features are extracted using

various computational methods; and

simple features that are derived from an a priori under-

standing of a system, wherein said feature is directly
related to an instrument parameter or component.

10. The method of claim 9, wherein said abstract features
are calculated using any of:

plotting primary principal components versus one another

and Identifying resulting clusters;

discriminant analysis; and

k-means clustering.
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11. The method of claim 5, wherein said classification step
further comprises the step of employing factor-based meth-
ods to build a model capable of representing variation in a
measured spectrum related to variations in spectral response;

wherein projection of a measured absorbance spectrum
onto said model constitutes a feature that represents
spectral variation related to instrument variation.
12. The method of claim 5, wherein said classifying step
further comprises the steps of:

measuring the similarity of a feature to predefined clus-
ters; and

assigning membership in a cluster.
13. The method of claim §, further comprising the step of:

assigning measurements in an exploratory data set to

clusters.

14. The method of claim 13, further comprising the step
of:

using measurements and class assignments to determine a

mapping from features to cluster assignments.

15. The method of claim 13, further comprising the steps
of:

defining clusters from said features in a supervised

manner, wherein each set of features is divided into two
or more regions, and wherein classes are defined by
combinations of feature divisions;

designing a classifier subsequent to class definition

through supervised pattern recognition by determining
an optimal mapping or transformation from the feature
space to a class estimate which minimizes the number
of misclassifications; and

creating a model based on class definitions which trans-

forms a measured set of features to an estimated
classification.

16. The method of claim 1, further comprising the step of
applying said calibration models to analysis of new sample
measurements.

17. The method of claim 16, wherein said calibration
models model differences between said predefined clusters.

18. The method of claim 16, wherein a master calibration
model is developed for a first of said clusters from a set of
exemplar spectra with reference values and pre-assigned
classification definitions.

19. The method of claim 18, further comprising the step
of transferring said master calibration model to a plurality of
slave calibration models, wherein a slave calibration model
is calculated for each remaining duster, and wherein a
transform modifies said master calibration model to a slave
calibration model in accordance with principal features
defining each of said classes.

20. The method of claim 19, wherein said transferring step
comprises the steps of:

transferring said master calibration model to a first slave

calibration model;

transferring said first slave calibration model to a second

slave calibration model;

and repeating said transfer from one slave calibration

model to another slave calibration model, until a cali-
bration has been provided for each of said predefined
clusters;

wherein a transform modifies said transferred calibration

models in accordance with principal features defining
each of said dusters.

21. The method of claim 18, her comprising the step of
transferring said master calibration model to a plurality of
slave calibration models, wherein a slave calibration model
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is calculated for each remaining duster, and wherein a
transform modifies said slave calibration model to said
master calibration model in accordance with principal fea-
tures defining each of said classes.

22. The method of claim 21, wherein said transferring step
comprises the steps of:

transferring said master calibration model to a first slave
calibration model;

transferring said first slave calibration model to a second
slave calibration model;

and repeating said transfer from one slave calibration
model to another slave calibration model, until a cali-
bration has been provided for each of said predefined
clusters;

wherein a transform modifies said transferred calibration
models in accordance with principal features defining
each of said clusters.

23. The method of claim 18, wherein a different calibra-
tion model is developed for each cluster, and wherein said
calibration models are developed from a set of exemplar
spectra, with reference values and pre-assigned cluster defi-
nitions.

24. The method of claim 23, wherein a spectrum is
assigned to one of many of said predefined clusters for
which a calibration model has been developed.

25. The method of claim 1, further comprising the steps
of:

providing new spectral measurements;

comparing said new spectral measurements to each of
said pre-defined clusters according to extracted spectral
features;
reporting those measurements as outliers for which a
matching cluster is not found.
26. A method of developing calibration models for spec-
tral analysis comprising the steps of:

defining clusters from an exemplar data set of spectral
measurements, wherein said clusters exhibit a high
degree of internal similarity;

mapping said clusters to one another, wherein principal
features distinguishing clusters from one another are
determined;

calculating a calibration model for a first of said clusters,
said calibration model comprising a master calibration,

transferring said master calibration to at least one slave
calibration, wherein a slave calibration comprises a
calibration derived by applying a transform to slave
spectra such that the master calibration now models the
difference between the master cluster and another clus-
ter corresponding to said slave spectra.

27. A method of characterizing spectrometer Instruments

according to instrument variation, comprising the steps of:

collecting spectra using at least one optical spectrometer
instrument; and

classifying said spectra into predefined dusters on the
basis of extracted spectral features; and

providing calibration models for each of said predefined
clusters, wherein said calibration models model instru-
mental variation.

28. A method of characterizing spectrometer Instruments

according to instrument variation, comprising the steps of:

collecting spectra using at least one spectrometer instru-
ment; and

classifying said spectra into predefined clusters on the
basis of extracted spectral features; and
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providing calibration models for each of said predefined
clusters, wherein said calibration model is applied to a
new spectral measurement.

29. A method of characterizing spectrometer instruments
according to instrument variation, comprising the steps of:

collecting spectra using at least one spectrometer instru-

ment; and

classifying said spectra into predefined clusters on the

basis of extracted spectral features; and

providing calibration models for each of said predefined

clusters, wherein said calibration models model said
instrument variation; and

wherein said at least one spectrometer instrument is not a

mass spectrometer.

30. A method of characterizing spectrometer instruments
according to instrument variation, comprising the steps of:

collecting at least one spectrum using at least one spec-

trometer instrument; and

classifying said spectrometer Instrument into predefined

clusters on the basis of extracted spectral features; and
providing calibration models for each of said predefined
clusters.

31. The method of claim 30, wherein said calibration
models model instrument variation.

32. The method of claim 3, wherein said instrument
variation comprises any of:

wavelength shifts;

nonlinear wavelength shifts;

wavelength expansions,

wavelength contractions;

nonlinear wavelength expansions;

source intensity drifts;

blackbody profile changes;

bandwidth changes;

resolution changes;

baseline deviations;

changes over time;

temperature effects;

detector response;

differences in optical components;

variation related to mounting of references;

differences in the optical interface to the sample;

linearity; and

detector cut-off.

33. The method of claim 30, wherein said standard spectra
are measured on a plurality of spectrometer instruments.

34. The method of claim 30, wherein said standard spectra
are measured on a single spectrometer instrument at suc-
cessive time intervals.

35. The method of claim 30, wherein said classifying step
comprises the steps of: extracting features; and

classifying said features according to a classification

model and decision rule.

36. The method of claim 35, wherein said feature extrac-
tion step comprises any mathematical transformation that
enhances a particular aspect or quality of data that is useful
for interpretation.

37. The method of claim 35, wherein said classification
model comprises means for determining a set of similarity
measures with predefined classes.

38. The method of claim 35, wherein said decision rule
comprises means for assigning class membership on the
basis of a set of measures calculated by a decision engine.
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39. The method of claim 30, wherein individual features
are divided into two categories, said categories comprising:

abstract features wherein said features are extracted using
various computational methods; and

simple features that are derived from an a priori under-
standing of a system, wherein said feature is directly
related to an instrument parameter or component.
40. The method of claim 39, wherein said abstract features
are calculated using any of:

plotting primary principal components versus one another
and identifying resulting clusters;

discriminant analysis; and

k-means clustering.

41. The method of claim 35, wherein said classification
step further comprises the step of employing factor-based
methods to build a model capable of representing variation
in a measured spectrum related to variations in spectral
response;

wherein projection of a measured absorbance spectrum

onto said model constitutes a feature that represents
spectral variation related to instrument variation.

42. The method of claim 35, wherein said classifying step
further comprises the steps of:

measuring the similarity of a feature to predefined clus-
ters; and

assigning membership in a cluster.
43. The method of claim 35, further comprising the step
of:

assigning measurements in an exploratory data set to
clusters.
44. The method of claim 43, further comprising the step
of:

using measurements and class assignments to determine a
mapping from features to cluster assignments.
45. The method of claim 43, further comprising the steps
of:

defining clusters from said features in a supervised
manner, wherein each set of features is divided into two
or more regions, and wherein classes are defined by
combinations of feature divisions;

designing a classifier subsequent to class definition
through supervised pattern recognition by determining
an optimal mapping or transformation from the feature
space to a class estimate which minimizes the number
of misclassifications; and

creating a model based on class definitions which trans-
forms a measured set of features to an estimated
classification.

46. The method of claim 30, further comprising the step
of applying said calibration models to analysis of new
sample measurements.

47. The method of claim 46, wherein said calibration
models model differences between said predefined clusters.

48. The method of claim 46, wherein a master calibration
model is developed for a first of said clusters from a set of
exemplar spectra with reference values and pre-assigned
classification definitions.

10

15

20

25

30

35

40

50

14

49. The method of claim 48, further comprising the step
of transferring said master calibration model to a plurality of
slave calibration models, wherein a slave calibration model
is calculated for each remaining cluster, and wherein a
transform modifies said master calibration model to a slave
calibration model in accordance with principal features
defining each of said classes.

50. The method of claim 49, wherein said transferring step
comprises the steps of:

transferring said master calibration model to a first slave

calibration model;

transferring said first slave calibration model to a second

slave calibration model;

and repeating said transfer from one slave calibration

model to another slave calibration model, until a cali-
bration has been provided for each of said predefined
clusters;

wherein a transform modifies said transferred calibration

models in accordance with principal features defining
each of said clusters.

51. The method of claim 48, further comprising the step
of transferring said master calibration model to a plurality of
slave calibration models, wherein a slave calibration model
is calculated for each remaining cluster, and wherein a
transform modifies said slave calibration model to said
master calibration model in accordance with principal fea-
tures defining each of said classes.

52. The method of claim 30, wherein said transferring step
comprises the steps of:

transferring said master calibration model to a first slave

calibration model;

transferring said first slave calibration model to a second

slave calibration model;

and repeating said transfer from one slave calibration

model to another slave calibration model, until a cali-
bration has been provided for each of said predefined
clusters;

wherein a transform modifies said transferred calibration

models in accordance with principal features defining
each of said clusters.

53. The method of claim 46, wherein a different calibra-
tion model is developed for each cluster, and wherein said
calibration models are developed from a set of exemplar
spectral, with reference values and pre-assigned cluster
definitions.

54. The method of claim 33, wherein a spectrum is
assigned to one of many of said predefined clusters for
which a calibration model has been developed.

55. The method of claim 30, further comprising the steps
of:

providing new spectral measurements;

comparing said new spectral measurements to each of

said pre-defined clusters according to extracted spectral
features;

reporting those measurements as outliers for which a

matching cluster is not found.
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