US008140663B2 ## (12) United States Patent #### Brown # (54) NETWORKED SYSTEM FOR INTERACTIVE COMMUNICATION AND REMOTE MONITORING OF INDIVIDUALS (75) Inventor: **Stephen J. Brown**, Mountain View, CA (US) (73) Assignee: Health Hero Network, Inc., Palo Alto, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 221 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 11/150,301 (22) Filed: Jun. 13, 2005 (65) **Prior Publication Data** US 2005/0228883 A1 Oct. 13, 2005 #### Related U.S. Application Data - (60) Continuation of application No. 09/658,209, filed on Sep. 8, 2000, now Pat. No. 6,968,375, which is a continuation-in-part of application No. 09/300,856, filed on Apr. 28, 1999, now Pat. No. 6,368,273, which is a division of application No. 08/946,341, filed on Oct. 7, 1997, now Pat. No. 5,997,476, which is a continuation-in-part of application No. 08/847,009, filed on Apr. 30, 1997, now Pat. No. 5,897,493. - (60) Provisional application No. 60/041,746, filed on Mar. 28, 1997, provisional application No. 60/041,751, filed on Mar. 28, 1997. - (51) **Int. Cl.** *G06F 15/173* (2006.01) - (52) **U.S. Cl.** **709/224**; 709/217; 600/301; 705/3 (10) Patent No.: US 8,140,663 B2 (45) **Date of Patent:** *Mar. 20, 2012 #### (56) References Cited #### U.S. PATENT DOCUMENTS 3,426,150 A 2/1969 Tygart 3,566,365 A 2/1971 Rawson et al. 3,566,370 A 2/1971 Worthington, Jr. et al. (Continued) #### FOREIGN PATENT DOCUMENTS EP 0286456 10/1988 (Continued) #### OTHER PUBLICATIONS "+5V Powered Isolated RS-232 Drivers/Receivers" Maxim Integrated Products. #### (Continued) Primary Examiner — Abdullahi Salad (74) Attorney, Agent, or Firm — Christopher P. Maiorana, PC #### (57) ABSTRACT A system for remotely monitoring an individual. The system includes a server system for generating a script program from a set of queries. The script program is executable by a remote apparatus that displays information and/or a set of queries to the individual through a user interface. Responses to the queries that are entered through the user interface together with individual identification information are sent from the remote apparatus to the server system across a communication network. The server system also includes an automated answering service for providing a series of questions from a stored set of questions for an individual at the remote apparatus to respond to, storing responses to each provided question in the series of questions and providing a service based on the individual's response to the questions. #### 43 Claims, 20 Drawing Sheets # US **8,140,663 B2**Page 2 | U.S. PATEN | T DOCUMENTS | 4,933,873 A | 6/1990 | Kaufman et al. | |---------------------------------------|--------------------|---------------|--------------|--------------------| | 2.501.052 4 5/1051 | NT | 4,933,876 A | 6/1990 | Markoff et al. | | | Nymeyer | 4,950,246 A | 8/1990 | Muller | | | Smith | 4,950,264 A | | Osborn, III | | 3,808,502 A 4/1974 | Babilius | 4,953,552 A | | DeMarzo | | | Takeuchi et al. | 4,958,632 A | | Duggan | | 3,883,235 A 5/1975 | Lynn et al. | 4,958,641 A | | Digby et al. | | | Fletcher et al. | | | <i>C</i> , | | | Gombrich et al. | 4,967,756 A | 11/1990 | | | 3,996,928 A 12/1976 | | 4,977,899 A | | Digby et al. | | | Sarnoff | 4,978,303 A | | Lampbell | | | Healy et al. | 4,978,335 A | | Arthur, III | | | | 4,979,509 A | 12/1990 | Hakky | | | Conway | 5,007,429 A | 4/1991 | Treatch et al. | | | James et al. | 5,009,645 A | 4/1991 | Silver et al. | | .,, | Haessler et al. | 5,016,172 A | | Dessertine | | 4,150,284 A 4/1979 | Trenkler et al. | 5,019,974 A | | Beckers | | 4,151,407 A 4/1979 | McBride et al. | 5,024,225 A | 6/1991 | | | | Lester | 5,025,374 A | | Roizen et al. | | 4,173,971 A 11/1979 | Karz | , , | | | | | McGrath et al. | 5,033,474 A | | Varelis et al. | | 4,227,526 A 10/1980 | | 5,034,807 A | | Von Kohorn | | | Savage | 5,035,625 A | | Munson et al. | | | Fahey et al. | 5,036,462 A | | Kaufman et al. | | | Steffen et al. | 5,036,852 A | | Leishman | | | | 5,049,487 A | | Phillips et al. | | | Dunning et al. | 5,050,612 A | | Matsumura | | | Giguere et al. | 5,056,059 A | 10/1991 | Tivig et al. | | | Jundanian | 5,059,394 A | 10/1991 | Phillips et al. | | 4,360,345 A 11/1982 | | 5,065,315 A | 11/1991 | | | | Braddock, III | 5,068,536 A | | Rosenthal | | 4,417,306 A 11/1983 | Citron et al. | 5,074,317 A | | Bondell et al. | | 4,422,081 A 12/1983 | Woods | 5,077,476 A | | Rosenthal | | 4,428,733 A 1/1984 | Kumar-Misir | 5,077,665 A | | Silverman et al. | | | Weaver | | | | | | Schneider | 5,095,798 A | | Okada et al. | | | Behl | 5,104,380 A | | Holman et al. | | | Conway | 5,109,414 A | | Harvey et al. | | | Lisiecki et al. | 5,109,974 A | | Beer et al. | | | | 5,111,396 A | 5/1992 | Mills et al. | | | Reinhold, Jr. | 5,111,817 A | 5/1992 | Clark et al. | | | Schneider et al. | 5,111,818 A | 5/1992 | Suzuki et al. | | | Lubell et al. | 5,120,230 A | | Clark et al. | | | Parker et al. | 5,120,421 A | | Glass et al. | | | Fascenda et al. | 5,128,552 A | | Fang et al. | | 4,625,733 A 12/1986 | Saynajakangas | 5,128,752 A | | Von Kohorn | | 4,627,445 A 12/1986 | Garcia | 5,134,391 A | 7/1992 | | | 4,674,652 A 6/1987 | Aten et al. | | | | | | Blum et al. | 5,137,028 A | | Nishimura | | | Harvey et al. | 5,142,358 A | 8/1992 | | | | Rose et al. | 5,142,484 A | | Kaufman et al. | | | Hennessy | 5,143,378 A | 9/1992 | | | | Ohayon et al. | 5,171,977 A | | Morrison | | | • | 5,176,502 A | | Sanderson et al. | | | Baumberg | 5,182,707 A | 1/1993 | Cooper et al. | | | Harada et al. | 5,204,670 A | | Stinton | | | Gordon | 5,216,597 A | 6/1993 | Beckers | | | Allen, III | 5,219,322 A | 6/1993 | Weathers | | | Logg | 5,222,020 A | 6/1993 | | | | Kerman | 5,226,431 A | | Bible et al. | | | Silva et al. | 5,226,895 A | 7/1993 | | | | Shults et al. | 5,227,874 A | | Von Kohorn | | 4,768,229 A 8/1988 | Benjamin et al. | 5,228,450 A | 7/1993 | | | | Yoneda et al. | 5,230,629 A | | Buschke | | | Nemec et al. | | | | | | Fujisaki | 5,231,990 A | | Gauglitz | | | Snow et al. | 5,243,515 A | 9/1993 | | | | Shavit et al. | 5,249,044 A | | Von Kohorn | | | Scales, III et al. | 5,251,126 A | | Kahn et al. | | | Fu et al 600/483 | 5,261,401 A | | Baker et al. | | | | 5,262,943 A | | Thibado et al. | | | Gombrich et al. | 5,265,888 A | 11/1993 | Yamamoto et al. | | | Lee | 5,266,179 A | | Nankai et al. | | | Howson et al. | 5,275,159 A | | Griebel | | | Claeys et al. | 5,277,197 A | | Church et al. | | | Gettler | 5,282,950 A | | Dietze et al. | | 4,858,617 A 8/1989 | Sanders | | | | | 4,890,621 A 1/1990 | Hakky | 5,295,491 A | 3/1994 | | | 4,894,777 A 1/1990 | Negishi et al. | 5,299,121 A | | Brill et al. | | | Takahashi | 5,301,105 A * | | Cummings, Jr 705/2 | | | Dessertine et al. | 5,304,112 A | 4/1994 | Mrklas et al. | | | Wagner | 5,304,468 A | | Phillips et al. | | 4,907,973 A 3/1990 | | 5,307,263 A | 4/1994 | | | | Gombrich | 5,309,919 A | | Snell et al. | | · · · · · · · · · · · · · · · · · · · | Snyder | 5,316,008 A | | Suga et al. | | T,221,23 T A 0/1990 | Shyder | 5,510,000 A | J/ 1 J J 7 H | ouga ot ai. | | | | | | | # US **8,140,663 B2**Page 3 | S.312,009 A 61994 Baeder et al 5,613,009 A 3,1997 Mills et al. 5,325,208 A 7,1994 Kaufinan et al. 5,624,205 A 4,1997 Redford et al. 5,624,205 A 4,1997 Redford et al. 5,624,205 A 4,1997 Redford et al. 5,624,206 5,634,307 A 5,1997 Cohen et al. 5,634,307 A 5,1997 Cohen et al. 5,634,307 A 5,1997 Cohen et al. 5,634,307 A 6,1997 Miller et al. 5,634,307 A 6,1997 Miller et al. 5,642,308 A 6,1997 Miller et al. 5,642,308 A 7,1997 Kelfur et al. 5,659,309 A 10,1994 Lingendent et al. 5,659,604,278 A 7,1997 Miller et al. 5,656,427 A 7,1997 Miller et al. 5,664,278 | | | | | | | |---|----------------------|-----------------------|-----------|-----|---------|-------------------| | 5,329,459 A (7)1994
Kaufman et al. (5,624,265 A 4)1997 Refer of et al. (5,624,265 A 7)1994 Rochieri et al. (5,624,265 A) (7)1994 Rochieri et al. (5,624,265 A) (7)1994 Rochieri et al. (5,628,06) A 5)1997 Porceit al. (5,631,016 A) (7)1995 Rochieri et al. (5,631,016 A) (7)1997 Registration of al. (5,641,016 Registr | 5.321.009 A 6/1994 | Baeder et al. | 5,613,495 | Α | 3/1997 | Mills et al. | | 5,329,608 A 71999 Kaufman et al. | | | | | | | | 5,331,559 A 7/1994 Bochieri et al. 600/513 5/623,800 A 5/1997 Brown 5,331,559 A 7/1994 Carwford, L. 600/513 5/623,810 A 5/1997 Varifizar 3,331,815 A 7/1994 Hashimoto et al. 600/513 5/633,910 A 5/1997 Varifizar 3,333,81 A 8/1994 Proscot et al. 5/63,320 A 6/1997 Samid 5,333,83 A 8/1994 Proscot et al. 5/63,320 A 6/1997 Samid 5,333,810 A 8/1994 Proscot 6/1997 Brown 5/640,553 A 6/1997 Samid 5/63,339 A 8/1994 Proscot 6/1997 Brown 5/640,553 A 6/1997 Samid 5/640,530 A 6/1997 Brown | | | | | | | | 5,331,555 A 7,1994 Halminote et al. 5,631,384 A 5,1997 Nerilikar 5,331,355 A 8,1994 Pronovosi et al. 5,631,364 A 5,1997 Margrey et al. 5,631,364 A 5,1997 Margrey et al. 5,631,364 A 5,1997 Margrey et al. 5,640,560 A 6,1997 Miller 7,1997 Miller et al. 5,640,560 A 7,1997 Miller et al. 5,640,560 A 7,1997 Miller et al. 5,640,560 A 7,1997 Miller et al. 5,651,560 A 7,1997 Miller et al. 5,651,560 A 7,1997 Miller et al. 5,651,560 A 7,1997 Miller et al. 5,660,580 A 1,1994 Margrey et al. 5,660,587 A 7,1997 Miller et al. 5,660,580 A 1,1994 Margrey et al. 5,660,587 A 7,1997 Miller et al. 5,670,761 A 9,1997 Osodhman et al. 5,670,761 A 9,1997 Osodhman et al. 5,771,678 A 1,21994 Holmes, Il et al. 5,670,761 A 9,1997 Osodhman et al. 5,771,678 A 1,21994 Holmes, Il et al. 5,673,635 A 1,01997 Sellers 5,771,678 A 1,1995 Miller et al. 5,673,635 Mi | | | | | | | | 5,333,581 A 71,1994 Hashimoto et al. 5,631,344 A 51,1997 Margrey et al. 5,333,081 A 81,1994 Proceed 5,635,522 A 61,1997 Samid 5,333,081 A 81,1994 Proceed 5,635,522 A 61,1997 Samid 5,332,623 A 81,1994 Adams et al. 5,640,560 A 61,1997 Birkhop et al. 5,642,731 A 71,1997 Evans 5,442,203 A 81,1994 Disconel et al. 5,642,203 A 71,1997 Evans 5,442,203 A 81,1994 Disconel et al. 5,642,203 A 71,1997 Evans 5,442,203 A 81,1994 Disconel et al. 5,659,003 A 71,1997 Evans 5,442,203 A 71,1994 Liftle et al. 5,659,001 A 81,1997 Disconel 91,1997 Di | | | | | | | | 5,333,918 A 81994 Pronect 5,633,910 A 51997 Cohem 5,336,245 A 81994 Adams et al. 5,640,569 A 61997 Miller et al. 5,336,245 A 81994 Adams et al. 5,640,569 A 61997 Miller et al. 5,343,239 A 81994 Roizen et al. 5,640,569 A 61997 Miller et al. 5,341,239 A 81994 Roizen et al. 5,642,936 A 71997 Evans Called Cal | | | | | | | | S.333,38 A 81994 Proceel S.635,532 A 61997 Samid S.336,245 A 81994 Fujimoto S.640,053 A 61997 Bishop et al. S.343,239 A 81994 Expirent et al. S.642,036 A 71997 Kehr S.343,239 A 81994 Lappington et al. S.642,036 A 71997 Kehr S.343,239 A 81994 Lappington et al. S.651,363 A 71997 Kehr S.343,247 A 101994 Langen et al. S.651,375 A 71997 Walker et al. S.357,447 A 101994 Langen et al. S.651,375 A 71997 Walker et al. S.357,447 A 101994 Margeoy et al. S.668,696 A 81997 Durward et al. S.368,602 A 111994 Margeoy et al. S.666,473 A 91997 Mirat S.376,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.376,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.376,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.776,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.776,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.776,604 A 111994 Holmes, It et al. S.670,711 A 91997 Detournary et al. S.776,604 A 111997 S.776,704 11 | 5,331,555 A 7/1994 | Hashimoto et al. | 5,631,844 | Α | 5/1997 | Margrey et al. | | S.333,338 A 81994 Procsel S.635,532 A 61997 Samid S.336,245 A 81994 Fujimoto S.640,053 A 61997 Bishop et al. S.343,239 A 81994 Fujimoto S.640,231 A 71997 Kehr S.343,239 A 81994 Lappington et al. S.642,236 A 71997 Kehr S.343,239 A 81994 Lappington et al. S.642,331 A 71997 Kehr S.343,247 A 101994 Langen et al. S.651,333 A 71997 Walker et al. S.357,447 A 101994 Langen et al. S.651,333 A 71997 Walker et al. S.357,447 A 101994 Margeny et al. S.662,836 A 81995 Moravand et al. S.663,836 A 111994 Margeny et al. S.664,238 A 91997 Mital S.376,836 A 111994 Holmes, It et al. S.670,711 A 91997 Detournay et al. S.670,711 A 91997 Detournay et al. S.670,711 A 91997 Detournay et al. S.673,636 A 101997 Social et al. S.673,637 A 101997 Social et al. S.673,637 A 101997 Detournay et al. S.673,637 A 101997 Social et al. S.673,637 A 101997 Portrest S.673,734 A 111997 Demonstrest S.674,734 A 111997 Demonstrest et al. S.674,734 A 111997 Demonstrest et al. S.674,734 | 5,333,981 A 8/1994 | Pronovost et al. | 5,633,910 | Α | 5/1997 | Cohen | | S.336,245 A 81994 Adams et al. | 5.335.338 A 8/1994 | Proesel | 5,635,532 | Α | 6/1997 | Samid | | S.349,821 A 81994 Fujimoto S.640,953 A 61997 Bishop et al. | , , | | , , | | | | | 5,343,239 A 81994 Apprignon et al. 5,642,731 A 71997 Kehr 5,343,4324 A 91994 O'Donnell et al. 5,651,363 A 71997 Vann et al. 5,537,467 A 91994 O'Donnell et al. 5,651,363 A 71997 Vann et al. 5,537,467 A 101994 Little et al. 5,659,691 A 81994 D'Durvard et al. 5,559,691 A 81994 D'Durvard et al. 5,559,691 A 91997 D'Urvard et al. 5,566,4228 A 91997 Mital 5,368,562 A 111994 Blomquist et al. 5,666,428 A 91997 Mital 5,368,562 A 111994 Blomquist et al. 5,676,711 A 91997 Goodman et al. 5,371,667 A 121994 Florines, It et al. 5,676,711 A 91997 Goodman et al. 5,371,667 A 121994 Florines, It et al. 5,678,561 A 101997 Vos et al. 5,371,667 A 121994 Florines, It et al. 5,678,561 A 101997 Vos et al. 5,371,610 A 121994 Florines, It et al. 5,678,561 A 101997 Florines al. 5,398,213 A 21995 Kirk et al. 5,678,511 A 101997 Florines et al. 5,398,213 A 21995 Kirk et al. 5,678,512 A 101997 Florines et al. 5,398,213 A 21995 Kirk et al. 5,678,512 A 101997 Florines et al. 5,410,471 A 41995 Alylidae et al. 600,300 5,687,322 A 111997 Deaton et al. 5,410,471 A 41995 Alylidae et al. 600,300 5,687,322 A 111997 Deaton et al. 5,431,690 A 7,1995 Shuffest et al. 5,688,686 A 101997 Kangas et al. 5,431,690 A 7,1995 Shuffest et al. 5,688,687 A 111997 Deaton et al. 5,431,691 A 7,1995 Shuffest et al. 5,689,652 A 111997 Deaton et al. 5,433,691 A 7,1995 Shuffest et al. 5,690,304 A 11999 Shuffest et al. 5,704,364 Shu | | | , , | | | | | 5,344,324 A 9/1994 Domell et al. 5,642,936 A 7/1997 Evans 5,344,324 A 10/1994 Langen et al. 5,651,375 A 7/1997 Walker et al. 5,357,477 A 10/1994 Langen et al. 5,651,375 A 7/1997 Walker et al. 5,368,562 A 11/1994 Margrey et al. 5,664,228 A 9/1997 Mital 5,568,562 A 11/1994 Margrey et al. 5,666,427 A 9/1997 Mital 5,375,664 A 12/1994 Holmes, Il et al. 5,670,711 A 9/1997 Detournay et al. 5,375,664 A 12/1994 Pope et al. 5,675,655 A 10/1997 Vos et al. 5,377,100 A 12/1994 Pope et al. 5,678,562 A 10/1997 Vos et al. 5,377,100 A 12/1994 Pope et al. 5,678,562 A 10/1997 Vos et al. 5,377,288 A 21/1994 Pope et al. 5,678,562 A 10/1997 Sollers 5,390,238 A 21/1995 Siar et al. 5,678,562 A 10/1997 Forward et al. 5,678,673 A 11/1997 11/1998 Forward et al. 5,794,674 A 11/1998 Forward et al. 5,794 | | | | | | | | 5,354,324 A 91994 O'Donnell et al. 5,651,363 A 71997 Raufman et al. 5,357,427 A 71997 Walker et al. 5,539,509 A 101994 Little et al. 5,659,691 A 8 19997 Durward et al. 5,366,362 A 111994 Blomquist et al. 5,666,428 A 91997 Mital 5,368,562 A 111994 Blomquist et al. 5,666,428 A 91997 Mital 5,368,562 A 111994 Blomquist et al. 5,676,711 A 91997 Goodman et al. 5,371,667 A 121994 Kelly et al. 5,678,561 A 101997 Vos et al. 5,371,604 A 121994 Kelly et al. 5,678,561 A 101997 Vos et al. 5,377,100 A 121994 Pope et al. 5,678,571 A 101997 Porrest et al. 5,371,604 A 121994 Blompaid et al. 5,678,571 A 101997 Porrest et al. 5,398,218 A 121995 Stair et al. 5,678,571 A 101997 Porrest et al. 5,398,218 A 19995 Stair et al. 5,678,571 A 101997 Porrest et al. 5,398,218 A 19995 Stair et al. 5,678,571 A 101997 Porrest et al. 5,401,471 A 1999 Alylika et al. 5,678,571 A 101997 Porrest et al. 5,401,471 A 1999 Alylika et al. 5,678,371 A 101997 Porrest et al. 5,401,471 A 1999 Alylika et al. 5,678,371 A 101997 Porrest et al. 5,401,471 A 1999 Alylika et al. 5,678,371 A 101997 Deaton et al. 5,431,691 A 71995 Shoulds et al. 5,688,652 A 111997 Deaton et al. 5,431,691 A 71995 Shoulds et al. 5,688,652 A 111997 Deaton et al. 5,431,691 A 71995 Falcel et al. 5,688,652 A 111997 Deaton et al. 5,431,691 A 71995 Falcel et al. 5,692,966 A 111997 Deaton et al. 5,434,611 A 71995 Falcel et al. 5,704,366 A 11998 Should et al. 5,704,364 A 11998 Should et al. 5,704,366 A 11998 Falcel et al. 5,704,364 A 11998 Should et al. 5,704,366 A 11998 Falcel et al. 5,704,364 A 11998 Should et al. 5,704,366 A 11998 Should et al. 5,704,902 A 11998 Should et al. 5,704,366 A 11998 Should et al. 5,704,902 A 11998 Should et al. 5,704,366 A 11998 Should et al. 5,704,902 A 11998 Should et al. 5,704,364 A 11998 Should et al. 5,704,902 A 11998 Should et al. 5,704,364 A 11998 Should et al. 5,704,902 A 11998 Should et al. 5,704,364 A 11998 Should et al. 5,704,705 A 11998 Should et al. 5,704,716 A 11998 Should et al. 5,704,716 A 11998 Should et al. 5,704,716 A 11998 Should et al. 5,704, | | | | | | | | 5.357,427 A 101994 Langen et al. 5.651,775 A 711997 Walker et al. 5.369,690 A 811997 Durvard et al. 5.366,802 A 111994 Margrey et al. 5.664,228 A 911997 Miral 5.366,802 A 111994 Margrey et al. 5.666,428 A 911997 Miral 5.366,802 A 111994 Molmes, II et al. 5.666,428 A 911997 Goodman et al. 5.376,604 A 121994 Holmes, II et al. 5.676,515 A 101997 Vos et al. 5.377,100 A 121994 Pope et al. 5.678,562 A 101997 Sollers 5.377,258 A 121994 Pope et al. 5.678,562 A 101997 Sollers 5.377,258 A 121994 Pope et al. 5.678,571 A 101997 Brown 5.381,138 A 121994 Bro 5.678,571 A 101997 Brown 5.381,138 A 121995 Brain et al. 3.90,238 A * 21995 Kirk et al. 3.79106.02 5.680,590 A 101997 Parti 5.390,238 A * 21995 Kirk et al. 3.90,238 A * 21995 Kirk et al. 3.90,238 A 3.90,238 A * 21995
Bradea et al. 5.687,371 A 111997 Deaton et al. 5.410,471 A * 41995 Fox 5.687,322 A 111997 Deaton et al. 5.431,600 A 7.1995 Sollet et al. 5.687,322 A 111997 Deaton et al. 5.431,601 A 7.1995 Sollet et al. 5.689,652 A 111997 Deaton et al. 5.431,611 A 7.1995 Sollet et al. 5.689,652 A 111997 Deaton et al. 5.433,611 A 7.1995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.433,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.433,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.434,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.434,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.434,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton et al. 5.434,431 A 11995 Foxel et al. 5.692,600 A 121997 Deaton 5.692, | | | | | | | | 5.350,509 A 101994 Little et al. 5.659,601 A 8/1997 Diruvard et al. 5.366,862 A 111994 Blomquist et al. 5.666,487 A 9/1997 Goodman et al. 5.366,862 A 111994 Blomquist et al. 5.666,487 A 9/1997 Goodman et al. 5.371,604 A 12/1994 Blomquist et al. 5.675,635 A 10/1997 Dotroumay et al. 5.377,100 A 12/1994 Bro 5.678,551 A 10/1997 Sollers al. 5.377,100 A 12/1994 Bro 5.678,551 A 10/1997 Sollers al. 5.377,103 A 12/1994 Bro 5.678,571 A 10/1997 Brown et al. 5.381,138 A 17/1995 Stair et al. 379/106,02 5.680,590 A 10/1997 Forrest et al. 5.390,821 A 2/1995 Kirk et al. 379/106,02 5.680,590 A 10/1997 Forrest et al. 5.390,821 A 4/1995 Alyfikiu et al. 600/300 5.687,322 A 11/1997 Rangas et al. 5.410,474 A 4/1995 Alyfikiu et al. 600/300 5.687,322 A 11/1997 Rangas et al. 5.431,690 A 7/1995 Burdea et al. 5.689,652 A 11/1997 Halpern et al. 5.431,690 A 7/1995 Shell et al. 5.689,652 A 11/1997 Lupien et al. 5.433,633 A 8/1995 Tamura 5.704,366 A 11/1998 Salizate et al. 5.434,611 A 7/1995 Shell et al. 5.704,366 A 11/1998 Salizate et al. 5.434,614 A 8/1995 David et al. 5.704,366 A 11/1998 Salizate et al. 5.440,334 A 8/1995 Eracon 5.704,306 A 11/1998 Brown 5.454,721 A 10/1995 Kingbury 5.710,178 A 11/1998 Samid 5.454,620 A 11/1995 Kingbury 5.710,178 A 11/1998 Samid 5.456,602 A 11/1995 Claser 5.714,319 A 11/1998 Samid 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Samid 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Samid 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Shell et al. 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Shell et al. 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Shell et al. 5.456,602 A 11/1995 Shell et al. 5.714,319 A 11/1998 Shell et al. 5.456,602 A 11/1995 Shell et a | 5,344,324 A 9/1994 | O'Donnell et al. | 5,651,363 | Α | 7/1997 | Kaufman et al. | | 5,368,506 11/1994 Margrey et al. 5,664,228 A 9/1997 Midal 5,368,505 11/1994 Blomquist et al. 5,666,228 A 9/1997 Goodman et al. 5,371,687 A 21/1994 Pole et al. 5,670,711 A 9/1997 Pole of al. 5,375,604 A 12/1994 Pole et al. 5,670,505 A 10/1997 Vos et al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Pole of al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Pole of al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Brown 5,381,138 A 1/1995 Stair et al. 5,679,075 A 10/1997 Brown 5,389,821 A 3/1995 Inagaki et al. 5,680,866 A 10/1997 Parti 5,399,821 A 3/1995 Burds et al. 600/300 5,687,373 A 11/1997 Deaton et al. 5,401,471 A 4/1995 Follow Fo | 5,357,427 A 10/1994 | Langen et al. | 5,651,775 | Α | 7/1997 | Walker et al. | | 5,368,506 11/1994 Margrey et al. 5,664,228 A 9/1997 Midal 5,368,505 11/1994 Blomquist et al. 5,666,228 A 9/1997 Goodman et al. 5,371,687 A 21/1994 Pole et al. 5,670,711 A 9/1997 Pole of al. 5,375,604 A 12/1994 Pole et al. 5,670,505 A 10/1997 Vos et al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Pole of al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Pole of al. 5,377,288 12/1994 Bro 5,678,505 A 10/1997 Brown 5,381,138 A 1/1995 Stair et al. 5,679,075 A 10/1997 Brown 5,389,821 A 3/1995 Inagaki et al. 5,680,866 A 10/1997 Parti 5,399,821 A 3/1995 Burds et al. 600/300 5,687,373 A 11/1997 Deaton et al. 5,401,471 A 4/1995 Follow Fo | 5.359.509 A 10/1994 | Little et al. | 5,659,691 | Α | 8/1997 | Durward et al. | | 5,586,562 A 11/1994 Blomquist et al. 5,666,487 A 9/1997 Goodman et al. 5,371,667 A 12/1994 Clubmes, Il et al. 5,673,635 A 10/1997 Vose et al. 5,377,600 A 12/1994 Ellye et al. 5,678,562 A 10/1997 Solers 5,377,100 A 12/1994 Brown 5,678,571 A 10/1997 Solers 5,377,258 A 12/1994 Brown 5,678,571 A 10/1997 Forrest et al. 5,579,075 A 10/1997 Forrest et al. 5,579,075 A 10/1997 Forrest et al. 5,590,075 5,590,096 Forr | | | | | | | | 5,375,604 A 21994 Holmes, II et al. 5,670,711 A 9,1997 Dotsuray et al. 5,375,604 A 12,1994 Pope et al. 5,678,505 A 10,1997 Vos et al. 5,377,518 10,1997 Vos et al. 5,377,518 12,1994 Bio 5,678,571 A 10,1997 Brown 5,381,181 A 11,1995 Stair et al. 5,678,505 A 10,1997 Forms 10,1995 Stair et al. 5,678,505 A 10,1997 Forms 10,1995 Stair et al. 5,678,505 A 10,1997 Forms et al. 5,390,281 A 2,1995 Kink et al. 3,791,06.02 5,680,505 A 10,1997 Parti 5,399,821 A 4,1995 Myffiku et al. 6,007,300 5,687,322 A 11,1997 Deaton et al. 5,401,471 A 4,1995 Fox 5,401,471 A 4,1995 Fox 5,401,471 A 4,1995 Fox 5,501,464 5,501, | | | | | | | | 5.377,100 A 21994 Kelly et al. 5.675,635 A 101997 Vos et al. 5.377,100 A 21994 Bro 5.678,571 A 101997 Bellers 5.377,102 A 101995 Size et al. 5.679,075 A 101997 Forrest et al. 5.390,821 A 21995 Kirk et al. 379/106.02 5.680,590 A 101997 Parti 5.390,821 A 41995 Size et al. 379/106.02 5.680,590 A 101997 Parti 5.390,821 A 41995 Size et al. 5.680,590 A 101997 Parti 5.390,821 A 41995 Size et al. 5.680,590 A 101997 Parti 5.390,821 A 41995 Size et al. 5.680,590 A 101997 Parti 5.390,821 A 41995 Size et al. 5.680,590 A 101997 Parti 5.390,821 A 71995 Size et al. 5.680,590 A 101997 Dempsey et al. 5.343,691 A 71995 Size et al. 5.680,580 A 101997 Dempsey et al. 5.343,691 A 71995 Sizel et al. 5.680,580 A 111997 Dempsey et al. 5.343,691 A 71995 Sizel et al. 5.790,366 A 111998 Sizel et al. 5.343,697 A 8.1995 Prygoda, Jr. et al. 5.700,366 A 111998 Sizel et al. 5.341,604 A 8.1995 Devid et al. 5.700,306 A 111998 Vandenbelt et al. 5.440,344 A 9.1995 Kingsbury 5.710,118 A 111998 Brown 5.345,620 A 101995 Kingsbury 5.710,118 A 111998 Brown 5.345,620 A 101995 Kindhard et al. 5.714,319 A 211998 Sizel et al. 5.345,620 A 101995 Kindhard et al. 5.714,319 A 211998 Sizel et al. 5.345,620 A 101995 Kindhard et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. 5.346,630 A 111995 Sizel et al. 5.714,319 A 211998 Sizel et al. | | | | | | | | 5.377,109 A 121994 Pope et al. 5.678,562 A 101997 Sollers 5.377,258 A 121994 Bro 5.678,571 A 101997 Brown 5.578,513 A 101995 Brown 5.578,513 A 101997 Forest et al. 5.679,075 A 101997 Porest et al. 5.690,288 A * 21995 Kirk et al. 379/106.02 \$680,890 A 101997 Parti 5.390,288 A * 21995 Kirk et al. 600/300 \$687,322 A 111997 Parti 5.401,474 A 41995 Fox 5.688,652 A 101997 Fox 5.688,652 A 101997 Parti 5.401,474 A 41995 Fox 5.688,652 A 101997 Fox 5.687,717 A 111997 Parti 5.431,690 A 71995 Subrela et al. 5.687,734 A 111997 Lupien et al. 5.431,691 A 71995 Subrela et al. 5.687,334 A 111997 Corber et al. 5.431,691 A 71995 Subrela et al. 5.687,334 A 111997 Parti 6.431,691 A 71995 Subrela et al. 5.689,652 A 111997 Corber 5.431,691 A 71995 Subrela et al. 5.704,366 A 121997 Corber 5.433,893 A 81995 Fox 5.688,673 A 81995 Fox 5.688,673 A 111997 Lupien et al. 5.434,607 A 81995 David et al. 5.704,366 A 11998 Subrisein et al. 5.441,047 A 81995 David et al. 5.704,022 A 11998 Vandenbel et al. 5.441,047 A 101995 Kuch 5.704,022 A 11998 Subrela et al. 5.704,022 A 11998 Vandenbel et al. 5.704,023 A 101995 Kuch 5.704,022 A 11998 Kuch 5.704,023 A 101995 | | | , , | | | | | 5.371,258 A 12/1994 Bro 5.381,138 A 1/1995 Stait et al. 5679,075 A 10/1997 Forest et al. 5.381,138 A 1/1995 Stait et al. 5679,075 A 10/1997 Forest et al. 5.390,821 A 3/1995 Ingaçak et al. 5680,590 A 10/1997 Forest et al. 5.390,821 A 4/1995 Alyfuku et al. 600/300 5,6873,322 A 11/1997 Engine et al. 5.40,474 A 4/1995 Fox 5,687,717 A 11/1997 Engine et al. 5.410,674 A 4/1995 Fox 5,687,717 A 11/1997 Engine et al. 5.431,690 A 7/1995 Burdea et al. 5,685,734 A 11/1997 Engine et al. 5.431,691 A 7/1995 Shaldach et al. 5,685,652 A 11/1997 Luplem et al. 5.431,691 A 7/1995 Fox 5,686,672 A 11/1997 Luplem et al. 5.434,611 A 7/1995 Fox 5,686,672 A 11/1997 Luplem et al. 5.434,611 A 7/1995 Fox 5,743,66 A 1/1998 Endea et al. 5.434,614 A 7/1995 Fox 5,743,66 A 1/1998 Endea et al. 5.434,614 A 7/1995 Fox 5,743,66 A 1/1998 Endea et al. 5.440,334 A 1/1995 Endea 5,704,902 A 1/1998 Brown et al. 5.440,334 A 9/1995 Kingsbury 5,700,178 A 1/1998 Brown et al. 5.440,334 A 1/1995 Brown et al. 5.454,721 A 10/1995 Brown et al. 5.454,721 A 10/1995 Brown et al. 5.456,602 5.467,609 10/19 | | · . | | | | | | 5.381,138 A 1/1995 Stair et al. 5.6079,075 A 10/1997 Parti 5.390,238 A 2/1995 Kirk et al. 379/106.02 5.680,390 A 10/1997 Parti 5.390,238 A 2/1995 Kirk et al. 600/300 5.687,322 A 11/1997 Parti 5.40,471 A * 4/1995 Fox 5.687,317 A 11/1997 Parti 5.40,471 A * 4/1995 Fox 5.687,317 A 11/1997 Parti 5.40,471 A * 4/1995 Fox 5.687,317 A 11/1997 Parti 5.40,471 A * 4/1995 Fox 5.687,317 A 11/1997 Parti 5.40,471 A * 4/1995 Fox 5.687,317 A 11/1997 Parti 5.429,140 A 7/1995 Subride et al. 5.687,324 A 11/1997 Lupien et al. 5.687,324 A 11/1997 Lupien et al. 5.687,324 A 11/1997 Parti 5.431,691 A 7/1995 Shell et al. 5.692,006 A 12/1997 Corder 5.434,611 A 7/1995 Falcon 5.704,366 A 12/1997 Corder 5.438,607 A 8/1995 Przygoda, Jr. et al. 5.704,366 A 12/1998 Salztstein et al. 5.434,047 A 8/1995 David et al. 5.704,902 A 11/1998 Vandenbelt et al. 5.441,047 A 8/1995 David et al. 5.704,902 A
11/1998 Vandenbelt et al. 5.441,047 A 8/1995 Exich 5.704,902 A 11/1998 Saride et al. 5.442,721 A 10/1995 Michary 5.704,171 A 11/1998 Vandenbelt et al. 5.704,902 11/1995 Vandenbelt et al. 5.704,504 | 5,377,100 A 12/1994 | Pope et al. | 5,678,562 | Α | 10/1997 | Sellers | | S.399,021 A 3/1995 Inagaki et al. 568,065 A 10/1997 Enagas et al. 568,066 568,067 A 11/1997 Enagas et al. 568,067,074 11/1995 Enagas et al. 568,067,074 A 11/1995 Enagas et al. 5704,366 A 11/1995 Enagas et al. 5704,366 A 11/1995 Enagas et al. 5704,366 A 11/1998 Enagas et al. 5704,302 11/1995 Enagas et al. 5704,302 A 11/1995 Enagas et al. 5704,303 | 5,377,258 A 12/1994 | Bro | 5,678,571 | A | 10/1997 | Brown | | S.399,021 A 3/1995 Inagaki et al. 568,065 A 10/1997 Enagas et al. 568,066 568,067 A 11/1997 Enagas et al. 568,067,074 11/1995 Enagas et al. 568,067,074 A 11/1995 Enagas et al. 5704,366 A 11/1995 Enagas et al. 5704,366 A 11/1995 Enagas et al. 5704,366 A 11/1998 Enagas et al. 5704,302 11/1995 Enagas et al. 5704,302 A 11/1995 Enagas et al. 5704,303 | 5.381.138 A 1/1995 | Stair et al. | 5,679,075 | Α | 10/1997 | Forrest et al. | | 5.399,821 A 3/1995 Inagaki et al. 5.401,471 A 4 /1995 Fox 5.401,471 A 4 /1995 Fox 5.401,471 A 1/1995 Fox 5.429,140 A 7/1995 Shurde et al. 5.431,690 A 7/1995 Shurde et al. 5.431,690 A 7/1995 Shurde et al. 5.431,691 A 7/1995 Shell et al. 5.432,140 A 7/1995 Shell et al. 5.434,611 A 7/1995 Shell et al. 5.434,611 A 7/1995 Shell et al. 5.434,611 A 7/1995 Shell et al. 5.434,601 A 1/1995 Shell et al. 5.434,601 A 1/1995 Shell et al. 5.434,607 A 8/1995 Paygoda, Jr. et al. 5.434,043 A 9/1995 Kingsbury 5.704,364 A 1/1998 Saltzstein et al. 5.444,047 A 8/1995 David et al. 5.444,047 A 10/1995 Shell et al. 5.444,721 A 10/1995 Shell et al. 5.445,722 A 10/1995 Shell et al. 5.454,722 A 10/1995 Shell et al. 5.456,606 A 10/1995 Simith, Jr. et al. 5.465,082 A 11/1995 Chace 5.715,823 A 2/1998 Divised to 1. 5.467,209 A 11/1995 Flaten 5.471,303 5.502,726 A 3/1996 Flore Single Shew et al. 5.502,726 A 3/1996 Fischer 5.502,726 A 3/1996 Kaish 5.502,636 A 3/1996 Fischer 5.502,726 A 3/1996 Fischer 5.502,726 A 3/1996 Fischer 5.512,003 A 5/1996 MeAndrew et al. 5.502,726 A 3/1996 Fischer 5.532,232 A 6/1996 Schell Single Shew et al. 5.502,726 A 3/1996 Fischer 5.532,232 A 6/1996 Schell Single Shew et al. 5.532,232 A 6/1996 Schell Single Shew et al. 5.532,232 A 6/1996 Schell Shew et al. 5.532,232 A 6/1996 Schell Shew et al. 5.532,233 A 6/1996 Fischer 5.532,233 A 6/1996 Fischer 5.532,233 A 6/1996 Fischer 5.532,233 A 6/1996 Fischer 5.532,234 A 7/1998 Shown et al. 5.532,246 A 1/1996 Hayward et al. 5.5 | | Kirk et al 379/106 02 | , , | | | | | 5.4(10.471 A * 4/1995 Alyfuku et al. 600/300 | | | | | | | | 5.401,474 A 41995 Fox 5,687,714 A 11/1997 Halpernet al. 5,629,140 A 71995 Burdea et al. 5,687,734 A 11/1997 Unpien et al. 5,631,690 A 71995 Schaldach et al. 5,682,652 A 11/1997 Unpien et al. 5,631,691 A 71,695 Schaldach et al. 5,682,966 A 11/1997 Unpien et al. 5,632,667 A 11/1997 Emmra 5,704,366 A 11/1998 Saltzatien et al. 5,438,687 A 8,1995 Praygoda, Ir. et al. 5,704,366 A 11/1998 Saltzatien et al. 5,438,687 A 8,1995 Praygoda, Ir. et al. 5,704,366 A 11/1998 Tacklind et al. 5,441,047 A 8,1995 David et al. 5,704,902 A 11/1998 Brown S,449,334 A 9,1995 Kingsbury 5,710,178 A 11/1998 Brown S,449,334 A 9,1995 Kingsbury 5,710,178 A 11/1998 Brown S,454,721 A 10/1995 While et al. 5,710,178 A 11/1998 Lagarde et al. 5,712,274 A 10/1995 While et al. 5,711,297 A 11/1998 Unger 5,714,319 A 21/1998 Joutel et al. 5,746,502 A 10/1995 Smith, Jr. et al. 5,715,431 A 21/1998 Wood et al. 5,715,431 A 21/1998 Halpern et al. 5,746,502 A 11/1995 Chaco 5,717,339 A 21/1998 Wood et al. 5,741,339 A 11/1995 Chaco 5,717,339 A 21/1998 Wood et al. 5,741,332 A 11/1995 Flaten 5,712,913 A 21/1998 Drown Startling A 11/1995 Flaten 5,712,913 A 21/1998 Drown Startling A 11/1995 Flaten 5,712,913 A 21/1998 Drown Startling A 11/1995 Flaten 5,730,634 A 31/1996 Brown Startling | | | , , | | | | | 5.429,140 A 7,1995 Burdea et al. 5,687,734 A 11/1997 Dempsey et al. 5,431,690 A 7,1995 Schaldach et al. 5,689,592 A 11/1997 Cupien et al. 5,431,691 A 7,1995 Schaldach et al. 5,692,996 A 12/1997 Corder 4. 5,434,611 A 7,1995 Tamura 5,704,366 A 11/1998 Vandeabelt et al. 5,434,607 A 8/1995 Przygoda, Jr. et al. 5,704,366 A 11/1998 Vandeabelt et al. 5,434,607 A 8/1995 Przygoda, Jr. et al. 5,704,366 A 11/1998 Vandeabelt et al. 5,704,392 A 11/1998 Vandeabelt et al. 5,704,331 A 9/1995 Kingsbury 5,710,178 A 11/1998 Samid 5,440,333 A 9/1995 Kingsbury 5,710,918 A 11/1998 Samid 5,454,722 A 10/1995 Wach 5,710,918 A 11/1998 Samid 5,456,6692 A 10/1995 Wach 5,710,918 A 11/1998 Juilet et al. 5,456,6692 A 10/1995 Smith, Jr. et al. 5,711,297 A 11/1998 Juilet et al. 5,458,123 A 10/1995 Chaco 5,711,739 A 2/1998 Wood et al. 5,467,269 A 11/1995 Flaten 5,714,319 A 2/1998 Wood et al. 5,467,269 A 11/1995 Flaten 5,714,319 A 2/1998 Diriscoll 5,467,269 A 11/1995 Flaten 5,714,319 A 2/1998 Wood et al. 5,710,328 A 11/1995 Flaten 5,714,328 A 11/1995 Flaten 5,714,328 A 11/1995 Flaten 5,714,328 A 11/1995 Flaten 5,714,328 A 11/1995 Flaten 5,722,418 A 3/1998 Brown 5,483,270 A 11/1995 Flaten 5,730,124 A 3/1998 Brown 5,502,636 A 3/1996 Clarke 5,732,696 A 3/1998 Flower 5,502,636 A 3/1996 Clarke 5,732,696 A 3/1998 Flower 5,502,636 A 3/1996 Clarke 5,732,696 A 3/1998 Rown 5,502,636 A 3/1996 Clarke 5,732,696 A 3/1998 Rown 5,502,636 A 3/1996 Fischer 5,734,413 A 3/1998 Flower et al. 5,522,232 A 6/1996 Gonick et al. 5,722,748 A 5/1998 Wood at al. 5,522,743 A 5/1998 Wood at al. 5,522,743 A 6/1998 Fischer 5,734,413 A 3/1998 Flower et al. 5,522,232 A 6/1996 Gonick et al. 5,732,799 A 3/1998 Flower et al. 5,732,799 A 4/1996 Gonick et al. 5,732,799 A 3/1998 Flower et al. 5,732,799 A 8/1998 Wood at | | | | | | | | 5,431,690 A 7,1995 Schaldach et al. 5,689,652 A 11/1997 Lupien et al. 5,431,691 A 7,1995 Scall et al. 5,692,906 A 12/1997 Corder 5,434,601 A 7,1995 Tamura 5,704,366 A 11/1998 Saltzstein et al. 5,434,607 A 8,1995 Przygoda, Jr. et al. 5,704,922 A 11/1998 Tacklind et al. 5,441,047 A 8,1995 Parloco 5,704,922 A 11/1998 Brown 5,441,047 A 8,1995 David et al. 5,704,922 A 11/1998 Brown 5,447,221 A 10/1995 Kingsbury 5,710,178 A 11/1998 Lagarde et al. 5,447,222 A 10/1995 Wing 5,710,918 A 11/1998 Lagarde et al. 5,456,626 A 10/1995 Smith, Jr. et al. 5,714,319 A 2/1998 Joutel et al. 5,456,628 A 11/1995 Unger 5,715,431 A 2/1998 Wood et al. 5,467,226 A 11/1995 Tamura 5,717,733 A 2/1998 Dyer et al. 5,471,039 A 11/1995 Inviru, Ir. et al. 5,720,733 A 2/1998 Brown 5,483,212 A 1/1995 Inviru, Ir. et al. 5,720,733 A 3/1998 Brown 5,483,161 A 1/1996 Brooks et al. 5,722,4 | | | | | | | | 5.431.691 A 7.1995 Saell et al. 5,692,906 A 121997 Coler Coler Coler 5.434.611 A 7.1995 Tamura 5,704,366 A 1/1998 Satzstein et al. 5,438,607 A 8/1995 Przygoda, Jr. et al. 5,704,366 A 1/1998 Vandenbelt et al. 5,438,938 A 8/1995 Parygoda, Jr. et al. 5,704,902 A 1/1998 Vandenbelt et al. 5,441,047 A 8/1995 David et al. 5,704,902 A 1/1998 Samid 5,440,331 A 9/1995 Kingsbury 5,710,178 A 1/1998 Samid 5,454,722 A 10/1995 Wind 5,711,297 A 1/1998 Samid 5,456,609 A 10/1995 McIntyre 5,714,319 A 2/1998 Marlin 5,456,609 A 10/1995 Smith, Jr. et al. 5,715,451 A 2/1998 Marlin 5,467,209 A 11/1995 Chaco 5,717,739 A 2/1998 Dyre et al. 5,471,039 A 11/1995 Fixin, Jr. et al. 5,720,733 A 2/1998 Driscoll 5,483,236 A 11/1995 Impart et al. 5,730,734 A 2/1998 Driscoll 5,483,237 A 11/1995 Impart et al. 5,730,734 A 2/1998 Driscoll 5,483,236 A 11/1995 Impart et al. | | | 5,687,734 | A | | | | 5.431.691 A 7.1995 Saell et al. 5.692.906 A 121997 Corder 5.434.611 A 7.1995 Tamura 5.704.366 A 11/998 Satzstein et al. 5.438.607 A 8.1995 Przygoda, Jr. et al. 5.704.366 A 11/998 Vandenbelt et al. 5.438.808 A 8.1995 Przygoda, Jr. et al. 5.704.302 A 11/998 Vandenbelt et al. 5.441.047 A 8.1995 David et al. 5.704.922 A 11/998 Samid 5.441.047 A 8.1995 Such de tal. 5.704.922 A 11/998 Samid 5.440.472 A 10.1995 Ward Kingsbury 5.710.918 A 11/998 Samid 5.454.722 A 10.1995 Ward McIntyre 5.711.297 A 11/998 Bitif 5.455.6692 A 10.1995 Smith, Jr. et al. 5.715.481 A 2.1998 Marlin 5.467.269 A 11/1995 Chaco 5.717.393 A 2.1998 Dyer et al. 5.477.09 A 11/1995 Flaten 5.717.791 A 2.1998 Brown 5.483.276 A 11/1995 Irwin, Jr. et al. 5.720.713 A 2.1998 Brown 5.483.276 A 11/1995 Brown Stallman et al. 5.730.634 A 3.1998 Powell 5.488.281 A 1/1996 Walkingsbav | 5,431,690 A 7/1995 | Schaldach et al. | 5,689,652 | A | 11/1997 | Lupien et al. | | 5.434.611 A 7/1995 Tamura 5.704.366 A J.1998 Saltzstein et al. 5.438.697 A 8/1995 Falcon 5.704.366 A J.1998 Vandenbelt et al. 5.438.983 A 8/1995 Falcon 5.704.902 A J.1998 Vandenbelt et al. 5.441.047 A 8/1995 David et al. 5.704.902 A J.1998 Brown 5.445.722 A 10/1995 Kingsbury 5.710.178 A J.1998 Baradiet al. 5.454.722 A 10/1995 Holland et al. 5.711.2918 A J.1998 Lagarde et al. 5.454.722 A 10/1995 Melatry 5.714.319 A 21998 Jourtel et al. 5.456.606 A 10/1995 Smith, Jr. et al. 5.714.319 A 21998 Mord et al. 5.465.082 A 11/1995 Chaco 5.717.739 A 21998 Wood et al. 5.471.323 A 11/1995 Irwin, Jr. et al. 5.720.7139 A 21998 Brown 5.483.12 A 11/1995 Irwin, Jr. et al. 5.720.733 A 21998 Brown 5.471 | | | | | | 1 | | 5.438.607 A 8/1995 Przygoda, Jr. et al. 5.704.902 A 1/1998 Tacklind et al. 5.441.047 A 8/1995 David et al. 5.704.902 A 1/1998 Brown 5.441.047 A 8/1995 Kingsbury 5.710.178 A 1/1998 Brown 5.444.722 A 10/1995 Kuch 5.711.297 A 1/1998 Light 5.456.602 A 10/1995 McIntyre 5.714.319 A 2/1998 Mode et al. 5.456.602 A 10/1995 Smith, Jr. et al. 5.715.451 A 2/1998 Mode et al. 5.465.082 A 11/1995 Chaco 5.717.739 A 2/1998 Dyce et al. 5.471.039 A 11/1995 Flace 5.717.731 A 2/1998 Dyce et al. 5.471.1382 A 11/1995 Flace 5.722.418 A 3/1998 Brown 5.488.412 A 11/1995 Main et al. < | · / / | | , , | | | | | 5.438,983 A 8 (1995) Pavid et al. 5.704,902 A J (1998) Vandenbelt et al. 5.441,047 A 8 (1995) David et al. 5.704,922 A J (1998) Samid 5.449,334 A 9 (1995) Kingsbury 5.710,918 A J (1998) Samid 5.454,721 A 10 (1995) Holland et al. 5.711,297 A J (1998)
Bamid 5.456,606 A 10 (1995) McIntyre 5.714,319 A 2 (1998) Marlin 5.456,606 A 10 (1995) Smith, Jr. et al. 5.715,451 A 2 (1998) Marlin 5.456,602 A 10 (1995) Chaco 5.715,823 A 2 (1998) Wood et al. 5.465,082 A 11 (1995) Chaco 5.717,739 A 2 (1998) Brown 5.471,382 A 11 (1995) Tallman et al. 5.720,713 A 2 (1998) Brown 5.471,382 A 1 (1995) Tallman et al. 5.722,418 A 3 (1998) Brown 5.483,276 A 1 (1995) Majeti et al. 5.730,124 A 3 (1998) Symmatchi 5.488,423 A 1 (1996) Kaish 5,730,654 A 3 (1998) Symmatchi 5.502,2636 A 3 (1996) Clarke 5,732,696 A 3 (1998) Fischer 5.502,276 A 3 (1996) Fischer 5,734,413 A | | | , , | | | | | 5,441,047 A 8,1995 David et al. 5,704,922 A J.1998 Brown 5,449,34 A 9,1995 Kingsbury 5,710,178 A 1/1998 Lagarde et al. 5,454,722 A 10/1995 Kuch 5,710,218 A 1/1998 Lagarde et al. 5,456,606 A 10/1995 McIntyre 5,714,319 A 2/1998 Marlin 5,456,602 A 10/1995 Smith, Jr. et al. 5,715,823 A 2/1998 Marlin 5,465,082 A 11/1995 Claco 5,717,373 A 2/1998 Dyer et al. 5,467,089 A 11/1995 Flaten 5,717,373 A 2/1998 Driscoll 5,471,039 A 11/1995 Flaten 5,717,373 A 2/1998 Driscoll 5,471,382 A 11/1995 Tallman et al. 5,722,418 A 3/1998 Brown 5,483,276 A 11/1996 Majeri et al. 5,722,418 A 3/1999 Powell 5,488,423 A 11/1996 Majeri et al. 5,732,696 A 3/1998 Rapomort et al. 5,502,263 A 3/1996 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 5,449,334 A 9/1995 Kingsbury 5,710,318 A 1/1998 Samid 5,454,721 A 10/1995 Kuch 5,710,918 A 1/1998 Ilifility 5,456,606 A 10/1995 McIntyre 5,714,319 A 2/1998 Marlin 5,456,602 A 10/1995 Smith, Ir, et al. 5,715,3823 A 2/1998 Marlin 5,465,082 A 11/1995 Chaco 5,717,373 A 2/1998 Devel et al. 5,467,026 A 11/1995 Chaco 5,717,373 A 2/1998 Driscoll 5,471,328 A 11/1995 Flaten 5,717,733 A 2/1998 Brown 5,447,328 A 11/1995 Flaten 5,717,913 A 2/1998 Brown 5,448,312 A 11/1995 Brokes et al. 5,722,133 A 3/1998 Brown 5,488,423 A 1/1996 Broks et al. 5,732,696 <t< td=""><td></td><td></td><td>, ,</td><td></td><td></td><td></td></t<> | | | , , | | | | | 5.454,721 A 10/1995 Kuch 5,710,918 A 1/1998 Lagarde et al. 5.454,722 A 10/1995 Holland et al. 5,711,297 A 1/1998 Bliff 5.456,606 A 10/1995 Smith, Jr. et al. 5,715,451 A 2/1998 Marlin 5.456,608 A 10/1995 Clager 5,715,451 A 2/1998 Wood et al. 5.465,082 A 11/1995 Chaco 5,717,739 A 2/1998 Dyre et al. 5.467,269 A 11/1995 Chaco 5,717,913 A 2/1998 Dyre et al. 5.471,339 A 11/1995 Tallman et al. 5,720,733 A 2/1998 Brown 5.471,382 A 11/1995 Brooks et al. 5,727,153 A 3/1998 Powell 5.488,412 A 1/1996 Majeti et al. 5,730,654 A 3/1998 Powell 5.488,423 A 1/1996 Majeti et al. 5,732,709 A 3/1998 Rapoport et al. 5.502,726 A 3/1996 Fischer 5,734,414 A 3/1998 Fire 5.502,726 A 3/1996 Fischer 5,734,414 A 3/1998 Fire 5.517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Brown et al. 5.519,433 A 5/1996 Gonick et al. 5,760,771 A 5/1998 Brown et al. | | | | | | | | 5.445,4722 A 10/1995 Holland et al. 5,711,297 A 1/1998 Bliff 5.456,6692 A 10/1995 Smith, Jr. et al. 5,715,451 A 2/1998 Marlin 5.458,123 A 10/1995 Chaco 5,715,823 A 2/1998 Wood et al. 5.465,082 A 11/1995 Chaco 5,717,913 A 2/1998 Dyer et al. 5.467,029 A 11/1995 Flaten 5,717,913 A 2/1998 Drown 5.471,382 A 11/1995 Flaten 5,720,733 2/1998 Brown 5.488,423 A 1/1996 Brolosk et al. 5,722,418 A 3/1998 Powell 5.502,636 A 3/1996 Kalsh 5,732,606 A 3/1998 Ramulchi 5.502,636 A 3/1996 Kalsh 5,732,709 A 3/1998 Rapport et al. 5.504,519 A 4/1996 Remillard 5,749,413 A | | | , , | | | | | 5.456,606 A 10/1995 McIntyre 5,714,319 A 2/1998 Joutel et al. 5.456,692 A 10/1995 Unger 5,715,451 A 2/1998 Wood et al. 5.465,082 A 11/1995 Chaco 5,715,823 A 2/1998 Wood et al. 5.467,269 A 11/1995 Flaten 5,717,739 A 2/1998 Driscoll 5.471,039 A 11/1995 Irwin, Jr. et al. 5,720,733 A 2/1998 Drown 5.471,382 A 11/1996 Brooks et al. 5,722,418 A 3/1998 Brown 5.483,276 A 1/1996 Majeti et al. 5,730,124 A 3/1998 Powell 5.488,412 A 1/1996 Walkingshaw et al. 5,730,654 A 3/1998 Brown 5.501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Brown 5.502,636 A 3/1996 Fischer 5,732,709 A 3/1998 Brown 5.502,767 A 3/1996 Pischer 5,734,413 A 3/1998 Lappington et al. 5.512,037,736 A 5/1996 McAndrew et al. 5,754,740 A 5/1998 Withers 5.518,001 A 5/1996 Sonick et al. 5,752,740 A 5/1998 Withers 5.519,433 A 5/1999 Gerickson 5,782,234 A 7/1998 Raymond et al. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 5,456,692 A 10/1995 Smith, Jr. et al. 5,715,431 A 2/1998 Wood et al. 5,458,123 A 10/1995 Unger 5,715,823 A 2/1998 Wood et al. 5,465,082 A 11/1995 Flaten 5,717,739 A 2/1998 Dyer et al. 5,471,382 A 11/1995 Flaten 5,717,731 A 2/1998 Brown 5,483,412 A 11/1995 Frooks et al. 5,722,418 A 3/1998 Brown 5,488,412 A 11/1996 Majeti et al. 5,730,654 A 3/1998 Vamauchi 5,501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Rapporet et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Rapporet et al. 5,502,726 A 3/1996 Remillard 5,732,294 A 3/1998 Rapporet et al. 5,517,405 A 5/1996 Remillard | 5,454,722 A 10/1995 | Holland et al. | 5,711,297 | A | 1/1998 | Iliff | | 5.488,123 A 10/1995 Unger \$7,115,823 A 2/1998 Wood et al. 5.465,082 A 11/1995 Chaco \$7,117,319 A 2/1998 Dyer et al. 5.467,1039 A 11/1995 Flaten \$7,177,313 A 2/1998 Brown 5.471,382 A 11/1995 Tallman et al. \$7,20,733 A 2/1998 Brown 5.483,276 A 1/1996 Brooks et al. \$7,27,153 A 3/1998 Brown 5.488,423 A 1/1996 Walkingshaw et al. \$7,30,124 A 3/1998 Brown 5.501,231 A 3/1996 Kaish \$7,32,696 A 3/1998 Brown 5.502,726 A 3/1996 Clarke \$7,32,279 A 3/1998 Tacklind et al. 5,502,763 A 3/1996 Clarke \$7,34,413 A 3/1998 Tacklind et al. 5,519,431 A 3/1996 McAndrew et al. \$7 | 5,456,606 A 10/1995 | McIntyre | 5,714,319 | A | 2/1998 | Joutel et al. | | 5.488,123 A 10/1995 Unger \$7,115,823 A 2/1998 Wood et al. 5.465,082 A 11/1995 Chaco \$7,117,319 A 2/1998 Dyer et al. 5.467,1039 A 11/1995 Flaten \$7,177,313 A 2/1998 Brown 5.471,382 A 11/1995 Tallman et al. \$7,20,733 A 2/1998 Brown 5.483,276 A 1/1996 Brooks et al. \$7,27,153 A 3/1998 Brown 5.488,423 A 1/1996 Walkingshaw et al. \$7,30,124 A 3/1998 Brown 5.501,231 A 3/1996 Kaish \$7,32,696 A 3/1998 Brown 5.502,726 A 3/1996 Clarke \$7,32,279 A 3/1998 Tacklind et al. 5,502,763 A 3/1996 Clarke \$7,34,413 A 3/1998 Tacklind et al. 5,519,431 A 3/1996 McAndrew et al. \$7 | 5.456.692 A 10/1995 | Smith, Jr. et al. | 5.715.451 | Α | 2/1998 | Marlin | | 5,465,082 A 11/1995 Chaco 5,717,739 A 2/1998 Driscoll 5,467,269 A 11/1995 Flaten 5,717,731 A 2/1998 Brown 5,471,382 A 11/1995 Flaten 5,722,733 A 2/1998 Brown 5,483,276 A 1/1996 Brooks et al. 5,722,713 A 3/1998 Powell 5,488,412 A 1/1996 Majeti et al. 5,730,624 A 3/1998 Brown 5,502,31 A 3/1996 Kaish 5,732,696 A 3/1998 Brown 5,502,726 A 3/1996 Fischer 5,732,709 A 3/1998 Koda et al. 5,512,131 A 3/1996 Fischer 5,732,413 A 5/1998 Koda et al. 5,512,032 A 3/1996 Sechler 5,742,413 A 5/1998 Kukuo et al. 5,512,150 A 3/1996 Sechler 5,782,234 A | | | | | 2/1998 | Wood et al. | | 5,467,269 A 11/1995 Irluin, Jr. et al. 5,717,913 A 2/1998 Brown 5,471,382 A 11/1995 Irwin, Jr. et al. 5,722,418 A 3/1998 Brown 5,483,276 A 1/1996 Majeti et al. 5,722,418 A 3/1998 Powell 5,488,412 A 1/1996 Majeti et al. 5,730,654 A 3/1998 Prowell 5,501,231 A 3/1996 Kaisish 5,732,696 A 3/1998 Rapoport et al. 5,502,636 A 3/1996 Clarke 5,732,696 A 3/1998 Rappington et al. 5,502,636 A 3/1996 Fischer 5,734,413 A 3/1998 Lappington et al. 5,502,726 A 3/1996 McAndrew et al. 5,732,234 A 5/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Fickon 5,732,234 A 6/1996 Erickson | | | | | | | | 5,471,039 A 11/1995 Trwin, Jr. et al. 5,720,733 A 2/1998 Brown 5,471,382 A 11/1996 Brooks et al. 5,722,148 A 3/1998 Brooks et al. 5,488,412 A 1/1996 Malgeti et al. 5,730,124 A 3/1998 Yamauchi 5,488,423 A 3/1996 Kaish 5,730,654 A 3/1998 Rapport et al. 5,502,726 A 3/1996 Kaish 5,732,696 A 3/1998 Tacklind et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Tacklind et al. 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,518,001 A 5/1996 Fischer 5,734,413 A 5/1998 Withers 5,519,038 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,519,038 A 5/1996 Snell <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td>•</td> | | | , , | | | • | | 5,471,382 A 11/1995 Ballman et al. 5,722,418 A 3/1998 Powell 5,483,276 A 1/1996 Brooks et al. 5,730,124 A 3/1998 Powell 5,488,412 A 1/1996 Majeti et al. 5,730,124 3/1998 Brown 5,501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Rapoport et al. 5,502,636 A 3/1996 Clarke 5,732,709 A 3/1998 Tacklind et al. 5,502,636 A 3/1996 Clarke 5,732,709 A 3/1998 Tacklind et al. 5,504,6319 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,519,058 A 5/1996 Gonick et al. 5,762,740 A 5/1998 Elwhocka et al. 5,524,333 A 6/1996 Elckson 5 | | | | | | | | 5,483,276 A 1/1996 Brooks et al. 5,727,153 A 3/1998 Powell 5,488,412 A 1/1996 Walkingshaw et al. 5,730,124 A 3/1998 Ramuchi 5,501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Rapoport et al. 5,502,726 A 3/1996 Eischer 5,734,413 A 3/1998 Tacklind et al. 5,504,519 A 4/1996 Remillard 5,732,709 A 3/1998 Kappington et al. 5,518,001 A 5/1996 Remillard 5,749,083 A 5/1998 Withers 5,518,001 A 5/1996 Remillard 5,752,234 A 5/1998 Withers 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,053 A 5/1966 Secler 5,772,585 A 6/1998 Blonder et al. 5,524,637 A 6/1966 Secler< | | | | | | | | 5,488,412 A 1/1996 Majeti et al. 5,730,124 A 3/1998 Brown 5,488,423 A 1/1996 Kaish 5,730,654 A 3/1998 Brown 5,501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Rappoprt et al. 5,502,636 A 3/1996 Fischer 5,732,709 A 3/1998 Tacklind et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Koda et al. 5,504,519 A 4/1996 Remillard 5,744,013 A 3/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Fukuoka et al. 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,524,637 A 6/1996 Eappington et al. 5,772,882 A 6/1998 Blonder et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,536,249 A 7/1996 Abbondanza 5,782,581 A 7/1998 Brown et al.
5,544,649 A 8/1996 Gould 5,791,342 A 8/1998 Woodard 5,544,649 A 8/1996 Boundan et al. 5,792,117 A 8/1998 Woodard 5,546,6943 A 8/1996 Boundan et al. 5,793,369 A 8/19 | | | | | | | | 5,488,423 A 1/1996 Kaish 5,732,696 A 3/1998 Rapoport et al. 5,501,231 A 3/1996 Clarke 5,732,696 A 3/1998 Tacklind et al. 5,502,636 A 3/1996 Clarke 5,732,709 A 3/1998 Tacklind et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Lappington et al. 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,518,001 A 5/1996 McAndrew et al. 5,752,744 A 5/1998 Withers 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,433 A 5/1996 Sechler 5,772,585 A 6/1998 Lavin et al. 5,522,332 A 6/1996 Sechler 5,788,822 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Abbondanza 5,785,260 A 7/1998 Raymond et al. 5,542,404 A 8/1996 Goldman et al. 5,792,117 A 8/1998 Woodard 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Woodard 5,550,575 A 8/1996 Gould 5,792,117 A 8/1998 Brown 5,550,575 A 8/1996 Gould 5,794,219 A 8/1998 Brown <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 5,501,231 A 3/1996 Kaish 5,732,696 A 3/1998 Rapoport et al. 5,502,636 A 3/1996 Fischer 5,732,709 A 3/1998 Tacklind et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Lappington et al. 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Fukuoka et al. 5,519,081 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,433 A 5/1996 Gonick et al. 5,772,2585 A 6/1998 Blonder et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Raymond et al. 5,527,239 A 6/1996 Erickson 5,785,650 A 7/1998 Brown et al. 5,532,403 A 7/1996 Goldman et al. 5,787,822 A 7/1998 Raymond et al. 5,542,420 A 8/1996 Goldman et al. 5,782,650 A 7/1998 Rown 5,544,649 A 8/1996 Goldman et al. 5,792,117 A 8/1998 Brown 5,550,575 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,553,609 A 9/1996 Brown 5,560,333 A | | | , , | | | | | 5,502,636 A 3/1996 Clarke 5,732,709 A 3/1998 Tacklind et al. 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Lappington et al. 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,518,001 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,518,001 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,038 A 5/1996 Gonick et al. 5,772,885 A 6/1998 Blonder et al. 5,519,433 A 5/1996 Sechler 5,778,882 A 7/1998 Plow Brown et al. 5,524,637 A 6/1996 Erickson 5,788,814 A 7/1998 Brown et al. 5,527,239 A 6/1996 Abbondanza 5,785,650 A 7/1998 Prown 5,542,420 A 8/1996 Goldman et al. 5,789,1342 A 8/1998 Woodard 5,544,649 A 8/1996 Ould 5,791,342 A 8/1998 Woodard 5,550,575 A 8/1996 Gold 5,794,219 A 8/1998 Woodard 5,550,575 A 8/1996 Gold 5,794,219 A 8/1998 Woodard 5,550,575 A 8/1996 Gold 5,794,219 A 8/1998 Woodard | | | | | | | | 5,502,726 A 3/1996 Fischer 5,734,413 A 3/1998 Lappington et al. 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Withers 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,518,001 A 5/1996 Snell 5,754,740 A 5/1998 Fukuoka et al. 5,519,433 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,523,232 A 6/1996 Sechler 5,772,585 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Prown et al. 5,530,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakasa et al. 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Brown 5,544,649 A 8/1996 Tacklind et al. 5,792,117 A 8/1998 Brown 5,550,575 A 8/1996 Tacklind et al. 5,794,251 A 8/1998 Brown 5,552,521 A 8/1996 Tacklind et al. 5,794,251 A 8/1998 Brown 5,550,575 A 8/1996 Tacklind et al. 5,796,393 A 8/1998 Brown 5,558,69,212 A 10/1996 Brown 5,800,458 A 9/ | 5,501,231 A 3/1996 | Kaish | | | | | | 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,518,001 A 5/1996 Snell 5,754,740 A 5/1998 Fukuoka et al. 5,519,433 A 5/1996 Lappington et al. 5,772,585 A 6/1998 Blonder et al. 5,523,232 A 6/1996 Sechler 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,650 A 7/1998 Raymond et al. 5,527,239 A 6/1996 Castellano et al. 5,785,650 A 7/1998 Nakasaka et al. 5,536,249 A 7/1996 Castellano et al. 5,791,342 A 8/1998 Woodard 5,546,943 A 8/1996 Goldman et al. 5,793,969 A 8/1998 Kamentsky et al. 5,550,575 A 8 | 5,502,636 A 3/1996 | Clarke | 5,732,709 | Α | 3/1998 | Tacklind et al. | | 5,504,519 A 4/1996 Remillard 5,749,083 A 5/1998 Koda et al. 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,518,001 A 5/1996 Gonick et al. 5,752,4740 A 5/1998 Blonder et al. 5,519,433 A 5/1996 Lappington et al. 5,772,585 A 6/1998 Raymond et al. 5,523,432 A 6/1996 Sechler 5,778,882 A 7/1998 Raymond et al. 5,527,239 A 6/1996 Castellano et al. 5,785,650 A 7/1998 Raymond et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Kamentsky et al. 5,550,575 A 8/199 | 5,502,726 A 3/1996 | Fischer | 5,734,413 | A | 3/1998 | Lappington et al. | | 5,517,405 A 5/1996 McAndrew et al. 5,752,234 A 5/1998 Withers 5,518,001 A 5/1996 Snell 5,754,740 A 5/1998 Fukuoka et al. 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,523,232 A 6/1996 Sechler 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Raymond et al. 5,527,239 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakasaka et al. 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Brown 5,544,649 A 8/1996 Goldd 5,792,117 A 8/1998 Brown 5,550,575 A 8/1996 Tackli | 5,504,519 A 4/1996 | Remillard | 5,749,083 | Α | | | | 5,518,001 A 5/1996 Snell 5,754,740 A 5/1998 Fukuoka et al. 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,433 A 5/1996 Lappington et al. 5,772,585 A 6/1998 Raymond et al. 5,522,322 A 6/1996 Sechler 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,536,249 A 7/1996 Obbondanza 5,785,650 A 7/1998 Nakao 5,544,649 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,544,649 A 8/1996 Gould 5,792,117 A 8/1998 Brown 5,549,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,211 A 8/1998 Watanabe et al. 5,554,429 A 10/1996 Evers et al. 5,796,393 A 8/1998 Watanabe et al. 5,564,429 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Kawai et al. 5,802,534 A 9/1998 Wingrove 5,572,646 A 11/1996 Kawai et al. 5,802,534 A 9/1998 | 5.517.405 A 5/1996 | McAndrew et al. | 5,752,234 | Α | 5/1998 | Withers | | 5,519,058 A 5/1996 Gonick et al. 5,760,771 A 6/1998 Blonder et al. 5,519,433 A 5/1996 Lappington et al. 5,772,585 A 6/1998 Raymond et al. 5,523,232 A 6/1996 Sechler 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,527,239 A 6/1996 Obbondanza 5,785,650 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,787,295 A 7/1998 Woodard 5,544,649 A 8/1996 Gould 5,792,117 A 8/1998 Woodard 5,549,117 A 8/1996 Gould 5,793,969 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,219 A 8/1998 Watanabe et al. 5,551,609 A 9/1996 Chen et al. 5,794,211 A 8/1998 Watanabe et al. 5,552,621 A 10/1996 Bornn et al. 5,799,318 A 8/1998 Watanabe et al. 5,554,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,572,421 A 10/1996 Brown 5,802,534 A 9/1998 Wingrove 5,572,482 A 11/1996 Kawai et al. 5,806,057 A 9/19 | | | | | | | | 5,519,433 A 5/1996 Lappington et al. 5,772,585 A 6/1998 Lavin et al. 5,523,232 A 6/1996 Erickson 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Abbondanza 5,782,814 A 7/1998 Akasaka et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,546,649 A 8/1996 Gould 5,793,969 A 8/1998 Kamentsky et al. 5,540,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,251 A 8/1998 MacNaughton 5,554,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Cardinal et al. 5,572,421 A 10/1996 | | | | | | | | 5,523,232 A 6/1996 Erickson 5,778,882 A 7/1998 Raymond et al. 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,527,239 A 6/1996 Abbondanza 5,785,650 A 7/1998 Nakasa et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Brown 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Brown 5,559,175 A 8/1996 West et al. 5,794,219 A 8/1998 Brown 5,553,609 A 9/1996 Chen et al. 5,794,211 A 8/1998 Watanabe et al. 5,553,603 A 9/1996 Evers et al. 5,799,318 A 8/1998 MacNaughton 5,552,621 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,572,421 A 11/1996 Kawai et al. 5,802,494 A 9/1998 Hatayama et al. 5,574,828 A 11/1996 Kawai et al. 5,812,933 A 9/1998 Brudny et al. 5,576,952 A 11/1996 McIlroy et al. 5,812,933 A 1 | | Lannington et al | | | | | | 5,524,637 A 6/1996 Erickson 5,782,814 A 7/1998 Brown et al. 5,527,239 A 6/1996 Abbondanza 5,785,650 A 7/1998 Akasaka et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Brown 5,549,117 A 8/1996 West et al. 5,794,219 A 8/1998 Brown 5,553,609 A 9/1996 West et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Evers et al. 5,796,393 A 8/1998 MacNaughton 5,556,3429 A 10/1996 Brown et al. 5,800,458 A 9/1998 Wingrove 5,572,421 A 11/1996 Brown 5,802,534 A 9/1998 Hatayama et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,590,648 A 1/1997 Miguel et al. 5,812,983 A 9/1998 Worthington et al. 5,593,349 A 1/1997 Miguel et al. 5,822,544 A | | | | | | | | 5,527,239 A 6/1996 Abbondanza 5,785,650 A 7/1998 Akasaka et al. 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,544,649 A
8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,219 A 8/1998 Brown 5,553,609 A 9/1996 Chen et al. 5,794,251 A 8/1998 Watanabe et al. 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Wingrove 5,564,429 A 10/1996 Brown 5,802,494 A 9/1998 Wingrove 5,572,646 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,574,828 A 11/1996 Kawai et al. 5,810,747 A 9/1998 Brudny et al. 5,593,378 A 12/1996 McIlroy et al. 5,810,747 A 9/1998 Brudny et al. 5,593,349 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Eisenberg et al. 5,825,283 A | | | | | | | | 5,536,249 A 7/1996 Castellano et al. 5,787,295 A 7/1998 Nakao 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Woodard 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Brown 5,549,117 A 8/1996 West et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 Chen et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Evers et al. 5,796,393 A 8/1998 MacNaughton 5,554,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Hatayama et al. 5,572,421 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Brudny et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,593,390 A 1/1997 Mitchell et al. 5,822,715 A 10/1998 Worthington et al. 5,594,637 A 1/1997 Eisenberg et al. 5,822,718 A 10/1998 Brown 5,596,994 A 1/1 | | | | | | | | 5,542,420 A 8/1996 Goldman et al. 5,791,342 A 8/1998 Brown 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Ramentsky et al. 5,549,117 A 8/1996 West et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,211 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Evers et al. 5,796,393 A 8/1998 MacNaughton 5,554,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Wingrove 5,572,421 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Kawai et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Wcllroy et al. 5,810,747 A 9/1998 Brudny et al. 5,593,378 A 12/1996 Mcllroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,593,390 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,825,283 A | | | | | | | | 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Kamentsky et al. 5,549,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,219 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Chen et al. 5,796,393 A 8/1998 MacNaughton 5,558,638 A 9/1996 Bornn et al. 5,799,318 A 8/1998 Wingrove 5,569,212 A 10/1996 Brown 5,800,458 A 9/1998 Wingrove 5,572,421 A 11/1996 Altman et al. 5,802,494 A 9/1998 Hatayama et al. 5,574,828 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,810,747 A 9/1998 Brudny et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Mansfield et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Worthington et al. 5,594,637 A 1/1997 Bro 600/545 5,823,448 A 10/1998 Brown 5,596,994 A 1/1997 Redford et | | | | | | | | 5,544,649 A 8/1996 David et al. 5,792,117 A 8/1998 Brown 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Kamentsky et al. 5,549,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Evers et al. 5,796,393 A 8/1998 MacNaughton 5,554,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Wingrove 5,572,421 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Kawai et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 WcIlroy et al. 5,810,747 A 9/1998 Brudny et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Mansfield et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Worthington et al. 5,594,637 A 1/1997 Bro 600/545 5,823,448 A 10/1998 Brown 5,597,307 A 1/1997 Redford et | | | | | | | | 5,546,943 A 8/1996 Gould 5,793,969 A 8/1998 Kamentsky et al. 5,549,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Chen et al. 5,796,393 A 8/1998 MacNaughton 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Wingrove 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Wingrove 5,572,421 A 11/1996 Kawai et al. 5,802,534 A 9/1998 Hatayama et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 WcIlroy et al. 5,812,983 A 9/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,822,343 A 10/1998 Worthington et al. 5,594,637 A 1/1997 Bro 600/545 5,823,943 A 10/1998 Brown 5,597,307 A 1/1997 R | 5,544,649 A 8/1996 | David et al. | 5,792,117 | A | | | | 5,549,117 A 8/1996 Tacklind et al. 5,794,219 A 8/1998 Brown 5,550,575 A 8/1996 West et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Chen et al. 5,796,393 A 8/1998 MacNaughton 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Cardinal et al. 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Wingrove 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 WcIlroy et al. 5,812,983 A 9/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Castellano et al. 5,822,715 A 10/1998 Camhi 5,594,637 A 1/1997 Bro 600/545 5,828,943 A 10/1998 Brown 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | 5,546,943 A 8/1996 | | | | | | | 5,550,575 A 8/1996 West et al. 5,794,251 A 8/1998 Watanabe et al. 5,553,609 A 9/1996 Chen et al. 5,796,393 A 8/1998 MacNaughton 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Cardinal et al. 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,572,646 A 11/1996 Hayward et al. 5,806,057 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,812,983 A 9/1998 Mansfield et al. 5,593,349 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Worthington et al. 5,594,637 A 1/1997 Eisenberg et al. 5,825,283 A 10/1998 Goodman 5,596,994 A 1/1997 Redford et al. 5,828,943 A 10/1998 Brown | | | | | | | | 5,553,609 A 9/1996 Chen et al. 5,796,393 A 8/1998 MacNaughton 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Cardinal et al. 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Gormley et al. 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,810,747 A 9/1998 Brudny et al. 5,583,758 A 12/1996 McIlroy et al. 5,812,983 A 9/1998 Mansfield et al. 5,593,349 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Goodman 5,596,994 A 1/1997 Bro | , , | | | | | | | 5,558,638 A 9/1996 Evers et al. 5,799,318 A 8/1998 Cardinal et al. 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Brudny et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,593,349 A 1/1997 Miguel et al. 5,822,544 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Goodman 5,596,994 A 1/1997 Bro | | | , , | | | | | 5,564,429 A 10/1996 Bornn et al. 5,800,458 A 9/1998 Wingrove 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Brudny et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,593,349 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Goodman 5,596,994 A 1/1997 Bro 600/545 5,828,943 A 10/1998 Brown 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | | | | | | | | 5,569,212 A 10/1996 Brown 5,802,494 A 9/1998 Kuno 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Bro 600/545 5,828,943 A 10/1998 Brown 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | | | | | | | | 5,572,421 A 11/1996 Altman et al. 5,802,534 A 9/1998 Hatayama et al. 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998
Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro 600/545 5,828,943 A 10/1998 Brown 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | | | | | | | | 5,572,646 A 11/1996 Kawai et al. 5,806,057 A 9/1998 Gormley et al. 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,715 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro 600/545 5,828,943 A 10/1998 Brown 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | | | | | | | | 5,574,828 A 11/1996 Hayward et al. 5,810,747 A 9/1998 Brudny et al. 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,576,952 A 11/1996 Stutman et al. 5,812,983 A 9/1998 Kumagai 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | 5,574,828 A 11/1996 | Hayward et al. | | | 9/1998 | Brudny et al. | | 5,583,758 A 12/1996 McIlroy et al. 5,819,735 A 10/1998 Mansfield et al. 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,590,648 A 1/1997 Mitchell et al. 5,822,544 A 10/1998 Chaco et al. 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,593,349 A 1/1997 Miguel et al. 5,822,715 A 10/1998 Worthington et al. 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,593,390 A 1/1997 Castellano et al. 5,825,283 A 10/1998 Camhi 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,594,637 A 1/1997 Eisenberg et al. 5,827,180 A 10/1998 Goodman 5,596,994 A * 1/1997 Bro | | | | | | | | 5,596,994 A * 1/1997 Bro | | | | | | | | 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | 5,594,637 A 1/1997 | Eisenberg et al. | 5,827,180 | A | | | | 5,597,307 A 1/1997 Redford et al. 5,832,448 A 11/1998 Brown | 5,596,994 A * 1/1997 | Bro 600/545 | 5,828,943 | A | 10/1998 | Brown | | | | | | | | | | 5,055,050 A 11/17/0 Halfel et al. | | | | | | | | | 5,001,155 II 4/1557 | √~ J | 5,055,050 | 4.8 | 11/1/20 | Tibiler et al. | ## US 8,140,663 B2 Page 4 | 5 0 40 0 20 A | | | | | | | |--|--|--|--
--|--|--------------------| | 5,840,020 A | | Heinonen et al. | 6,330,426 B2 | | Brown et al. | | | 5,842,976 A | | Williamson | 6,334,778 B1 | 1/2002 | | | | 5,868,669 A | 2/1999 | | 6,352,523 B1 | | Brown et al. | | | 5,868,683 A | | Protopapas et al. | 6,368,273 B1* | 4/2002 | Brown | 600/300 | | 5,875,432 A | 2/1999 | Sehr | 6,370,513 B1 | 4/2002 | Kolawa et al. | | | 5,879,163 A | 3/1999 | Brown et al. | 6,375,469 B1 | 4/2002 | Brown | | | 5,882,338 A | 3/1999 | Gray | 6,379,301 B1 | 4/2002 | Worthington et a | ıl. | | 5,887,133 A | 3/1999 | Brown et al. | 6,381,577 B1 | 4/2002 | Brown | | | 5,893,077 A | 4/1999 | Griffin | 6,436,036 B1 | 8/2002 | Miller-Kovach e | t al. | | 5,893,098 A | 4/1999 | Peters et al. | 6,513,532 B2 | | Mault et al. | | | 5,897,493 A | 4/1999 | | 6,849,045 B2* | 2/2005 | Iliff | 600/300 | | 5,899,855 A | 5/1999 | | 6,968,375 B1 | 11/2005 | | | | 5,911,687 A | | Sato et al. | 7,167,818 B2 | 1/2007 | | | | 5,913,310 A | 6/1999 | | 7,168,818 B1 | | Schnell | | | 5,918,603 A | 7/1999 | | 7,305,348 B1 | 12/2007 | | | | 5,920,477 A | | Hofbert et al. | 2002/0019748 A1 | 2/2002 | | | | 5,933,136 A | 8/1999 | | 2004/0106855 A1 | 6/2004 | | | | 5,935,060 A | 8/1999 | | 2004/0107116 A1 | 6/2004 | | | | 5,940,801 A | 8/1999 | | 2004/0117207 A1 | 6/2004 | | | | 5,941,829 A | | Saltzstein et al. | 2004/0117207 A1
2004/0117208 A1 | 6/2004 | | | | 5,944,659 A | | Flach et al 600/300 | 2004/0117209 A1 | 6/2004 | | | | 5,945,651 A | | Chorosinski et al. | 2004/0117210 A1 | 6/2004 | | | | 5,950,632 A | 9/1999 | | 2004/011/210 A1 | 0/2004 | DIOWII | | | | | | FOREIG | N PATE | NT DOCUMEN | JTS | | 5,951,300 A | 9/1999 | | | | | 110 | | 5,954,641 A | | Kehr et al. | EP 0320 | | 6/1989 | | | 5,956,501 A | 9/1999 | | |)599 | 5/1990 | | | 5,960,403 A | 9/1999 | | EP 0353 | | 10/1990 | | | 5,961,446 A | | Beller et al. | EP 0461 | | 12/1991 | | | 5,966,526 A | 10/1999 | | | 3912 | 10/1992 | | | 5,971,855 A | 10/1999 | | EP 526 | 5166 | 2/1993 | | | 5,971,922 A | | Arita et al. | EP 0558 | 3975 | 9/1993 | | | 5,983,003 A | | Lection et al. | EP 0653 | 3718 | 5/1995 | | | 5,983,217 A | | Khosravi-Sichani et al. | EP 676 | 5709 | 10/1995 | | | 5,985,559 A | 11/1999 | | | 5709 A2 | 10/1995 | | | 5,987,471 A | | Bodine et al. | |)727 | 11/1995 | | | 5,995,969 A | 11/1999 | Lee et al. | | 1160 | 3/1997 | | | 5,997,476 A | 12/1999 | Brown | EP 08131 | | 12/1997 | | | 5,997,502 A | 12/1999 | Reilly et al. | EP 0251 | | 1/1998 | | | 6,001,065 A | 12/1999 | DeVito | GB 2218 | | 11/1989 | | | 6,022,315 A | 2/2000 | Iliff | GB 2225 | | 6/1990 | | | 6,022,615 A | 2/2000 | Rettenbacher | JP 54005 | | 1/1979 | | | 6000 606 1 | 2/2000 | D | 31 3-1003 | | レエフィン | | | 6,023,686 A | 2/2000 | Brown | ID 5/11/6 | | 11/1070 | | | 6,023,686 A
6.024,281 A | | | JP 54146 | 5633 | 11/1979 | | | 6,024,281 A | 2/2000 | Shepley | JP 62-226 | 5633
5278 | 10/1987 | | | 6,024,281 A
6,029,138 A | 2/2000
2/2000 | Shepley
Khorasani et al. | JP 62-226
JP 62226 | 5633
5278
5278 | 10/1987
10/1987 | | | 6,024,281 A
6,029,138 A
6,032,119 A | 2/2000
2/2000
2/2000 | Shepley
Khorasani et al.
Brown et al. | JP 62-226
JP 62226
JP 5155 | 5633
5278
5278
5024 | 10/1987
10/1987
6/1993 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A | 2/2000
2/2000
2/2000
3/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266 | 5633
5278
5278
5024
5002 | 10/1987
10/1987
6/1993
10/1993 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A | 2/2000
2/2000
2/2000
3/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 | 5633
5278
5278
5024
5002
5963 | 10/1987
10/1987
6/1993
10/1993
4/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266
JP 1995407095
WO WO-8501 | 5633
5278
5278
5024
5002
5963 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266
JP 1995407095
WO WO-8501
WO WO-90/00 | 5633
5278
5278
5024
5002
5963
1667 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266
JP 1995407095
WO WO-8501
WO WO-90/00 | 5633
5278
5278
5024
5002
5963
1667
0367 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,314 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266
JP 1995407095
WO WO-8501
WO WO-90/00
WO WO-9109
WO WO-93/01 | 5633
5278
5278
5024
5002
5963
1667
0367
9374 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226
JP 62226
JP 5155
JP 5266
JP 1995407095
WO WO-8501
WO WO-90/00
WO WO-93/01
WO WO-93/01 | 5633
5278
5278
5024
5002
5963
1667
0367
9374
1489 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62220 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-93/01 WO WO-93/01 WO WO-93-02 WO WO-9302 | 5633
5278
5278
5024
5002
5963
1667
0367
9374
1489
2622 |
10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62220 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-9109 WO WO-93/01 WO WO-93-02 WO WO-93/02 WO WO-93/02 WO WO-93/02 | 5633
5278
5278
5024
5002
5963
1667
0367
9374
1489
2622
2622 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62220 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-93-02 WO WO-93-02 WO WO-95/09 | 5633
5278
5278
5024
5002
5963
1667
0367
0374
4489
2622
2622
26774 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-93/01 WO WO-93/02 WO WO-93/02 WO WO-93-02 WO WO-93-02 WO WO-93-02 WO WO-95/09 WO WO-95/09 WO WO-95/09 | 5633
5278
5278
5024
5002
5963
1667
9374
1489
2622
2622
2774
9386 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93-02 WO-95/20 WO WO-95/20 | 5633
5278
5278
5024
5002
5963
1667
70374
1489
2622
2622
5774
3386
0199 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,113,578 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93/01 WO WO-93-02 WO WO-93-02 WO WO-95/20 WO WO-95/20 WO WO-95/20 WO WO-95/20 WO WO-95/20 WO WO-95/20 | 5633
5278
5278
5024
5002
5963
1667
0367
0374
1489
1622
2622
5774
9386
91199
91199 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,314 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,113,578 A
6,113,578 A
6,138,145 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
10/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-93/01 WO WO-93-02 WO WO-93-02 WO WO-95-25 WO WO-95-25 WO WO-95-22 | 5633
5278
5278
5024
5002
5963
6667
73367
9374
1489
6622
5774
9386
91199
91131 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,113,578 A
6,138,145 A
6,144,837 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-93/01 WO WO-93/02 WO WO-93-02 WO WO-93/02 WO WO-95/20 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 | 5633
5278
5278
5024
5002
5002
5002
5002
5002
5002
5003
667
70367
70367
70374
1489
6622
6622
6622
6774
70386
70199
70199
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191
70191 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,057,758 A
6,101,478 A
6,110,148 A
6,113,578 A
6,138,145 A
6,138,145 A
6,144,837 A
6,151,586 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
10/2000
11/2000
11/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-9500 WO WO-9300 WO WO-9300 WO WO-93-02 WO WO-95-22 |
5633
5278
5278
5024
5002
5002
5003
1667
0367
0374
1489
02622
5774
0386
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199
0199 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,101,478 A
6,110,148 A
6,113,578 A
6,113,578 A
6,144,837 A
6,144,837 A
6,151,586 A
6,161,095 A | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
10/2000
11/2000
12/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-9500 WO WO-9300 WO WO-9300 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-96/07 WO WO-96/07 | 5633
5278
5278
5024
50024
50024
5002
5963
1667
9374
1489
92622
26622
26622
27774
9386
9199
91131
94447
74447
7908
5877 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,068,615 A
6,110,148 A
6,113,578 A
6,1144,837 A
6,151,586 A
6,161,095 A
6,167,362 A | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000
11/2000
12/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-93-02 WO WO-95-20 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-25 WO WO-95-25 WO WO-95-25 WO WO-96/07 WO WO-96/05 WO WO-96/05 WO WO-96/05 | 5633
5278
5278
5024
50024
5002
5963
1667
9374
4489
92622
2622
27774
9386
91199
91199
91131
9447
94908
5877 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,506 A
6,057,758 A
6,068,615 A
6,101,478 A
6,113,578 A
6,114,837 A
6,151,586 A
6,161,095 A
6,167,362 A
6,167,386 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000
11/2000
12/2000
12/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-93-02 WO WO-95/20 WO WO-95/20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-96/20 WO WO-96/20 WO WO-96/20 WO WO-96/20 WO WO-96/30 WO WO-96-36 WO WO-97-08 | 5633
5278
5278
5024
50024
5002
5963
1667
70374
1489
12622
126774
13386
10199
10199
1131
12447
74447
74908
85877
5923
3605 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,113,578 A
6,144,837 A
6,151,586 A
6,161,095 A
6,161,095 A
6,161,095 A | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
11/2000
11/2000
12/2000
12/2000
1/2000 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93/01 WO WO-93/01 WO WO-93-02 WO WO-93/02 WO WO-95/22 WO WO-95-22 WO WO-95-22 WO WO-96/25 WO WO-96/25 WO WO-96/25 WO WO-96/25 WO WO-96/25 WO WO-97-08 WO WO-97-08 | 5633
5278
5278
5278
5024
5002
5963
1667
70374
1489
1489
1622
2622
26774
19386
1999
1999
1999
1999
1999
19447
19447
19447
19447
1958
1968
1979
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988 |
10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,055,314 A
6,055,314 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,110,148 A
6,113,578 A
6,161,478 A
6,164,837 A
6,167,362 A
6,167,362 A
6,167,386 A
6,167,386 A
6,167,386 A
6,167,386 A
6,167,386 B
16,177,940 B1 | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
11/2000
11/2000
12/2000
1/2000
1/2000
1/2001
1/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93/01 WO WO-93-02 WO WO-93-02 WO WO-95/02 WO WO-95/02 WO WO-95/22 WO WO-95-22 WO WO-95/22 WO WO-96/02 WO WO-96/02 WO WO-96/02 WO WO-97-08 WO WO-97/08 WO WO-97/08 | 5633
5278
5278
5024
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
3/1997 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,055,506 A
6,057,758 A
6,101,478 A
6,110,148 A
6,113,578 A
6,113,578 A
6,144,837 A
6,151,586 A
6,161,095 A
6,167,362 A
6,167,363 B
6,167,363 B
6,167,366 B
6,167,386 A
6,168,563 B
6,177,940 B
16,186,145 B
1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
11/2000
11/2000
12/2000
1/2000
1/2001
1/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-9302 WO WO-93-02 WO WO-93-02 WO WO-95-25 WO WO-95-25 WO WO-95-25 WO WO-96/07 WO WO-96/07 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97/12 WO WO-97/12 | 5633
5278
5278
5024
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002
5002 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
3/1997
4/1997 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,113,578 A
6,113,578 A
6,1144,837 A
6,151,586 A
6,161,095 A
6,167,362 A
6,167,362 A
6,167,362 A
6,167,363 B1
6,177,940 B1
6,186,145 B1
6,189,029 B1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
11/2000
11/2000
12/2000
1/2000
1/2001
1/2001
2/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-96/07 WO WO-96/25 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97/12 WO WO-97/12 |
5633
5278
5278
5024
50024
5002
5963
1667
9374
1489
92622
26622
26774
9386
9199
91199
92131
94447
79908
5877
79908
5877
79923
3605
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
5805
58 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
11/1995
11/1995
11/1996
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,487 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,110,148 A
6,113,578 A
6,113,578 A
6,113,578 A
6,113,578 A
6,113,578 A
6,113,678 A
6,113,678 A
6,161,095 A
6,167,362 A
6,167,362 A
6,167,362 A
6,167,363 B1
6,177,940 B1
6,186,145 B1
6,189,029 B1
D439,242 S | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
9/2000
11/2000
11/2000
12/2000
1/2000
1/2001
1/2001
2/2001
3/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-20 WO-95- | 5633
5278
5278
5024
50024
5002
5963
1667
9374
1489
2622
2622
2622
2674
9386
9199
9119
92131
9447
9447
9447
94908
5877
5923
5605
52544
7738
5895
1275 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
7/1998 | | | 6,024,281 A
6,029,138 A
6,032,119 A
6,035,328 A
6,046,761 A
6,049,794 A
6,050,940 A
6,055,314 A
6,055,506 A
6,055,506 A
6,057,758 A
6,068,615 A
6,095,985 A
6,101,478 A
6,113,578 A
6,113,145 A
6,144,837 A
6,151,586 A
6,161,095 A
6,167,362 A
6,167,362 A
6,167,362 B1
6,186,145 B1
6,186,145 B1
6,186,145 B1
6,189,029 B1
0,439,242 S
6,196,970 B1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000
12/2000
12/2000
1/2001
1/2001
1/2001
1/2001
3/2001
3/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-96/07 WO WO-96/25 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97/12 WO WO-97/12 | 5633
5278
5278
5024
50024
5002
5963
1667
9374
1489
2622
2622
2622
2674
9386
9199
9119
92131
9447
9447
9447
94908
5877
5923
5605
52544
7738
5895
1275 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
11/1995
11/1995
11/1996
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998 | | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,506 A 6,057,758 A 6,068,615 A 6,101,478 A 6,113,578 A 6,113,578 A 6,113,578 A 6,113,578 A 6,114,837 A 6,151,586 A 6,161,095 A 6,167,362 A 6,167,362 A 6,167,362 A 6,167,363 B1 6,177,940 B1 6,186,145 B1 6,189,029 B1 1439,242 S 6,196,970 B1 6,210,272 B1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000
12/2000
12/2000
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001
1/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-9300 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-25 WO WO-95-20 WO WO-96-25 WO WO-97-08 WO WO-97-08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-9831 WO WO-9839 | 5633
5278
5278
5278
5024
5002
5002
5002
5002
5002
5003
667
70374
41489
22622
22622
23774
70386
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
70199
7 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
9/1998 | | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,506 A 6,057,758 A 6,068,615 A 6,101,478 A 6,113,578 A 6,113,578 A 6,114,837 A 6,1151,586 A 6,161,095 A 6,167,386 A
6,167,386 A 6,167,386 A 6,167,386 A 6,168,563 B1 6,177,940 B1 6,186,145 B1 6,189,029 B1 D439,242 S 6,196,970 B1 6,210,272 B1 6,221,012 B1 | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
5/2000
8/2000
8/2000
8/2000
10/2000
11/2000
12/2000
12/2000
1/2001
1/2001
2/2001
3/2001
3/2001
4/2001
4/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93/01 WO WO-93-02 WO WO-93-02 WO WO-95/20 WO WO-95/20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-96/20 WO WO-96/20 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-9733 WO WO-9839 WO WO-9839 WO WO-9839 | 5633
5278
5278
5024
5002
5002
5002
5002
5002
5002
5002
502
602
602
602
602
602
602
602
6 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
3/1996
8/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
7/1998
9/1998
BLICATIONS | | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,506 A 6,057,758 A 6,068,615 A 6,095,985 A 6,101,478 A 6,110,148 A 6,113,578 A 6,138,145 A 6,161,095 A 6,161,095 A 6,167,362 A 6,167,386 A 6,167,386 A 6,167,386 A 6,168,563 B1 6,177,940 B1 6,186,145 B1 6,189,029 B1 D439,242 S 6,196,970 B1 6,210,272 B1 6,221,012 B1 6,233,539 B1 | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
8/2000
8/2000
8/2000
11/2000
11/2000
12/2000
12/2000
1/2001
2/2001
2/2001
2/2001
3/2001
4/2001
4/2001
5/2001
5/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-9300 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-25 WO WO-95-20 WO WO-96-25 WO WO-97-08 WO WO-97-08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-9831 WO WO-9839 | 5633
5278
5278
5024
5002
5002
5002
5002
5002
5002
5002
502
602
602
602
602
602
602
602
6 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
3/1996
8/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
7/1998
9/1998
BLICATIONS | for Websites", | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,487 A 6,055,506 A 6,057,758 A 6,055,506 A 6,057,758 A 6,101,478 A 6,110,148 A 6,113,578 A 6,113,578 A 6,138,145 A 6,161,095 A 6,167,362 A 6,167,362 B 6,167,362 B 6,167,363 B 16,177,940 B 16,186,145 B 16,189,029 B 10439,242 S 6,196,970 B 16,210,272 B 16,221,012 B 16,223,539 B 16,2240,393 B 1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
10/2000
11/2000
12/2000
1/2000
1/2001
2/2001
3/2001
3/2001
4/2001
5/2001
5/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9109 WO WO-93/01 WO WO-93-02 WO WO-93-02 WO WO-95/20 WO WO-95/20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-96/20 WO WO-96/20 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-9733 WO WO-9839 WO WO-9839 WO WO-9839 | 5633
5278
5278
5024
5002
5963
1667
73374
1489
6262
6622
5774
9386
51199
92131
14447
7908
8877
7908
8877
7908
1447
7938
5923
3605
5605
1275
9933
HER PUI | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
8/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
7/1998
8/1998
BLICATIONS | for Websites", | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,506 A 6,057,758 A 6,068,615 A 6,095,985 A 6,101,478 A 6,110,148 A 6,113,578 A 6,138,145 A 6,161,095 A 6,161,095 A 6,167,362 A 6,167,386 A 6,167,386 A 6,167,386 A 6,168,563 B1 6,177,940 B1 6,186,145 B1 6,189,029 B1 D439,242 S 6,196,970 B1 6,210,272 B1 6,221,012 B1 6,233,539 B1 | 2/2000
2/2000
2/2000
3/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
8/2000
8/2000
8/2000
11/2000
11/2000
12/2000
12/2000
1/2001
2/2001
2/2001
2/2001
3/2001
4/2001
4/2001
5/2001
5/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95/20 WO WO-95/20 WO WO-95/20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-95-20 WO WO-96-20 WO WO-96-20 WO WO-96-20 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97-08 WO WO-97-10 WO WO-98-16 WO-98-1 | 5633
5278
5278
5024
50024
5002
5963
1667
73374
1489
2622
2622
26774
2386
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
519 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
11/1996
3/1997
3/1997
4/1997
10/1997
4/1998
7/1998
9/1998
BLICATIONS
ent Software et. 4, 1996. | | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,487 A 6,055,506 A 6,057,758 A 6,055,506 A 6,057,758 A 6,101,478 A 6,110,148 A 6,113,578 A 6,113,578 A 6,138,145 A 6,161,095 A 6,167,362 A 6,167,362 B 6,167,362 B 6,167,363 B 16,177,940 B 16,186,145 B 16,189,029 B 10439,242 S 6,196,970 B 16,210,272 B 16,221,012 B 16,223,539 B 16,2240,393 B 1 | 2/2000
2/2000
2/2000
4/2000
4/2000
4/2000
4/2000
4/2000
5/2000
5/2000
8/2000
8/2000
10/2000
11/2000
12/2000
1/2000
1/2001
2/2001
3/2001
3/2001
4/2001
5/2001
5/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-8501 WO WO-9300 WO WO-9300 WO WO-9300 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-25 WO WO-96/07 WO WO-96/07 WO WO-97/12 WO WO-97/12 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-9831 WO WO-9831 WO WO-9838 OTTI |
5633
5278
5278
5024
50024
5002
5963
1667
73374
1489
2622
2622
26774
2386
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
5199
519 | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
11/1996
3/1997
3/1997
4/1997
10/1997
4/1998
7/1998
9/1998
BLICATIONS
ent Software et. 4, 1996. | | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,487 A 6,055,586 A 6,055,7758 A 6,068,615 A 6,095,985 A 6,101,478 A 6,110,148 A 6,113,578 A 6,113,578 A 6,113,578 A 6,114,837 A 6,116,148 A 6,117,362 A 6,167,362 A 6,167,362 A 6,167,362 A 6,167,362 A 6,167,362 B 1,777,940 B 1,618,145 B 1,618,145 B 1,177,940 B 1,186,145 B 1,186,145 B 1,187,940 B 1,186,145 1,186 | 2/2000 2/2000 2/2000 2/2000 4/2000 4/2000 4/2000 4/2000 5/2000 8/2000 8/2000 8/2000 10/2000 11/2000 12/2000 12/2000 12/2001 2/2001 3/2001 4/2001 5/2001 5/2001 6/2001 6/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-23 WO WO-95-25 WO WO-95-25 WO WO-97-08 WO-97-09 The work of | 5633
5278
5278
5024
50024
5002
5963
1667
9374
1489
2622
2622
2622
26774
9386
9199
9119
92131
9447
7998
5877
7998
5877
7998
5877
7993
5805
52544
7738
6895
1275
9933
HER PUI | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
7/1998
9/1998
BLICATIONS
ent Software et. 4, 1996. | vice, (1998), vol. | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,487 A 6,055,506 A 6,057,758 A 6,101,478 A 6,110,148 A 6,113,578 A 6,114,148 A 6,113,578 A 6,161,095 A 6,167,362 B 6,177,940 B 16,185,63 B 16,177,940 B 16,186,145 B 16,189,029 B 10439,242 S 6,196,970 B 16,210,272 B 16,221,012 B 16,233,539 B 16,246,992 B 16,248,065 B 16,260,022 B 16,248,065 B 16,260,022 B | 2/2000 2/2000 2/2000 2/2000 4/2000 4/2000 4/2000 4/2000 4/2000 5/2000 5/2000 8/2000 8/2000 10/2000 11/2000 12/2000 12/2000 12/2001 2/2001 3/2001 3/2001 4/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 5/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-9300 WO WO-9109 WO WO-93-09 WO WO-93-09 WO WO-93-09 WO WO-95-20 WO-97-08 WO WO-97-08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-97/08 WO WO-9831 WO WO-9831 WO WO-9839 WO WO-9831 WO-9841 WO WO-9841 WO WO-9841 WO WO-9841 WO WO-9841 | 5633
5278
5278
5278
5024
5002
5963
1667
9374
1489
2622
2622
2622
2774
9386
9199
9119
92131
9447
9908
5877
5923
5605
5605
5605
5605
1275
9933
HER PUI
Managem
40041, Octors", Por | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
9/1998
BLICATIONS
ent Software et. 4, 1996. | vice, (1998), vol. | | 6,024,281 A 6,029,138 A 6,032,119 A 6,035,328 A 6,046,761 A 6,049,794 A 6,050,940 A 6,055,314 A 6,055,487 A 6,055,586 A 6,055,7758 A 6,068,615 A 6,095,985 A 6,101,478 A 6,110,148 A 6,113,578 A 6,113,578 A 6,113,578 A 6,114,837 A 6,116,148 A 6,117,362 A 6,167,362 A 6,167,362 A 6,167,362 A 6,167,362 A 6,167,362 B 1,777,940 B 1,618,145 B 1,618,145 B 1,177,940 B 1,186,145 B 1,186,145 B 1,187,940 B 1,186,145 1,186 | 2/2000 2/2000 2/2000 2/2000 4/2000 4/2000 4/2000 4/2000 5/2000 8/2000 8/2000 8/2000 10/2000 11/2000 12/2000 12/2000 12/2001 2/2001 3/2001 4/2001 5/2001 5/2001 6/2001 6/2001 | Shepley Khorasani et al. Brown et al. Soukal | JP 62-226 JP 62226 JP 62226 JP 5155 JP 5266 JP 1995407095 WO WO-90/00 WO WO-9109 WO WO-93-02 WO WO-93-02 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-22 WO WO-95-23 WO WO-95-25 WO WO-95-25 WO WO-97-08 WO-97-09 The work of | 5633
5278
5278
5278
5024
5002
5963
1667
9374
1489
2622
2622
2622
2774
9386
9199
9119
92131
9447
9908
5877
5923
5605
5605
5605
5605
1275
9933
HER PUI
Managem
40041, Octors", Por | 10/1987
10/1987
6/1993
10/1993
4/1995
4/1985
1/1990
6/1991
1/1993
2/1993
2/1993
8/1994
4/1995
7/1995
7/1995
8/1995
11/1995
11/1995
3/1996
8/1996
11/1996
3/1997
4/1997
10/1997
4/1998
9/1998
BLICATIONS
ent Software et. 4, 1996. | vice, (1998), vol. | "Cathay Pacific Airways—USA to Hold First-Ever Internet CyberAuction; CyberTravelers Can Bid for 50 Business Class Round Trips to Hong Kong—No Minimum Bid"; Business Wire; p. 9261084; Sep. 26, 1995; DIALOG: File 148, Acc#08167091. "CD-ROM Mavericks: Proprietary TV-Based Players", Byte Guide to CD-ROM, pp. 100-105. "Central Fetal Monitoring Systems with Optical Disk Storage", New Technology Brief, (Nov./Dec. 1998), vol. 2, No. 6, pp. 249-251. "Digital Doggie"; retrieved from URL http://www.virtualpet.com/vp/farm/gigapet/ddoggie.htm Apr. 23, 2000. "European Search Report", From 6858P005EP, (Mar. 27, 1998). "Future of the Virtual Pet Industry," 1997 [retrieved on Apr. 23, 2000], Retrieved from <URL:www.virtualpet.com/vp/ future/future.htm> "Giga Farm"; retrieved from URL http://www.virtualpet.com/vp/farm/gigapet/gpfarm/gpfarm.htm Apr. 23, 2000. "Giga Pets," 1997 [retrieved on Apr. 23, 2000], Retrieved from <URL:www.virtualpet.corn/vp/farm/gigapet/gigapet.htm>. "How Flash Memory Works", Internet printout of URL address: http://www.howstuffworks.com/flash-memory4.htm, (Sep. 28, 2002), 2 pages. "Introducing the Next Generation of About Your Diabetes", U.S. Pharmacopical Convention and American Diabetes Association, (1993). "Nano Baby Instructions"; retrieved from file://C:\My Documents\Nano Baby Instructions.htm Apr. 23, 2000. "Nano Fighter Pets"; retrieved from URL http://www.virtualpet.com/vp/farm/nano/nfighter.htm Apr. 23, 2000. "New Horizons teams with Duke, Real Media"; The Seybold Report on Desktop Publishing, v10 n12 p. 24(1), Aug. 12, 1996. "Onsale Joins Fray as Online Shopping Picks Up Speed: Internet Booms"; Computer Reseller News; Jun. 5, 1995; p. 73; Dialog: File 16. Acc#05649796. "Onsale Onsale Brings Thrill of Auctions and Bargain Hunting Online; Unique Internet retail service debuts with week-long charity auction for The Computer Museum in Boston", May 24, 1995; Dialog Abstract: File 610, Acc#0489267. "Playmates Toys deals knockout blow to virtual pet competitors with introduction of Nano Fighter™ for Boys"; New Nano Pet Fighting Pet Press Release; retrieved from URL http://www.virtualpet.com/vp/farm/nano/nfightpr.htm Apr. 23, 2000. "Playmates Toys leads Americas virtual pet craze into its next generation by introducting talking Nano Pals"; Talking Nano Pet Press Release; Nov. 18, 1997; retrieved from URL
http://www.virtualpet.com/vp/farm/nano/talkn/tnpress.htm on Apr. 23, 2000. "Putting the Lot on the Net", Antique Collector, vol. 66, Issue 9, p. 26, Downloaded from Corporate Resource Net, Nov/Dec. 1995. "Talking Nano Puppy"; retrieved from URL http://www.virtualpet.com/vp/farm/nano/talkn/talkn.htm Apr. 23, 2000. "Tamagotchi," 1997 [retrieved on Apr. 23, 2000], Retrieved from <URL:www.virtualpet.com/vp/farm/lleg/lleg.htm>. "The description of the Tandy Radio Shack TRS-80 Model 100/102 device available at http://www.old-computuers.com/musuem/computer.asp?c=233", World Wide Web, (Feb. 13, 2004), 1-3. "Theme Hospital," product review 1996 [retrieved Apr. 21, 2000], Retrieved from <URL:www.vigilante.co.uk/ep/misc/hospital.htm>. "Towards a partnership of care", M2 Presswire, Jun. 14, 2000. "Virtual Pet Product Reviews," 1997 [retrieved on Apr. 23, 2000], "Virtual Pet Product Reviews," 1997 [retrieved on Apr. 23, 2000], Retrieved from <URL:www.virtualpet.com/vp/farm/reviews/reviews,htm>. "Virtual Tomagutchi,"1998 [retrieved Apr. 23, 2000], Retrieved from <URL:www.sttf.org/english/action/tomagutchi.html>. "Who Will Dominate the Desktop in the 90's?", Jack Shandle, Electronics, Feb. 1990, pp. 48-50. (3 pages). Adilman; "Videogames: Knowing the Score"; Creative Computing; v9; p. 224(5); Dec. 1983; Dialog: File 148, Acc# 01891055. Albisser, A.M. "Intelligent Instrumentation in Diabetic Management", CRC Critical Reviews in Biomedical Engineering, vol. 17, No. 1, pp. 1-24. Anonymous, "Health Hero Network, Inc. Receives First-Ever FDA Clearance for Connecting Medical Devices to Internet", PR Newswire, (Dec. 2, 1993), 3 pages. Bai, "Design of home healthcare network", IEEE 1997 pp. 1657-1658. Billiard, A., et al. "Telematic Transmission of Computerized Blood Glucose Profiles for IDDm Patients", Diabetes Care, (Feb. 1991), vol. 14, No. 2, pp. 130-134. Bower, "Brain Clues to Energy-efficient Learning", Science News, (Apr. 1992), v. 141; p. 215(1); Dialog: File 647, Acct# 12123949. Brenman et al.; "Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α 1-Syntrophin Mediated by PDZ Domains"; Cell; vol. 84; pp. 757-767, Mar. 8, 1996; Ref. XP-002104701. Bruce, "Health Hero Network CEO, CNNfn", Digital Jam, (Dec. 1, 1999), 3. Bruce, et al., "The Effects of Sympathetic Nervous System Activation and Psychological Stress . . ."; Diabetologia; 35(9); 1992; 835-843; Dialog: File 5, Acc#9629427. (9 pages). Brunetti, P., et al., "A Simulation Study on a Self-Turning Portable Controller of Blood Glucose", The International Journal of Artificial Organs, (1993), vol. 16, No. 16, pp. 51-57. Caprihan, A., et al., "A Simple Microcomputer for Biomedical Signal Processing", IECI '78 Annual Conference Proceedings on Industrial Applications of Microprocessors, (Mar. 20, 1978), 18-23. Cheng, Joe H., "PCT Search Report", (Jan. 11, 1996). DigiPet Instruction Manual, 1997. Douglas, A.S., et al., "Hand-Held Glucose Monitor and Recorder", Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, (Nov. 1988), pp. 747-748. Edelson; "Fashion Reevaluates Flickering Fortunes of TV Home Shopping"; WWD; v170 n87; p. 1(3); Nov. 8, 1995; Dialog: File 148, Acc#08289119. Fabietti, P.G., et al., "Wearable System for Acquisition, Processing and Storage of the Signal from Amperometric Glucose Sensors", The International Journal of Artificial Organs, (1991), vol. 14, No. 3, pp. 175-178 Finston, "Parent + Teacher = Healthy Child", Diabetes Forecast, (Apr. 1994), v47 n9; p. 26(5); Dialog: file 149, Acc# 15804228. Fox, "Not My Type: Type B Behavior, Type I Diabetes Plus Stress Equals Blood Sugar Blues", Health, (Mar. 1998), v20 n3; pp. 22(1); Dialog: File 149, Acc# 06397959. Franklin; "Proposed Auction Rules for PCS: The FCC Plans to Use Competitive Bidding, but Exact Procedures are Undefined"; Cellular Business; v10 n13; p. 18(2); Dec. 1993; Dialog: File 148, Acc#06787310. Frieberger, Paul, "Video Game Takes on Diabetes Superhero 'Captain Novolin' Offers Treatment Tips", San Francisco Examiner, (Jun. 26, 1992), Fourth Edition, Business Section B1. Fumham, et al; "Measuring Locus of Control: a Critique of General Children's Health- and Work-related Locus of Control Questionnaires"; British Journal of Psychology; v84 n4; p. 443(37); Nov. 1993; Dialog: File 88, Acc# 14903135. Gardner, et al.; "Comprehension and Appreciation of Humorous Material Following Brain Damage"; Brain; Sep. 1975; 98(3); pp. 399-412; Dialog: File 153, Acc#02859983. (14 pages). Gauntlet (for PC) rulebook by Mindscape Inc. (Gauntlet by Apple);1985. Giuffrida, et al., Should We Pay the Patient? Review of Financial Incentives to enhance Patient Compliance:, Biomedical Journal, (1997), vol. 315, pp. 703-707. Gordon; "Auctions Become High Tech"; Dealer Business; v29 n7; p. 21(4); Mar. 1995; Dialog: File 148, Acc#07862519. Hauben, Jay R., "A Brief History of the Cleveland Free-Net", available at http://www.ais.org/~irh/acn7-1.a09.html, (1995) pp. 1-4. Hauser, et al., "Will Computers Replace or Complement the Diabetes Educator?", The Medical Journal of Australia, (Oct. 5, 1992), vol. 157, 489-491. Horio, Hiroyuki, et al., "Clinical Telecommunication Network System for Home Monitoring", Medical & Biological Engineering & Computing, (Mar. 1994), vol. 32, 227-230. Howey, et al., "A Rapidly Absorbed Analogue of Human Insulin"; Diabetes, vol. 43, Mar. 1994, pp. 396-402. (7 pages). Hunter, "Technological Advances in Bedside Monitoring: Biosensors", Archives and Laboratory Medicine, (Jul. 1987), pp. 633-636. Hutheesing, Nikhil, "An on-line gamble", Forbes, v157 n10 p. 288(1), May 20, 1996. Jaffrey et al.; "PIN: An Associated Protein Inhibitor of Neuronal Nitric Oxide Synthase"; Science; vol. 274; Nov. 1, 1996; Ref: XP 002050141 Jimison et al., "Patient-Specific explanation in models of chronic disease", Revised Feb. 1992 Artificial Intelligence in Medicine 4 (1992) 191-205. Jones, Chris, "Microsoft readies DocObject; technology will allow document editing in Web browsers", InfoWorld, v18 n18 p. 48(1), Apr. 29, 1996. Kauffmann, et al., "Epidemiological Study of the Genetics and Environment of Asthma, Bronchial Hyperresponsiveness and Atrophy", Am. J. Respir. Crit. Care Med., (1997), vol. 156, pp. S123-S129. Kaufman, Steven, B., "The Learning Game", Nation's Business, (Nov. 1993). Kennedy et al.; "Television Computer Games: A New Look in Performance Testing"; Aviat Space Environ Med; Jan. 1982, 53(1); pp. 49-53. (5 pages); Dialog Abstract: File 155, Acc#0353751. Kuykendall, V.G., et al., "Assessment of Self-Monitored Blood Glucose results Using a Reflectance Meter with Memory and Microcomputer", Symposium on Computer Applications in Medical Care, (Jan. 1981), vol. 70, pp. 98-102. Lachnit, Carroll, "Hawkin's Online Auction", Photo District News, vol. 16, Issue 1, p. 18, Jan. 1996. Lacyk, John, "PCT Search Report", (Jun. 12, 1997). Latman, N.S., "Evaluation of Electronic, Digital Blood Glucose Monitors", Biomedical Instrumentation and Technology, (1991), vol. 25 No. 1, 43-49 Leyerle, Beverly J., et al., "The PDMS as a Focal Point for Distributed Patient Data", International Journal of Clinical Monitoring and Computing, (1988), vol. 5, pp. 155-161. Luebke, Cathy, "Barrett-Jackson Auction Turns High-Tech", Business Journal, vol. 16, Issue 12, pp. 11, Jan. 19, 1996. M.U.L.E. rulebook by Electronic Arts, 1983. Makikawa, M., et al., "Microprocessor-Based Memory Device for Ambulatory Heart Rate and Physical Activity Recording", Methods of Information in Medicine, (1994), vol. 33, No. 1, pp. 94-96. Marsh, David G. "Approaches Toward the Genetic Analysis of Complex Traits Asthma and Atrophy", Am. J. Respir.Crit.Care Med., (1997), vol. 156, pp. S-133-S138. Martinez, Fernando D., "Complexities of the Genetics of Asthma", Am.J. Respir. Crit. Care Med., (1997), vol. 156, pp. S117-S122. Marx, Wendy, "More than just the Scores: ESPNET SportsZone is a model for expanding brand names online", InformationWeek, n576 p. 61(2), Apr. 22, 1996. Mazzola, et al., "Video Diabetes: A Teaching Tool for Children with Insulin-Dependent Diabetes", Proceedings—7th Annual Symposium on Computer Applications in Medical Care; Washington, DC; Dialog., (Oct. 1983), File 8, Acc# 01624462. McCullagh, PJ et al., "Computerized paradigms for eliciting the contingent negative variation event-related potential," Proceedings of the Annual International Conference of the Engineering in Medicine & Biology Society, IEEE, Conf. 14, p. 2481-2483, Oct. 1992. Meissner, et al., "Building an Integrated Clinical and Research Network", Proceedings of the SPIE, (Oct. 24, 1995), vol. 2618, p. 92-99. Miles, Laughton E., "A Portable Microcomputer for Long-Term Physiological Monitoring in the Home and Work Environment", Medical Monitoring in the Home and Work Environment, (1990), pp. 47-57 Mims; "Psychological Testing"; Computers & Electronics; v23; p. 22(6); Feb. 1985; Dialog: File 47, Acc# 2654858. Moore, "New Applications Break Through Storage Boundaries", Computer Technology Review, (Oct. 1999), vol. 19, No. 10 p. 1. Nano Page, 1997 [retrieved on Apr. 23, 2000], Retrieved from <URL:www.virtualpet.com/vp/farm/nano/nano.htm>. O'Donnell; "Alan's At It Again"; Bond Buyer; v309 n29448; p. 1(3); Jul. 21, 1994; Dialog: File 148, Acc#07478152. Octogotchi Instruction Manual, 1997. Dino-Kun Instruction Manual, 1997. Pfeiffer, E. F., "The Glucose Sensor: The Missing Link in Diabetes Therapy", Hormone and Metabolic Research, (1990), vol. 24m Suppl. pp. 154-164. Poitout, V., et al. "A Glucose Monitoring System for On Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit", Diabetologia, (1993), vol. 36, pp. 658-663. Polson, Gary "Recent Developments and Trends in Keychain Virtual Pets," 1997 [retrieved on Apr. 23, 2000], Retrieved from
<URL:www.virtualpet.com/vp/future/trends1a.htm>. Potter, David, "Fundamentals of PC-Based Data Acquisition", Sensors, (Feb. 1994), pp. 12-20. Reis, H, "Telemedicine: Transmitting Expertise to the Point of Care Toward an Electronic Patient Record"; '97, Nashville, TN, Apr. 27-May 3, 1997, pp. 248-256, v. 3. Research project launched to improve health of America's communities; new Disney community in Florida is focus of program. Business Wire, p. 10011142. Oct. 1, 1996. Results of the world's first on-line auction, http://www.christies.com. RO_AUCTION Auctioneers Property Database System and RO_AUCTION Auctioneers Accounting System; RO-AUCTION features; Dec. 4, 1995. Roberts; "Diabetes and Stress: A Type a Connection?", Psychology Today, (Jul. 1987), v. 21; pp. 22(1); Dialog: File 149, Acc# 05038381. Rose, V. L, et al., "Decentralized Testing for Prothrombin Time and Activated Partial Thromboplastin Time Using a Dry Chemistry Portable Analyser", Archives of Pathology and Laboratory Medicine, (Jun. 1993), vol. 117, pp. 611-617. Save the earth artrock auction, http://www.commerce.com.save-earth. Auction Web, http://www.ebay.com. Schement, "An Intelligent Controller for Neurophysiological Experiments," Proceeding of the Annual Symposium on Computer Based Medical Systems, Durham, Jun. 14-17, 1992, p. 528, line 1-p. 529, line 21. Schenkels, P., "Supplementary European Search Report", Application No. EP 97 92 2716, (Mar. 11, 2002). Schork, Nicholas J., "Genetics of Complex Disease", Am.J.Respir. Crit. Care Me., (1997), vol. 156, pp. S103-S109. Schrezenmeir, J. et al., "Computer Assisted Insulin Dosage Adjustment—Perspective for Diabetes Control", Hormone and Metabolic Research, Supplement Series, (1990), vol. 24, pp. 116-123. Shandle, Jack, "Who will dominate the desktop in the 90's?", Electronics, (Feb. 1990), pp. 48-50. Shults, Marc C., et al., "A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors", IEEE Transactions on Biomedical Engineering, (Oct. 1994), vol. 41, No. 10, pp. 937-942. Siegmann; "Nowhere to Go but Up"; PC Week; v12 n42, p. A5(1); Oct. 23, 1995; Dialog: File 148, Acc#08222496. Skolnick et al. "Simultaneous Analysis of Multiple Polymorphic Loci Using Amplified Sequence Polymorphisms (ASPs)"; Genomics. 2: 273-279. Soeldner, J. S., "Treatment of Diabetes Mellitus by Devices", The American Journal of Medicine, (Jan. 1981), vol. 70, 183-194. Spitzer et al.; "The moderating effect of age on self-care"; Western Journal of Nursing Research, v18, n2, p. 136(13), Apr. 1996. Telemedicine Provides Two-Way Computer Link for Parents of Very Premature Infants. PR Newswire. p1007NEM034. Oct. 7, 1996. United Healthcare's OPTUM Division goes online to better health by announcing a unique internet application. PR Newswire, p0801MNTH004. Aug. 1, 1996. Updike, Stuart J., et al., "Laboratory Evaluation of New Reusable Blood Glucose Sensor", Diabetes Care, (Nov./Dec. 1998), vol. 11, No. 10, pp. 801-807. Valla, et al., "A Structured Pictorial Questionnaire to Assess DSM-III-R-based Diagnosis in Children (6-11 years)"; Journal of Abnormal Child Psychology; v22 n4; p. 403(21); Aug. 1994; Dialog: File 88, Acc# 15759542. Vallera, D. A., et al., "Accuracy of Portable Blood Glucose Monitoring", American Journal of Clinical Pathology, (1991), vol. 95, No. 2, pp. 247-252. Voelker, Rebecca, "Shoe Leather Therapy is Gaining on TB", Jama, (Mar. 13, 1996), vol. 275, 743. Wilkins, Aaron. "Expanding Internet access for health care consumers", Health Care Management Review, Summer, Jul. 1999, 24-30. Wyatt, J. C., "Clinical Data Systems, Part 2: Components and Techniques", Lancet, (Dec. 1994), vol. 344, No. 8937, pp. 1609-1614. Yoshizawa, Daisuke, et al., "The Development of a Data Processing System with Personal Computer MSX Standard System for Flow Injection Analysis", Journal of Flow Injection Analysis, (1988), V.5, No. 2, pp. 101-110. Alere Second Supplemental Response to Plaintiff Interrogatories Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 7 Dec. 10, 2008. American Heritage Dictionary pa. American Heritage Dictionary pe. The Merriam Webster Online Dictionary display. The Merriam Webster Online Dictionary graphic. The Merriam Webster Online Dictionary pictorial. The Merriam Webster Online Dictionary symbol. The Merriam Webster Online Dictionary symbolic. The Merriam Webster Online Dictionary Video. Websters Dictionary II com. Websters Dictionary II con. Websters Dictionary II i. Websters Dictionary II m. Licklider Applications of information Networks Proceedings of the IEEE vol. 66 No. 11 Nov. 1978. Haynes Geriatrics How to Detect manage Low Patient Compliance in Chronic Illness Jan. 1980. Haynes Hypertension Can simple Clinical measurements detect patient noncompliance Nov. 1980. Physicians Guide Using the Health Buddy System 1986. Thompson and Vandenberg, Clinical Biochemistry (1986) 19:255- U.S. Appl. No. 07/096,998 Lee Amendment Jun. 2, 1987. Hughes Bedside Terminals Clinicom MD 1988. U.S. Appl. No. 06/879,900 Fu Amendment Aug. 10, 1988. Velho et. al., Biomed. Biochim. Acta (1989) 48(11/12):957:964. Paperny Adolescent Pregnancy Prevention by Health Education Computer Games Computer Assisted Instruction May 1989 Diabcare Flyer Boehringer Mannheim HH101661-HH101668 Oct. 12, 1989. Matthews et al BMJ Analysis of serial measurement in medical research 1990. Diabcare User Manual HH007288-HH007331 1991. Dept of Health and Human Services the Physician Guide from the K864318 510K Jul. 23, 1991. Durant Medicine and Science in Sports and Exercise 24(2)265-271 Camit S Manual v3.00 1993. Szolovits Guardian Angel Patient Centered Health Information Systems May 1994 Genesereth Software Agents Jul. 1994. Lai Abstraction Models at System Level for Networked Interactive Multimedia Scripting Aug. 10, 1995. Lunt The Smart Cards Are Here Sep. 1, 1995. Mortorala introduces PCMCIA28.8 Modem Oct. 30, 1995. Williams Motivational Predictors of Weight Loss 1996. U.S. Appl. No. 09/237,194 Office Actions Response Jun. 19, 2006. Abbott v. Dexcom Aug. 17, 2006. U.S. Appl. No. 09/422,046 Office Actions Response Sep. 27, 2006. Request for Re-examination 7223236 90010053 Nov. 9, 2007. Request for Re-examination 7223236 90010053 Nov. 15, 2007. Dept of Health and Human Services The Physicians Guide Become publicly Available Jan. 25, 2008. Alere First Supplemental Response to Plaintiff Interrogatories Jun. 20, 2008. Excerpts from the Prosecution History for US Patent 5899855 Aug. 1, 2008. Inter Party Re-Exam 7223236 95000386 Aug. 1, 2008 Request for Re-examination 5601435 90009237 Aug. 1, 2008. Request for Re-examination 5879163 90009238 Aug. 1, 2008. Request for Re-examination 6151586 90009240 Aug. 1, 2008. Request for Re-examination 6161095 90009239 Aug. 1, 2008. Request for Re-examination 7223236 95000386 Aug. 1, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 1 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 2 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 3 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 4 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 5 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 6 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 8 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 8A Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit 9 Dec. 10, 2008. Alere Second Supplemental Response to Plaintiff Interrogatories Exhibit B Dec. 10, 2008. ^{*} cited by examiner FIG. 2 *FIG. 3* FIG. 4 ``` 40 NUMBER: 9001 {LF} LED: 1 {LF} ZAP: {LF} CLS: {LF} DISPLAY: ANSWER QUERIES NOW? PRESS ANY BUTTON TO STATE {LF} WAIT: {LF} CLS: {LF} DISPLAY: HOW DO YOU FEEL? VERY VERY BAD BAD GOOD GOOD {LF} INPUT: OOOO {LF} 95 CLS: {LF} DISPLAY: HOW WELL ARE YOU MANAGING YOUR DISEASE? VERY VERY WELL BADLY WELL WELL {LF} INPUT: OOOO {LF} CLS: {LF} DISPLAY: HOW HARD IS IT FOR YOU TO FOLLOW YOUR TREATMENT PLAN? VERY VERY HARD HARD EASY EASY {LF} INPUT: OOOO {LF} CLS: {LF} DISPLAY: HOW HARD IS IT FOR YOU TO CONTROL YOUR BLOOD SUGAR? VERY VERY EASY {LF} HARD HARD EASY ``` ``` INPUT: OOOO {LF} CLS: {LF} DISPLAY: CONNECT GLUCOSE METER AND PRESS ANY BUTTON WHEN FINISHED {LF} WAIT: {LF} CLS: {LF} DISPLAY: COLLECTING MEASUREMENTS {LF} 97 COLLECT: GLUCOSE_METER {LF} CLS: {LF} DISPLAY: CONNECT APPARATUS TO TELEPHONE JACK AND PRESS ANY BUTTON WHEN FINISHED {LF} WAIT: {LF} LED: 0 {LF} CLS: {LF} DELAY: 03:00 {LF} DISPLAY: CONNECTING TO SERVER {LF} CONNECT: {LF} {EOF} ``` **FIG.** 7 FIG. 9 FIG. 10 FIG. 11A FIG. 11B FIG. 12A FIG. 12B FIG. 13 FIG. 14 FIG. 16 FIG. 20 FIG. 21 FIG. 22 FIG. 23 FIG. 24 #### NETWORKED SYSTEM FOR INTERACTIVE COMMUNICATION AND REMOTE MONITORING OF INDIVIDUALS #### PRIORITY CLAIM This application is a continuation of U.S. patent application Ser. No. 09/658,209 (allowed), filed Sep. 8, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/300,856, filed Apr. 28, 1999, now U.S. Pat. No. 6,368,273, which is a divisional application of U.S. patent application Ser. No. 08/946,341, filed Oct. 7, 1997, now U.S. Pat. No. 5,997,476, which is a continuation-in-part of U.S. patent application Ser. No. 08/847,009, filed Apr. 30, 1997, now U.S. Pat. No. 5,897,493, which, in turn claims priority from U.S. Provisional Application Nos. 60/041,746 and 60/041, 751, both filed Mar. 28, 1997. #### RELATED APPLICATIONS This application is also related to: - (i) U.S. Pat. Nos. 5,985,559 and 6,101,478, both continuations-in-part of U.S. Pat. No. 5,897,493; - (ii) U.S. Pat. No. 6,248,065, a divisional of U.S. Pat. No. 5.897,493; - (iii) U.S. Pat. No. 6,270,455, a
continuation-in-part of U.S. Pat. No. 5,997,476; - (iv) U.S. Pat. No. 6,381,577, which is a continuation of U.S. Pat. No. 6,101,478; - (v) Abandoned U.S. patent application Ser. No. 09/531, ³⁰ 237, a continuation-in-part of U.S. Pat. Nos. 6,368,273 and 09/378,188, a continuation of U.S. Pat. No. 5,985, 559; and - (vi) Co-pending U.S. patent application Ser. No. 10/279, 749, which is a continuation-in-part of U.S. patent application Ser. No. 10/233, 296; which is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/665,442, which is a continuation-in-part of U.S. Pat. No. 6,381,577. This application is also related to U.S. patent application Ser. No. 11/093,168, entitled "REMOTE HEALTH MONITORING APPARATUS USING SCRIPTED COMMUNICATIONS" and filed on Mar. 28, 2005 under Express Mail Number EV534 876 838US. #### FIELD OF THE INVENTION The present invention relates generally to communication systems for remote monitoring of individuals, and in particular to a networked system for remotely monitoring individuals als and for communicating information to the individuals through the use of script programs. #### BACKGROUND OF THE INVENTION In the United States alone, over 100 million people have chronic health conditions, accounting for an estimated \$700 billion in annual medical costs. In an effort to control these medical costs many healthcare providers have initiated outpatient or home healthcare programs for their patients. The 60 potential benefits of these programs are particularly great for chronically ill patients who must treat their diseases on a daily basis. However, the success of these programs is dependent upon the ability of the healthcare providers to monitor the patients remotely to avert medical problems before they 65 become complicated and costly. Further, success requires compliance with the program, which is often dependent on 2 providing messages or other reminders to patients so that they will stay with the program. Unfortunately, no convenient and cost effective monitoring system exists to accomplish these objectives. While these problems are particularly acute for the poor and the elderly, all demographic groups could significantly benefit from remote communication and monitoring systems. Prior attempts to monitor patients remotely have included the use of personal computers and modems to establish communication between patients and healthcare providers, either directly or via an Internet site. However, computers are too expensive to give away and the patients who already own computers are only a fraction of the total population. Other attempts to monitor patients remotely have included the use of medical monitoring devices with built-in modems. Examples of such monitoring devices include blood glucose meters, respiratory flow meters, and heart rate monitors. While these devices can be quite successful, their multimedia capabilities are often limited. In addition, many patients simply may prefer to interact with a device they are more familiar with, such as a television. Prior attempts to monitor patients remotely have also included the use of interactive telephone or video response systems. Such interactive systems are disclosed in U.S. Pat. No. 5,390,238 issued to Kirk et al. on Feb. 14, 1995, U.S. Pat. No. 5,434,611 issued to Tamura on Jul. 18, 1995, and U.S. Pat. No. 5,441,047 issued to David et al. on Aug. 15, 1995. One disadvantage of these systems is that they either require a patient to call in to a central facility to be monitored or require the central facility to call the patient according to a rigid monitoring schedule. If the patients are required to call the central facility, only the compliant patients will actually call regularly to be monitored. Non-compliant patients will typically wait until an emergency situation develops before contacting their health-care provider, thus defeating the purpose of the monitoring system. If the central facility calls each patient according to a monitoring schedule, it is intrusive to the patient's life and resistance to the monitoring grows over time. Further, it is difficult to identify each patient uniquely using these systems. Moreover, these systems are generally incapable of collecting medical data from monitoring devices, such as blood glucose meters, respiratory flow meters, or heart rate monitors. As such, there exists a need for a simple and inexpensive system for remotely monitoring patients and for easily communicating information to the patients. There is also a need to encourage patient's compliance with a prescribed treatment plan. #### SUMMARY The present invention provides a system for remotely interacting with an individual. The system includes a server, a remote interface device for assigning in the server a set of queries to be answered by the individual, a remotely programmable apparatus for interacting with the individual and a broadcaster in communication with the server and the remotely programmable apparatus. By using the entertainment medium of interactive television with its ability to receive a large bandwidth of data, the present invention can more easily communicate interactive entertaining educational information to potential and existing patients. The interactive nature of the received data makes it easy for a user to access interactive programs related to corresponding entertainment/advertisement content or related to user adherence to a predefined regimen. In accordance with another aspect of the present invention, an answering service sends a series of questions as voice communication from a stored set of questions to the remote apparatus for the individual to respond to, when the voice communication button is activated. The answering service stores responses to each provided question in the series of questions and provides a service based on the individual's response to the questions. The provided service is communication with a health care professional or a service provider. Also, the answering service includes a speech recognition component for receiving spoken responses to the series of questions and a speech synthesis component for making the set of queries into a series of questions. In accordance with yet another aspect of the present invention, the remotely programmable apparatus includes an appliance component for providing appliance functionality. The appliance component is an alarm clock, a kitchen appliance, or an entertainment device. tion, the remotely programmable apparatus includes a monitoring component for producing measurements of a physiological condition of the individual. #### BRIEF DESCRIPTION OF THE DRAWINGS The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction 30 with the accompanying drawings, wherein: FIG. 1 is a block diagram of networked system formed in accordance with a first embodiment of the present invention; FIG. 2 is a block diagram illustrating the interaction of the components of the system of FIG. 1; FIG. 3 is a perspective view of a remotely programmable apparatus of the system of FIG. 1; FIG. 4 is a block diagram illustrating the components of the apparatus of FIG. 3; FIG. 5 is a script entry screen according to the preferred embodiment of the invention; FIG. 6A is a listing of a sample script program according to the preferred embodiment of the invention; FIG. 6B is a continuation of the listing of FIG. 6A; FIG. 7 is a script assignment screen according to the preferred embodiment of the invention FIG. 8 is a sample query appearing on the apparatus of FIGS. 1A-D; FIG. 9 is a sample prompt appearing on the display of the 50 apparatus of FIG. 3; FIG. 10 is a sample report displayed on a workstation of the system of FIGS. 1A-D; FIG. 11A is a flow chart illustrating the steps included in a monitoring application executed by the server of FIGS. 1A-D 55 according to the present invention; FIG. 11B is a continuation of the flow chart of FIG. 11A FIG. 12A is a flow chart illustrating the steps included in the script program of FIGS. 6A-6B; FIG. 12B is a continuation of the flow chart of FIG. 12; FIG. 13 is a perspective view of a remotely programmable apparatus according to an embodiment of the present inven- FIG. 14 is a sample prompt appearing on a display of the apparatus of FIG. 13; FIG. 15 is a block diagram illustrating the components of the apparatus of FIG. 13; FIG. 16 is a schematic block diagram illustrating the interaction of the server of FIGS. 1A-D with the apparatus of FIG. 3 according to another embodiment of the present invention; FIG. 17 is a first sample message appearing on the display of the apparatus of FIG. 3; FIG. 18 is a second sample message appearing on the display of the apparatus of FIG. 3; FIG. 19 is a script entry screen according to an embodiment of the present invention; FIGS. 20 and 21 are block diagrams of alternate embodiments of the present invention; FIG. 22 is a flow chart illustrating the process performed by the system of FIG. 21; and FIGS. 23 and 24 are example broadcast programming presentations with an included script program. #### DETAILED DESCRIPTION The present invention provides a system and method for In accordance with still another aspect of the present inven- 20 remotely monitoring individuals and for increasing individual use of health programs. In a first embodiment of the invention, the individuals are patients and the system is used to collect data relating to the health status of the patients. However, it is to be understood that the invention is not 25 limited to remote monitoring of patients. The system and method of the invention may be used for any type of remote monitoring and program adherence application. The invention may also be implemented as an automated messaging system for communicating information to
individuals, as will be discussed in an alternative embodiment below. A first embodiment of the invention is illustrated in FIGS. 1A and 2-12. Referring to FIG. 1, a networked system 16 includes a server 18 and a workstation 20 connected to the server 18 through a communication network 24. The server 18 is preferably a world wide web server and the communication network 24 is preferably the Internet. It will be apparent to one skilled in the art that the server 18 may comprise a single stand-alone computer or multiple computers distributed throughout a network. The workstation 20 is preferably a personal computer, remote terminal, or web TV unit connected to the server 18 via the Internet. The workstation 20 functions as a remote interface for entering in the server 18 messages and queries to be communicated to the patients. The system 16 also includes multiple remotely program-45 mable apparatus, such as first and second apparatuses 26 for monitoring multiple patients. Each apparatus 26 is designed to interact with a patient in accordance with script programs received from the server 18. Each apparatus 26 is in communication with the server 18 through the communication network 24, preferably the Internet. Alternatively, each apparatus 26 may be placed in communication with the server 18 via wireless communication networks, cellular networks, telephone networks, satellite networks or any other network which allows each apparatus 26 to exchange data with the server 18. It is to be understood that the system 16 may include any number of remotely programmable apparatuses for monitoring any number of patients. In the preferred embodiment, each patient to be monitored is also provided with a monitoring device 28. The monitoring device 28 is designed to produce measurements of a physiological condition of the patient, record the measurements, and transmit the measurements to the patient's remotely programmable apparatus through a standard connection cable 30. Examples of suitable monitoring devices 28 include blood glucose meters, respiratory flow meters, blood pressure cuffs, electronic weight scales, and pulse rate monitors. Such monitoring devices are well known in the art. The specific type of monitoring device 28 provided to each patient is dependent upon the patient's disease or health treatment needs. For example, diabetes patients are provided with a blood glucose meter for measuring blood glucose concentrations, asthma patients are provided with respiratory flow meters for measuring peak flow rates, obesity patients are provided with weight scales, etc. FIG. 2 shows the server 18, the workstation 20, and the apparatus 26 in greater detail. The server 18 includes a database 38 for storing script programs 40. The script programs 40 10 are executed by each apparatus 26, to communicate queries and messages to a patient, receive responses 42 to the queries, collect monitoring device measurements 44, and to transmit responses 42 and measurements 44 to the server 18. The database 38 is designed to store responses 42 and measure- 15 ments 44. The database 38 further includes a look-up table 46. The table 46 contains a list of the patients to be monitored, and for each patient, a unique patient identification code and a respective pointer to one or more script programs 40 assigned to the patient. Each remotely programmable apparatus 26 is 20 designed to execute assigned script programs 40 received from the server 18. The script programs 40 may include queries, reminder messages, informational statements, useful quotations, or other information of benefit to the patient. See Appendix A for example script programs. FIGS. 3-4 show the structure of a remotely programmable apparatus 26 according to the preferred embodiment. Referring to FIG. 3, the apparatus 26 includes a housing 62. The housing 62 is sufficiently compact to enable the apparatus 26 to be hand-held and carried by a patient. The apparatus 26 also 30 includes a display 64 for displaying queries and prompts to the patient. In the preferred embodiment, the display 64 is a liquid crystal display (LCD). The apparatus 26 includes five user input buttons 70A, 70B, 70C, 70D and 70E that are located on the same side of 35 the apparatus 26 as the display 64. The user input buttons 70A-D are for entering in the apparatus 26 responses 42 to the queries and prompts. In the preferred embodiment, the user input buttons 70A-D are momentary contact push buttons. In alternative embodiments, user input buttons 70A-D may be 40 replaced by switches, keys, a touch sensitive display screen, or any other data input device. The user input button **70**E is a emergency or other services button and is preferably red, but may be of any size, shape, or color that draws special visual or tactile attention to the user. 45 The services provided by the user input button **70**E are described in more detail below. Three monitoring device jacks **68**A, **68**B, and **68**C are located on a surface of housing **62**. The device jacks **68**A-C are for connecting the apparatus **26** to a number of monitoring devices **28**, such as blood glucose meters, respiratory flow meters, or blood pressure cuffs (not shown in FIG. **3**). The apparatus **26** also includes a modem jack **66** for connecting the apparatus **26** to a telephone jack through a standard connection cord (not shown). The apparatus **26** further includes a visual indicator, such as a light emitting diode (LED) **74**. The LED **74** is for visually notifying the patient that he or she has unanswered queries stored in the apparatus **26**. FIG. 4 is a schematic block diagram illustrating the components of the apparatus 26 in greater detail. The apparatus 26 includes a microprocessor 76 and a memory 80 connected to the microprocessor 76. The memory 80 is preferably a nonvolatile memory, such as a serial EEPROM. The memory 80 stores script programs 40 received from the server 18, measurements 44 received from the monitoring device 28, 65 responses 42 to queries. The microprocessor 76 also includes built-in read only memory (ROM), which stores firmware for 6 controlling the operation of the apparatus 26. The firmware includes a script interpreter used by the microprocessor 76 to execute the script programs 40. The script interpreter interprets script commands, which are executed by the microprocessor 76. Specific techniques for interpreting and executing script commands in this manner are well known in the art. The microprocessor 76 is preferably connected to memory **80** using a standard two-wire interface. The microprocessor 76 is also connected to the user input buttons 70, the LED 74, a clock 84, and a display driver 82. The clock 84 indicates the current date and time to the microprocessor **76**. For clarity of illustration, clock 84 is shown as a separate component, but is preferably built into the microprocessor 76. The display driver 82 operates under the control of the microprocessor 76 to display information on the display 64. The microprocessor 76 is preferably a PIC 16C65 processor. The modem 86 is connected to a telephone jack 22 through the modem jack 66. The modem 86 is for exchanging data between the server 18 and the processor 76 through the communication network 24. The data includes the script programs 40 which are received from the server 18 as well as the responses 42 to queries, the device measurements 44, the script identification codes, and the patient's unique identification code, which the modem 86 25 transmits to the server 18. The modem 86 is preferably a complete 28.8 K modem commercially available from Cermetek, although any suitable modem may be used. The processor 76 also includes a component that connects to the telephone jack 22 and a microphone 88 and a speaker 89, thereby allowing telephone calls to be processed. The device interface 90 is connected to the device jacks 68A, 68B, and 68C. The device interface 90 is for interfacing with a number of monitoring devices 28, such as blood glucose meters respiratory flow meters, blood pressure cuffs, weight scales, or pulse rate monitors, through device jacks 68A-C The device interface 90 operates under the control of the microprocessor 76 to collect measurements 44 from the monitoring devices 28 and to output the measurements to the microprocessor 76 for storage in the memory 80. In the preferred embodiment, the interface 90 is a standard RS232 interface. For simplicity of illustration, only one device interface 90 is shown in FIG. 4. However, in alternative embodiments, the apparatus 26 may include multiple device interfaces to accommodate monitoring devices that have different connection standards. Referring again to FIG. 2, the server 18 includes a monitoring application 48. The monitoring application 48 is a controlling software application executed by the server 18 to perform the various functions described below. The application 48 includes a script generator 50, a script assignor 52, and a report generator 54. The script generator 50 is designed to generate the script programs 40 from script information entered through the workstation 20. The script information is entered through a script entry screen 56. In the preferred embodiment, script entry screen 56 is implemented as a web page on the server 18. The workstation 20 includes a web browser for accessing the web page to enter the script information. FIG. 5 illustrates the script entry screen 56 as it appears on the workstation 20. The screen 56 includes a script name field 92 for specifying the name of a script program to be generated. The screen 56 also includes entry fields 94 for entering a set of queries to be answered by a patient. Each entry field 94 has corresponding response choice fields 96 for entering response choices for the query. The screen 56 further includes check boxes 98 for selecting a desired monitoring device 28, such as a blood glucose meter, respiratory flow
meter, or blood pressure cuff, from which to collect measurements 44. The screen **56** additionally includes a connection time field **100** for specifying a prescribed connection time at which each apparatus **26** executing the script is to establish a subsequent communication link to the server **18**. The connection time is preferably selected to be the time at which communication rates are the lowest, such as **3:00** AM. The screen **56** also includes a CREATE SCRIPT button **102** for instructing script generator **50** to generate a script program **40** from the information entered in screen **56**. The screen **56** further includes a CANCEL button **104** for canceling the information entered in screen **56**. In the preferred embodiment, each script program 40 created by script generator 50 conforms to the standard file format used on UNIX systems. In the standard file format, each command is listed in the upper case and followed by a colon. Every line in the script program 40 is terminated by a linefeed character {LF}, and only one command is placed on each line. The last character in the script program 40 is a UNIX end of file character {EOF}. Table 1 shows an exemplary listing of script commands used in the preferred embodiment of the invention. #### TABLE 1 #### SCRIPT COMMANDS Command Description | CLS: {LF} | Clear the display. | | | |-------------------|---|--|--| | ZAP: {LF} | Erase from memory the last set of query responses | | | | | recorded. | | | | LED: b{LF} | Turn the LED on or off, where b is a binary digit of 0 | | | | | or 1. An argument of 1 turns on t0he LED, and an | | | | | argument of 0 turns off the LED. | | | | DISPLAY: | Display the text following the DISPLAY command. | | | | {chars} {LF} | | | | | INPUT: | Record a button press. The m's represent a button mask | | | | $mmmm\{LF\}$ | pattern for each of the four input buttons. Each m | | | | | contains an "X" for disallowed buttons or an "O" for | | | | | allowed buttons. For example, INPUT: $OXOX\{LF\}$ | | | | | allows the user to press either button #1 or #3. | | | | WAIT: | Wait for any one button to be pressed, then continue | | | | {LF} | executing the script program. | | | | COLLECT: | Collect measurements from the monitoring device | | | | device{LF} | specified in the COLLECT command. The user is | | | | | preferably prompted to connect the specified monitoring | | | | 177 (050 | device to the apparatus and press a button to continue. | | | | NUMBER: | Assign a script identification code to the script program. | | | | aaaa{LF} | The script identification code from the most recently | | | | | executed NUMBER statement is subsequently | | | | | transmitted to the server along with the query responses | | | | | and device measurements. The script identification code | | | | | identifies to the server which script program was most | | | | DELAY: | recently executed by the remote apparatus. | | | | | Wait until time t specified in the DELAY command, usually the prescribed connection time. | | | | t{LF}
CONNECT: | Perform a connection routine to establish a | | | | {LF} | communication link to the server, transmit the patient | | | | fri.l | | | | | | identification code, query responses, device
measurements, and script identification code to the | | | | | server, and receive and store a new script program. When | | | | | the server instructs the apparatus to disconnect, the script | | | | | interpreter is restarted, allowing the new script program | | | | | interpreter is restarted, anowing the new script program | | | The script commands illustrated in Table 1 are representative of the preferred embodiment and are not intended to limit the scope of the invention. After consideration of the ensuing description, it will be apparent to one skilled in the art many other suitable scripting languages and sets of script commands may be used to implement the invention. to execute. The script generator 50 preferably stores a script program template which it uses to create each script program 40. To 8 generate a script program 40, the script generator 50 inserts into the template the script information entered in the screen 56. For example, FIGS. 6A-6B illustrate a sample script program 40 created by the script generator 50 from the script information shown in FIG. 5. The script program 40 includes display commands to display the queries and response choices entered in fields 94 and 96, respectively. The script program 40 also includes input commands to receive responses 42 to the queries. The script program 40 further includes a collect command to collect device measurements 44 from the monitoring device 28 specified in the check boxes 98. The script program 40 also includes commands to establish a subsequent communication link to the server 18 at the connection time specified in field 100 FIG. 5. The steps included in the script program 40 are also shown in the flow chart of FIGS. 12A-12B and will be discussed in the operation section below. Referring again to FIG. 2, the script assignor 52 is used to assign script programs 40 to the patients. The script programs 40 are assigned in accordance with script assignment information entered through workstation 20. The script assignment information is entered through a script assignment screen 57, which is preferably implemented as a web page on the server 18. FIG. 7 illustrates a sample script assignment screen 57 as it appears on workstation 20. The screen 57 includes check boxes 106 for selecting a script program 40 to be assigned, and check boxes 108 for selecting the patients to whom the script program is to be assigned. The screen 57 also includes an ASSIGN SCRIPT button 112 for entering the assignments. When button 112 is pressed, the script assignor 52 creates and stores for each patient selected in check boxes 108 a respective pointer to the script program 40 selected in the check boxes 106. Each pointer is stored in the patient look-up table 46 of the database 38. The screen 57 further includes an ADD SCRIPT button 110 for accessing the script entry screen and a DELETE SCRIPT button 114 for deleting a script program 40 Referring again to FIG. 2, the report generator 54 is designed to generate a patient report 58 from the responses 42 and the device measurements 44 received in the server 18. The patient report 58 is displayed on the workstation 20. FIG. 10 shows a sample patient report 58 produced by the report generator 54 for a selected patient. The patient report 58 includes a graph 116 of the device measurements 44 received from the patient, as well as a listing of the responses 42 received from the patient. Specific techniques for writing a report generator program to display data in this manner are well known in the art. The operation of the preferred embodiment is illustrated in FIGS. 1-12. FIG. 11A is a flow chart illustrating steps included in the monitoring application executed by the server 18. FIG. 11B is a continuation of the flow chart of FIG. 11A. In step 202, the server 18 determines if new script information has been entered through the script entry screen 56. If new script information has not been entered, the server 18 proceeds to step 206. If new script information has been entered, the server 18 proceeds to step 204. As shown in FIG. 5, the script information includes a set of queries, and for each of the queries, corresponding response choices. The script information also includes a selected monitoring device type from which to collect device measurements 44. The script information further includes a prescribed connection time for each apparatus to establish a subsequent communication link to the server 18. The script information is generally entered in the server 18 by a healthcare provider, such as the patients' physician or case manager. Of course, Q any person desiring to communicate With the patients may also be granted access to the server 18 to create and assign script programs 40. Further, it is to be understood that system 16 may include any number of remote interfaces for entering script generation and script assignment information in the 5 server 18 In step 204, the script generator 50 generates a script program from the information entered in the screen 56. The script program is stored in the database 38. Steps 202 and 204 are preferably repeated to generate multiple script programs, e.g. 10 a script program for diabetes patients, a script program for asthma patients, etc. Each script program corresponds to a respective one of the sets of queries entered through the script entry screen 56. Following step 204, the server 18 proceeds to step 206. In step 206, the server 18 determines if new script assignment information has been entered through the assignment screen 57. If new script assignment information has not been entered, the server 18 proceeds to step 210. If new script assignment information has been entered, the server 18 proceeds to step 208. As shown in FIG. 7, the script programs are assigned to each patient by selecting a script program through check boxes 106, selecting the patients to whom the selected script program is to be assigned through check boxes 108, and pressing the ASSIGN SCRIPT button 112. When button 112 is pressed, the script assignor 52 creates for each patient selected in the check boxes 108 a respective pointer to the script program selected in the check boxes 106. In step 208, each pointer is stored in the look-up table 46 of the database 38. Following step 208, the server 18 proceeds to step 210. In step 210, the server 18 determines if any of the apparatuses are remotely connected to the server. Each patient to be monitored is preferably provided with his or her own remotely programmable apparatus, which has the patient's unique identification code, stored therein. Each patient is thus 35 uniquely
associated with: a respective one of the apparatuses. If none of the apparatuses is connected, the server 18 proceeds to step 220. If an apparatus is connected, the server 18 receives from the apparatus the patient's unique identification code in step 212. In step 214, the server 18 receives from the 40 apparatus 26 the query responses 42, device measurements 44, and script identification code recorded during execution of a previously assigned script program. The script identification code identifies to the server 18 which script program was executed by the apparatus to record the query responses 45 42 and device measurements 44. The responses, device measurements, and script identification code are stored in the database 38. In step 216, the server 18 uses the patient identification code to retrieve from the table 46 the pointer to the script 50 program assigned to the patient. The server 18 then retrieves the assigned script program from the database 38. In step 218, the server 18 transmits the assigned script program to the patient's remotely programmable apparatus through the communication network 24. Following step 218, the server 18 55 proceeds to step 220. In step 220, the server 18 determines if a patient report request has been received from the workstation 20. If no report request has been received, the server 18 returns to step 202. If a report request has been received for a selected 60 patient, the server 18 retrieves from the database 38 the measurements 44 and query responses 42 last received from the patient, step 222. In step 224, the server 18 generates and displays the patient report 58 on the workstation 20. As shown in FIG. 10, the report 58 includes the device measurements 44 and query responses 42 last received from the patient. Following step 224, the server 18 returns to step 202. 10 FIGS. 12A-12B illustrate the steps included in the script program executed by the apparatus 26. Before the script program is received, the apparatus 26 is initially programmed with the patient's unique identification code and the script interpreter used by microprocessor 76 to execute the script program. The initial programming may be achieved during manufacture or during an initial connection to the server 18. Following initial programming, the apparatus 26 receives from the server 18 the script program assigned to the patient associated with the apparatus 26. The script program is received by the modem 86 through a first communication link and stored in the memory 80. In step 302, microprocessor 76 assigns a script identification code to the script program and stores the script identification code in the memory 80. The script identification code is subsequently transmitted to the server 18 along with the query responses 42 and the device measurements 44 to identify to the server 18 which script program was most recently executed by apparatus 26. In step 304, the microprocessor 76 lights LED 74 to notify the patient that he or she has unanswered queries stored in the apparatus 26. The LED 74 preferably remains lit until the patient answers the queries. In step 306, the microprocessor 76 erases from the memory 80 the last set of query responses recorded. In step 308, the microprocessor 76 prompts the patient by displaying on the display 64 "ANSWER QUERIES NOW? PRESS ANY BUTTON TO START". In step 310, the microprocessor 76 waits until a reply to the prompt is received from the patient. When a reply is received, the microprocessor 76 proceeds to step 312. In step 312, the microprocessor 76 executes successive display and input commands to display the queries and response choices on the display 64 and to receive responses to the queries. FIG. 8 illustrates a sample query and its corresponding response choices as they appear on the display 64 The response choices are positioned on the display 64 such that each response choice is located proximate a respective one of input buttons 70A-D. In the preferred embodiment, each response choice is displayed immediately above a respective input button 70A-D. The patient presses the button 70A-D corresponding to his or her response. The microprocessor 76 stores each response in the memory 80. In steps 314-318, the microprocessor 76 executes commands to collect the device measurements 44 from a selected the monitoring device 28. The script program specifies the selected monitoring device from which to collect the measurements. In step 314, the microprocessor 76 prompts the patient to connect the selected monitoring device 28, for example a blood glucose meter, to one of device jacks 68A-C. A sample prompt is shown in FIG. 9. In step 316, the microprocessor 76 waits until a reply to the prompt is received from the patient. When a reply is received, the microprocessor 76 proceeds to step 318. In step 318, the microprocessor 76 collects device measurements 44 from the monitoring device 28 through the interface 90. The measurements 44 are stored in the memory 80. In step 320, the microprocessor 76 prompts the patient to connect the apparatus 26 to the telephone jack 22 so that the apparatus 26 may connect to the server 18 at the prescribed connection time. In step 322, the microprocessor 76 waits until a reply to the prompt is received from the patient. When a reply is received, the microprocessor 76 turns off the LED 74 in step 324. In step 326, the microprocessor 76 waits until it is time to connect to the server 18. The microprocessor 76 compares the connection time specified in the script program to the current time output by the clock 84. In step 328, the microprocessor 76 establishes a subsequent communication link between the apparatus 26 and the server 18 through the modem 86 and the communication network 24. If the connection fails for any reason, the microprocessor 76 repeats step 328 to get a successful connection. In step 330, 5 the microprocessor 76 transmits the device measurements 44, query responses 42, script identification code, and patient identification code stored in the memory 80 to the server 18 through the subsequent communication link. In step 332, the microprocessor 76 receives through the communication network 24 a new script program from the server 18. The new script program is stored in the memory 80 for subsequent execution by the microprocessor 76. Following step 332, the script program ends. One advantage of the monitoring system of the present 15 invention is that it allows each patient to select a convenient time to respond to the queries, so that the monitoring system is not intrusive to the patient's schedule. A second advantage of the monitoring system is that it incurs very low communications charges because each remote apparatus connects to 20 the server 18 at times when communication rates are lowest. Moreover, the cost to manufacture each remote the apparatus 26 is very low compared to personal computers or internet terminals, so that the monitoring system is highly affordable. A third advantage of the monitoring system is that it allows 25 each apparatus 26 to be programmed remotely through script programs 40. Patient surveys, connection times, display prompts, selected monitoring devices, patient customization, and other operational details of each apparatus 26 may be easily changed by transmitting a new script program 40 to 30 apparatus 26. Moreover, each script program 40 may be easily created and assigned by remotely accessing the server 18 through the Internet. Thus, the invention provides a powerful, convenient, and inexpensive system for remotely monitoring a large number of patients. FIGS. 13-15 illustrate a second embodiment of the invention in which each remotely programmable apparatus includes all of the functionality of the first embodiment described above while also including speech recognition and speech synthesis functionality. FIG. 13 shows a perspective 40 view of the remotely programmable apparatus 27 according to the second embodiment. The apparatus 27 includes a speaker 72 for audibly communicating queries and prompts to the patient. The apparatus 27 also includes a microphone 118 for receiving spoken responses to the queries and 45 prompts. The apparatus 27 may optionally include a display 64 for displaying prompts to the patient, as shown in FIG. 14. FIG. 15 is a schematic block diagram illustrating the components of the apparatus 27 in greater detail. The apparatus 27 is similar in design to the apparatus 26 of the preferred 50 embodiment except that the apparatus 27 includes an audio processor chip 120 in place of the microprocessor 76. The audio processor chip 120 is preferably an RSC-164 chip commercially available from Sensory Circuits Inc. of 1735 N. First Street, San Jose, Calif. 95112. The audio processor chip 120 has a microcontroller 122 for executing script programs received from the server 18. A memory 80 is connected to the microcontroller 122. Memory 80 stores the script programs and a script interpreter used by the microcontroller 122 to execute the script programs. The 60 memory 80 also stores measurements received from the monitoring device 28, responses to the queries, script identification codes, and the patient's unique identification code. The audio processor chip 120 also has built in speech synthesis functionality for synthesizing queries and prompts 65 to a patient through the speaker 72. For speech synthesis, the chip 120 includes a digital to analog converter (DAC) 142 and 12 an amplifier 144. The DAC 142 and the amplifier 144 drive the speaker 72 under the control of the microcontroller 122. The audio processor chip 120 further has built in speech recognition functionality for recognizing responses spoken into the microphone 118. Audio signals received through the microphone 118 are converted to electrical signals and sent to a preamp and gain control circuit 128. The preamp and gain control circuit 126, which is in turn controlled by the microcontroller 122. After being amplified by
the preamp 128, the electrical signals enter the chip 120 and pass through a multiplexer 130 and an analog to digital converter (ADC) 132. The resulting digital signals pass through a digital logic circuit 134 and enter microcontroller 122 for speech recognition. The audio processor chip 120 also includes a RAM 138 for short-term memory storage and a ROM 140, which stores programs executed by the microcontroller 122 to perform speech recognition and speech synthesis. The chip 120 operates at a clock speed determined by a crystal 126. The chip 120 also includes a clock 84 that provides the current date and time to the microcontroller 122. As in the preferred embodiment, the apparatus 27 includes an LED 74, display driver 82, modem 86, and device interface 90, all of which are connected to the microcontroller 122. The operation of the second embodiment is similar to the operation of the preferred embodiment except that queries, response choices, and prompts are audibly communicated to the patient through the speaker 72 rather than being displayed to the patient on the display 64. The operation of the second embodiment also differs from the operation of the preferred embodiment in that responses to the queries and prompts are received through the microphone 118 rather than through user input buttons. The script programs of the second embodiment are similar to the script program shown in FIGS. 6A-6B, except that each display command is replaced by a speech synthesis command and each input command is replaced by a speech recognition command. The speech synthesis commands are executed by the microcontroller 122 to synthesize the queries, response choices, and prompts through speaker 72. The speech recognition commands are executed by the microcontroller 122 to recognize responses spoken into microphone 118. For example, to ask the patient how he or she feels and record a response, the microcontroller 122 first executes a speech synthesis command to synthesize through the speaker 72 "How do you feel? Please answer with one of the following responses: very bad, bad, good, or very good." Next, the microcontroller 122 executes a speech recognition command to recognize the response spoken into the microphone 118. The recognized response is stored in the memory 80 and subsequently transmitted to the server. Other than the differences described, the operation and advantages of the second embodiment are the same as the operation and advantages of the preferred embodiment described above. Although the first and second embodiments focus on querying individuals and collecting responses to the queries, the system of the invention is not limited to querying applications. The system may also be used simply to communicate messages to the individuals. FIGS. 16-19 illustrate a third embodiment in which the system is used to perform this automated messaging function. In the third embodiment, each script program contains a set of statements to be communicated to an individual rather than a set of queries to be answered by the individual. Of course, it will be apparent to one skilled in the art that the script programs may optionally include both queries and statements. The third embodiment also shows how the queries and statements may be customized to each individual by merging personal data with the script programs, much like a standard mail merge application. As mentioned above, the individual may be identified for selection of individualized information 5 either through an individual identification code associated with the remote apparatus 26 and stored in memory 80. Referring to FIG. 16, personal data relating to each individual is preferably stored in the look-up table 46 of the database 38. By way of example, the data may include each individual's 10 name, the name of each individual's physician, test results, appointment dates, or any other desired data. As in the preferred embodiment, the database 38 also stores generic script programs 40 created by the script generator 50. The server 18 includes a data merge program 55 for merging the data stored in table 46 with generic script programs 40. The data merge program 55 is designed to retrieve selected data from table 46 and to insert the data into statements in generic script programs 40, thus creating custom script programs 41. Each custom script program 41 contains statements that are customized to an individual. For example, the statements may be customized with the individual's name, test results, etc. Examples of such customized statements are shown in FIGS. 17-18. The operation of the third embodiment is similar to the 25 operation of the preferred embodiment except that the script programs are used to communicate messages to the individuals rather than to query the individuals. Each message is preferably a set of statements. Referring to FIG. 19, the statements may be entered in the server 18 through the script entry 30 screen 56, just like the queries of the preferred embodiment. Each statement preferably includes one or more insert commands specifying data from table 46 to be inserted into the statement. The insert commands instruct the data merge program 55 to retrieve the specified data from the database 38 and to insert the data into the statement. For example, the insert commands shown in FIG. 19 instruct the data merge program 55 to insert a physician name, an appointment date, a patient name, and a test result into the statements. As in the preferred embodiment, each statement may also include one 40 or more response choices, which are entered in fields 96. Following entry of the statements and response choices, CREATE SCRIPT button 102 is pressed. When the button 102 is pressed, the script generator 50 generates a generic script program from the information entered in the screen 56. 45 The generic script program is similar to the script program shown in FIGS. 6A-6B, except that the display commands specify statements to be displayed rather than queries. Further, the statements include insert commands specifying data to be inserted into the script program. As in the preferred 50 embodiment, multiple script programs are preferably generated, e.g. a generic script program for diabetes patients, a generic script program for asthma patients, etc. The generic script programs are stored in the database 38. Following generation of the generic script programs, the 55 server 18 receives script assignment information entered through the script assignment screen 57. As shown in FIG. 7, the script programs are assigned by first selecting one of the generic script programs through the check boxes 106, selecting individuals through the check boxes 108, and pressing the 60 ASSIGN SCRIPT button 112. When the button 112 is pressed, the data merge program 55 creates a custom script program 41 for each individual selected in check boxes 108. Each custom script program 41 is preferably created by using the selected generic script program as a template. For 65 each individual selected, the data merge program 55 retrieves from the database 38 the data specified in the insert com- 14 mands. Next, the data merge program 55 inserts the data into the appropriate statements in the generic script program 40 to create a custom script program 41 for the individual. Each custom script program 41 is stored in the database 38. As each custom script program 41 is generated for an individual, the script assignor 52 assigns the script program 41 to the individual. This is preferably accomplished by creating a pointer to the custom script program and storing the pointer with the individual's unique identification code in the table 46. When the individual's remotely programmable apparatus connects to the server 18, the server 18 receives from the remotely programmable apparatus 26 the individual's unique identification code. The server 18 uses the unique identification code to retrieve from the table 46 the pointer to the custom script program assigned to the individual. Next, the server 18 retrieves the assigned script program from the database 38 and transmits the script program to the individual's remotely programmable apparatus 26 through the communication network 24. The apparatus receives and executes the script program. The execution of the script program is similar to the execution described in the preferred embodiment, except that statements are displayed to the individual rather than queries. FIGS. 17-18 illustrate two sample statements as they appear on the display 64. Each statement includes a response choice, preferably an acknowledgment such as "OK". After reading a statement, the individual presses the button 70A-D corresponding to the response choice to proceed to the next statement. Alternatively, the script program may specify a period of time that each statement is to be displayed before proceeding to the next statement. The remaining operation of the third embodiment is analogous to the operation of the preferred embodiment described above. Although it is presently preferred to generate a custom script program 41 for each individual as soon as script assignment information is received for the individual, it is also possible to wait until the individual's apparatus 26 connects to the server 18 before generating the custom script program 41. This is accomplished by creating and storing a pointer to the generic script program 40 assigned to the individual, as previously described in the preferred embodiment. When the individual's apparatus 26 connects to the server 18, the data merge program 55 creates a custom script program 41 for the individual from the generic script program 40 assigned to the individual. The custom script program 41 is then sent to the individual's apparatus 26 for execution. #### Alternate Embodiments In an alternate embodiment, when the user or patient (the terms user and patient are used interactively) activates the user input button 70E (hereinafter the red
button) a command signal is sent to the processor 76. The processor 76 dial a preset phone number according to the command signal. The preset phone number is that of an answering service at the server 18 or at a workstation 20. The answering service identifies the patient or user associated with the remote apparatus 26 that generated the call based on an identifier sent with the call and user information stored in memory in the database (similar to caller ID). The system (server 18 or workstation 20) that receives the call then retrieves patient information with previous patient/user responses stored at the server's database 38, within memory at the workstation 20, or at some other remotely located storage site. The retrieved patient information is displayed to a live person who is in telephonic communication with the patient. This allows the patient to be placed in immediate contact with a person who has displayed before them the patient's personal health information or other patient historical information. The person receiving the call provides effective communication with the patient, because of the ability to view pertinent information. In an alternate embodiment, an automated answering service is the recipient of the call made by the remote apparatus **26**. The automated answering service asks a series of questions according to the retrieved patient information in order to triage the patient toward different actions depending upon the situation. The patient information also includes previous 10 patient interactions with the automated answering service. The system receiving the call process patient responses according to the content associated with the question asked. Content is one of the following categories: symptoms; behavior; knowledge. The categories include such things as 15 requests for service or product orders. In one example, the automated answering service asks "do you have difficulty breathing? press the red button if you are." If the patient then presses the red button, the call is forwarded to a case manager or a nurse on call. In another example, red button selection is associated with a request for service. When the red button is pressed, the automated answering service asks "do you need someone to change your bed? press the red button if yes." If the patient presses the red button, a home care agency coordinating ancillary daily activity services is notified or is forwarded the call. Other service companies, such as transport companies or concierge service companies, are other possible recipients of forwarded calls depending what actions are available to the patients. The automated answering service is dynamically adaptable based on previous interactions with the automated answering service. For example, the past couple of times the patient activated the red button and answered the question(s), the patient was connected to an emergency health care worker. If 35 the worker determined through review questions of the patient's present condition, maybe information generated by the monitoring device sent over the network 24 to a workstation operated by the worker, and retrieved patient information that no emergency existed, the worker records this situation 40 into the patient's records. If the patient's record includes a number of false alarms that exceed a predetermined limit over a period of time, the automated answering service reprograms itself so that the next time the patient activates the red button the patient is directly connected to a live person that is des- 45 ignated for non-emergency patient interaction or to other questions that direct the patient to the person designated for non-emergency patient interaction. This frees-up emergency healthcare workers from dealing with someone who has a history of not needing their expertise. FIGS. 20 and 21 illustrate alternate embodiments of the invention illustrated in FIG. 1. In FIG. 20, the remote apparatus 26 is a personal computer including a processor and a user interface, e.g. display, keyboard, mouse, or other input and output devices (not all shown), that receives the script 55 program, processes the script program and presents the script program for user interaction. For example, the script program requires that the personal computer present an image of a stand-alone remote apparatus 350, such as the Health BuddyTM produced by Health Hero Network, Inc., on the 60 display. The user then interacts with the displayed image of the stand-alone remote apparatus by operating the user interface(s) of the personal computer to select displayed responses. The displayed image of the stand-alone remote apparatus presents a virtual image with the same functionality 65 as the apparatuses 26 and 27, as described above in FIGS. 3 and 13. It can be appreciated to those of ordinary skill in the 16 art that the system of FIG. 20 provides all or part of the functionality of the apparatuses shown in FIGS. 3 and 13, but does it on a personal computer. FIG. 21 includes all the components of the FIG. 1 and a digital television network 36 in communication with the server 18 and the remote apparatus 26. The remote apparatus 26 of FIG. 21 is an interactive television system that includes a processing unit 33, such as a satellite broadcast receiving, set-top processor with OpenTV signal processing software, a display 34, such as a television set, and a user interface 35, such as a remote control. The remote apparatus 26, through the processing unit 33, is coupled to the communication network 24, the digital television network 36 and the monitoring device 28. The processing unit 33 includes a CPU, memory and embedded software for receiving and processing both digital entertainment and advertisement content and digital script programs. Also, the processing unit 33 allows the user to view the entertainment and advertisement content, such as television programming, and interact with (i.e. respond to) the script programs. The script program(s) sent from the server 18 are viewable on the display 34 as they would appear on the display 64 of apparatus 26 or are viewed on a portion of the display 34. For example, the question with options shown in FIG. 8 would appear on the display 34. The user makes a selection of one of the choices by using the user interface 35, i.e. giving voice commands that are processed by a voice recognition system, controlling and activating a cursor, etc. Example methods of making a selection are to control a cursor icon on the display screen of the display 34 and activate the cursor icon when it is co-located with one of the choices, to assign different keyboard keys are designated as a different one of the displayed choices. Another method is to have the user interface include voice actuation software for processing user voice commands that request selection of a desired With respect to this invention, a "broadcast" includes any form of delivering the content from a source to many viewers, including transmission over the airwaves or via cable, the Internet, a closed-circuit network, or other means of communication. A "broadcast" does not require multiple persons to watch at once, but rather can include multiple individual and independent viewings, such as in the form of video on demand or access to web pages. Moreover, the term "broadcast" may include a single tailored transmission from a source to a single intended viewer. Accordingly, while a "broadcast" may include a transmission from one point to multiple recipients, it is not limited to that case. Likewise, with respect to this invention, a "broadcast" is "transmitted" in any of the above forms. The processing unit 33 is a multimedia processor that receives transmitted broadcast programs from a digital broadcast network 36 via a communication link, such as a satellite or cable link. The processing unit 33 also transmits as well as receives data via the communication network 24. In addition, the multimedia processor has expansion ports to support additional user interface and other devices, such as keyboards, joysticks, trackballs, and to accept add-on circuits for enhanced sound, video, or processing performance. FIG. 22 is an example for illustrative purposes only of a method for increasing user use of script programs by allowing the user to quickly access the script program during viewing of an entertainment or advertisement program in an interactive TV system. FIG. 22 illustrates a process performed by the system shown in FIG. 21. At block 400, the server 18 generates an interactive script program. In an alternate embodiment, the script program is fully or partially created at another remotely coupled computer, such as workstation 20, and added to multimedia content, then the script program and multimedia content is sent to the server 18 In one embodiment, the script program is specialized for a specific user according to a health care professional request or to a pre- 5 defined health regimen based on user profile information. In an alternate embodiment the script program is generated, in relation to entertainment or advertisement content that it will later be broadcasted with. Next, at block 402, the generated script program is combined with digital produced entertainment or advertisement content, i.e. a multimedia presentation, to create digital broadcast programming. The digital broadcast programming is then broadcasted or transmitted over the chosen communication link, block 406. At block 408, the processing unit 33 receives and processes the digital broadcast programming then presents the entertainment or advertisement content and the script program. The processing unit 33 as directed by software instructions previously imbedded in the processing unit 33, included with the digital broadcast programming or a combination of both processes the digital broadcast programming by determining its content and how that content is to be presented on the display 34. For example, the
processing unit 33 determines if the script program is to be referenced by an icon over the entertainment 25 content or displayed on a portion of the display with the entertainment content. As part of the presentation from block 408 the user is informed of any script program included in the broadcast programming, block 410. Then, at block 426, the user is presented with the script program after the user selects 30 or activates the indication, e.g. an icon. Lastly, at block 428, the user interacts with the script program by responding to any queries and inputting any requested measurements or other responses. The interaction with the script program is similar to that described above for the system of FIG. 1. In 35 another embodiment, the script program is presented in conjunction with the entertainment or advertisement content without requiring the user to select or activate an indicator. FIGS. 23 and 24 are example images presented on the displays 34 in the system illustrated in FIG. 22. FIG. 23 40 illustrates a screen shot of a broadcast program 250 that includes entertainment content 252, such as a video program on heart surgery, and an icon 254. The icon 254 indicates that a script program is available for the viewer. In order for the viewer to access the script program, the viewer selects the 45 icon **254**. The program broadcasted from the broadcast network 24 may have included an entire script program or just a portion of a script program. If the entire script program were included with the broadcast, selection of the icon 254 would begin execution of the script program that was received. How- 50 ever, if only a portion of the script program was received and, for example, that portion only required that the icon 254 be displayed with the entertainment content 252, selection of the icon 254 sends a signal through a back channel, i.e. the link to the communication network 24, to the server 18. The sent 55 signal is a request for the rest of or just more of the script program to be sent to the apparatus 26 either through broadcast network 36 or communication network 24. FIG. 23 illustrates a screen shot of a broadcast program 250 that includes entertainment content 252 and a section that 60 presents a script program image 256. In this example the viewer can interact with the script program image 256 while simultaneously viewing the entertainment content 252. As in FIG. 22 above, the script program may be fully or partially received and processed by the processing unit 33. And again, 65 if it has only been partially received, viewer interaction at a predetermined spot in the displayed interaction process auto- 18 matically initiates a request through the back channel to the server 18 for the rest of the script program. Because the broadcast program 250 is a digital broadcast it can be readily appreciated by those of ordinary skill in the art of digital interactive television, that the entertainment content may be paused until viewer completion of the script program. The script program which can be sent with an initial broadcast program or during presentation of a previously delivered broadcast program that is being presented on the display may also include instructions to pause the entertainment content until viewer completion of the script program at which time the entertainment program resumes. For example, the viewer's/patient's doctor creates a message at the workstation 20 requesting that the patient as soon as possible send blood pressure measurement readings. This message is generated as a new script program at the server 18. The server 18 then sends the new script program to the broadcast network 36. The broadcast network 36 includes hardware and/or software mechanisms for saving the new script program for inclusion with the next patient requested entertainment or advertisement content to be sent to the patient in the case where the patient is not presently viewing a broadcast from the broadcast network 36 or for just broadcasting the script program alone. If the patient is presently viewing entertainment or advertisement content received from the broadcast network 36, the new script program is received, processed and presented to the patient by the apparatus 26. The received new script program may include instructions to pause the presently viewed entertainment or advertisement content. If the script program is specified for a particular patient, the server 18 or broadcast network 36 encodes the script program for that patient. The apparatus of that patient includes a decoding component within the processing unit 33 for decoding the encoded script program received with the broadcast program. For example, the script program includes a weight history chart of the patient. The present invention wants only the patient corresponding to this weight history chart to have viewing access. Therefore, it is encoded for transmission and encoded only by the corresponding patient's apparatus 26. It can be appreciated to one of ordinary skill in the art that this decision, as with the other flow diagram decisions, can be an inherent decision in the processing of the received entertainment/advertisement programming and script program. The embodiments of FIGS. 20 and 21 may also be implemented without any entertainment or advertisement content and perform the functions as to those that illustrated and described for FIG. 1. The script programs or entertainment/advertisement programming can be designed for education and training of users. For example, the script program or information content could show a user, such as a patient, how to effectively use a medical treatment device. Also, the script program or information content could describe to users, such as doctors, nurses or anyone other professional, different treatment styles, plans or new medication. A wide variety of information may be collected, delivered and analyzed in accordance with the present invention. For example, abandoned U.S. patent application Ser. No. 09/378, 188 which is a continuation of U.S. Pat. No. 5,985,559, and unassigned U.S. patent application which is a continuation of U.S. patent application Ser. No. 09/041,809 (the text of which are hereby incorporated by reference) discusses information related to disease causes, treatments, and cures. Script programs include a set of queries for requesting data on lifestyle, environment, behavior, drug compliance, drug response over time, and other aspects. This data is then analyzed to identify trends and establish subgroups with similar responses. Individuals' behavioral and environmental information in conjunction with their gene sequence information is analyzed to find drug candidates and drug targets. Individuals previously designated as having a high risk for developing a particular disease are each given an apparatus 26. Queries related 5 to the individuals' behavior and environment are included in a script program sent from a server 18 to the apparatus 26 or from a server 18 to the apparatus 26 through a broadcast network 36. The individuals' responses are sent back to the server 18. The process of collecting individuals' information 10 can take place over a long period of time to ensure accurate data and to allow researchers to observe progression of the disease. A data mining program on the server analyzes the individuals' behavioral and environmental information, as well as their gene sequence information. Differences in gene 15 sequence information, or in behavioral and environmental factors between individuals who show a severe disease phenotype and those who show a mild severe disease phenotype can then be distinguished and used to develop new drug candidates, targets, or general treatments. Genetic testing allows an individual to determine whether or not he or she has a predisposition to a certain disease. The degree of expressivity of a certain disease will be determined in part by an individual's environment and lifestyle. The environment and lifestyle information is retrieved from 25 responses to queries sent from the server 18 to the apparatus 26 or from the server 18 to the apparatus 26 through the broadcast network 36. The present invention interprets a patient's gene sequence information and his or her environment and lifestyle to come up with a personalized prognosis. 30 This procedure can be repeated many times over the course of a disease state to monitor a patient's condition. In addition, disease-causing pathogens can also have their genes sequenced. Using these sequences in combination with information about a patient's environment and lifestyle, the 35 present invention comes up with a personalized treatment plan, ideally to eliminate the pathogen. It is also possible to use the procedure described above to monitor the course of the disease-state produced by a pathogen. Finally, a genotype-to-phenotype map or database can be constructed for 40 developing better treatments and aiding in research. Although the above description contains many specificities, these should not be construed as limitations on the scope of the invention but merely as illustrations of some of the presently preferred embodiments. Many other embodiments of the invention are possible. For example, the scripting language and script commands shown are representative of the preferred embodiment. It will be apparent to one skilled in the art many other scripting languages and specific script commands may be used to implement the invention. Moreover, the invention is not limited to the specific applications described. The system and method of the invention have many other applications both inside and outside the healthcare industry. For example, pharmaceutical manufacturers may apply the system in the clinical development and post marketing surveillance of new drugs, using the system as an interactive, on-line monitoring tool for collecting data on the efficacy, side effects, and quality of life impact
of the drugs. Compared to the current use of labor-intensive patient interviews, the system provides a fast, flexible, and cost effective alternative for monitoring the use and effects of the drugs. The system may also be used by home healthcare companies to enhance the service levels provided to customers, e.g. panic systems, sleep surveillance, specific monitoring of disease conditions, etc. Alternatively, the system may be used to 65 monitor and optimize the inventory of home-stationed health supplies. As an example, the system may be connected to an 20 appropriate measuring device to optimize timing of oxygen tank delivery to patients with chronic obstructive pulmonary disease (COPD). The system and method of the invention also have many applications outside the healthcare industry. For example, the system may be used for remote education over the Internet, facilitating educational communication with children or adult trainees who lack access to sophisticated and expensive computer equipment. The system may also be used by law enforcement officers to perform on-line surveillance of individuals on probation or parole. In an alternate embodiment, the software and hardware components of any one of the remote apparatuses 26 or 27 are incorporated directly into a monitoring device. This allows a patient to only have to interact with one device for their entire health monitoring needs. Further, the invention has numerous applications for gathering data from remotely located devices. For example, the system may be used to collect data from smart appliances, such as identification check systems. Examples of appliances that are used as smart appliances are refrigerator, telephone, stove, clock radio, VCR, or any other electrical or non-electrical device including the monitoring device 28. The smart appliance includes some or all of the components of the remote apparatuses 26 or 27 as illustrated in FIGS. 4 and 15. The smart appliance with the necessary hardware or software components provides all the interactive capabilities described and shown for remote apparatuses 26 or 27, see FIGS. 8-12, 14, 17 and 18. In one embodiment, the assigned scripts are in the form of a recorded voice that is sent over the communication network (e.g. voice over IP) to the appliance or remote apparatus. Also, the user responds to the voice scripts through activation of buttons according to instructions in the voice scripts or by verbally responding to the voice scripts. The verbal responses by the user are sent to the server or workstation over the communication network (e.g. voice over IP). The server or workstation includes a voice recognition component for interpreting the user's verbal responses, records the response and determines the next question or request (verbal or otherwise) to be sent to the user according to the responses. Live voice communication is also possible between the remote apparatus and the server or workstation over the communication network. Also, the monitoring device includes a communication component for allowing the monitoring device to send data directly to the server 18. The server 18 then sends the monitoring device data to the patient's smart appliance for display to the patient. In an alternate additional setup, the monitoring device sends the data to the smart apparatus. Alternatively, the system may be applied to the remote monitoring of facilities, including safety and security monitoring, or to environmental monitoring, including pollution control and pipeline monitoring. Many other suitable applications of the invention will be apparent to one skilled in the art Therefore, the scope of the invention should be determined not by the examples given, but by the appended claims and their legal equivalents. I claim: - 1. A system for remotely monitoring an individual, the system comprising: - a remote apparatus for interacting with the individual; and a server comprising - (i) a monitoring application including a program generator for creating a customized program for the individual from a set of queries, the program being executable by the remote apparatus to (A) communi- cate the set of gueries to the individual and (B) collect a set of responses to the set of queries from the individual, wherein said program includes (1) a set of statements regarding general health conditions and (2) at least one of (a) a portion specific to the health of 5 said individual and (b) a message corresponding to said individual from a health care professional associated with said individual, and (ii) a database for storing (a) the set of queries and (b) the set of responses to the set of queries from the individual: wherein the remote apparatus comprises - (i) a user interface, - (ii) a processor connected to the user interface for executing the program to (a) communicate the set of queries to the individual and (b) receive the set of responses to the set of queries from the individual, and - (iii) a memory configured to store a unique identification code corresponding to said individual. - 2. The system of claim 1, wherein the server further comprises an answering service such that when a voice communication button of the user interface is activated, the answering service (a) sends one or more questions as voice communications to the remote apparatus, the questions being 25 stored in the server (b) stores a respective answer spoken by the individual to each of the questions and (c) provides a service based on the answers. - 3. The system of claim 2, further comprising a communications network conveying data between the server and the 30 remote apparatus, the data comprising the program, the set of responses, the questions and the answers. - 4. The system according to claim 1, wherein said program further includes a set of corresponding response choices for at least one of the set of queries. - 5. A system for remotely monitoring an individual, com - a server comprising a monitoring application including a program generator; and - a remote apparatus including - (i) a processor for executing a customized program for the individual to present one or more queries to the individual and collect one or more responses to the one or more queries from the individual, wherein said program includes (1) a set of statements regarding 45 general health conditions and (2) at least one of (a) a portion specific to the health of said individual and (b) a message corresponding to said individual from a health care provider associated with said individual, - (ii) a user interface through which the individual can 50 input the one or more responses to the one or more queries, and - (iii) a memory configured to store a unique identification code corresponding to said individual; - wherein the server is configured to (a) create the custom- 55 ized program for the individual based on the one or more queries using the program generator, (b) transmit the program to the remote apparatus, and (c) receive the one or more responses to the one or more queries from the remote apparatus. - 6. The system of claim 5 wherein the program is further based on one or more previous responses made by the individual to at least one previous query. - 7. The system of claim 5 wherein the remote apparatus further includes a display. - 8. The system of claim 5 wherein the user interface has one or more user input buttons. - 9. The system of claim 5 wherein the user interface has a touch-sensitive display screen. - 10. The system of claim 5 wherein the individual is a patient and the program is assigned to the individual using a script assignor of the monitoring application. - 11. The system of claim 10 wherein the program is created based on information entered by the health care provider associated with said individual. - **12**. The system of claim **5**, wherein the remote apparatus further stores the one or more responses while a communication link to the server is disconnected. - 13. The system of claim 5, wherein the remote apparatus further includes an audio transducer. - 14. The system of claim 5, wherein the remote apparatus further includes a visual indicator. - 15. The system of claim 5, further comprising one or more monitoring devices connectable to the remote apparatus. - 16. The system of claim 15 wherein execution of the pro-20 gram prompts the individual to connect at least one of the monitoring devices to the remote apparatus. - 17. The system of claim 16 wherein execution of the program facilitates (i) collection of measurements by the at least one monitoring device and (ii) transmission of said measurements to said remote apparatus. - 18. The system of claim 15 wherein the one or more monitoring devices is selected from the group consisting of: blood glucose meter; peak flow meter; and EKG. 19. The system of claim 15 wherein the one or more monitoring devices is selected from the group consisting of: blood pressure cuff; electronic weight scales; and pulse rate monitors. - 20. The system of claim 5, further comprising a network conveying the program and the responses between the server and the remote apparatus. - 21. The system according to claim 5, wherein said program 40 further includes a set of corresponding response choices for at least one of the one or more queries. - 22. A method for remotely monitoring an individual, com- - (A) creating a customized program for the individual based on one or more queries using a monitoring application program generator on a server, wherein said program includes (1) a set of statements regarding general health conditions and (2) at least one of (a) a portion specific to the health of said individual and (b) a message corresponding to said individual from a health care provider associated with said individual; - (B) transmitting the program from the server to a remote apparatus, wherein said apparatus comprises a memory configured to store a unique identification code corresponding to said individual; -
(C) executing the program in the remote apparatus so that the one or more queries are presented to the individual; - (D) accepting, from the individual, one or more responses to the one or more queries; - (E) transmitting the one or more responses from the remote apparatus to a the server; and - (G) storing the one or more responses in the server. - 23. The method of claim 22 wherein the program is additionally based on one or more previous responses made by the individual to one or more previous queries. - 24. The method of claim 22 wherein the remote apparatus includes a display. 22 - 25. The method of claim 22 wherein the individual uses input buttons to input the one or more responses. - **26**. The method of claim **22** wherein the individual uses a touch-sensitive display screen to input the one or more responses. - 27. The method of claim 22 further comprising: entering the one or more queries on a workstation attached to the server. - **28**. The method of claim **27** wherein the individual is a patient and the program is assigned to the individual using a program assignor of the monitoring application on the server. - 29. The method of claim 28 wherein the program is generated based on information entered by the health care provider associated with the individual. - 30. The method of claim 29 wherein the health care provider is the patient's physician. - **31**. The method of claim **22**, further comprising: storing the one or more responses on the remote apparatus while a communication link to the server is disconnected. - **32**. The method of claim **29** further comprising audibly notifying the individual when unanswered queries are stored at the remote apparatus. - 33. The method of claim 29 further comprising visually notifying the individual when unanswered queries are stored at the remote apparatus. - **34**. The method of claim **22**, further comprising: connecting one or more monitoring devices to the remote 30 apparatus. 24 35. The method of claim 34, further comprising: collecting device measurements produced by the one or more monitoring devices connected to the remote apparatus; and transmitting the device measurements to the server. - **36**. The method of claim **35** wherein execution of the program prompts the individual to connect at least one of the monitoring devices to the remote apparatus. - 37. The method of claim 36 wherein execution of the program facilitates collection of measurements by the at least one monitoring device. - 38. The method of claim 34 wherein the one or more monitoring devices is selected from the group consisting of: blood glucose meter; peak flow meter; and EKG. **39**. The method of claim **34** wherein the one or more monitoring devices is selected from the group consisting of: blood pressure cuff; electronic weight scales; and pulse rate monitors. - 40. The method of claim 22 wherein more than one individual is monitored. - 41. The method of claim 22, wherein the one or more responses are transmitted from the remote apparatus to the server across a network. - **42**. The method of claim **22**, further comprising: generating a report based on the one or more responses. - **43**. The system according to claim **22**, wherein said program further includes a set of corresponding response choices for at least one of the one or more queries. * * * * * US008140663C1 ## (12) INTER PARTES REEXAMINATION CERTIFICATE (1440th) ## **United States Patent** Brown (10) **Number:** US 8,140,663 C1 (45) Certificate Issued: *Jun. 30, 2017 ## (54) NETWORKED SYSTEM FOR INTERACTIVE COMMUNICATION AND REMOTE MONITORING OF INDIVIDUALS (76) Inventor: **Stephen J. Brown**, Mountain View, CA (US) #### **Reexamination Request:** No. 95/002,178, Sep. 11, 2012 No. 95/002,221, Sep. 13, 2012 #### Reexamination Certificate for: Patent No.: 8,140,663 Issued: Mar. 20, 2012 Appl. No.: 11/150,301 Filed: Jun. 13, 2005 (*) Notice: This patent is subject to a terminal dis- claimer. #### Related U.S. Application Data - (60) Continuation of application No. 09/658,209, filed on Sep. 8, 2000, now Pat. No. 6,968,375, which is a continuation-in-part of application No. 09/300,856, filed on Apr. 28, 1999, now Pat. No. 6,368,273, which is a division of application No. 08/946,341, filed on Oct. 7, 1997, now Pat. No. 5,997,476, which is a continuation-in-part of application No. 08/847,009, filed on Apr. 30, 1997, now Pat. No. 5,897,493. - (60) Provisional application No. 60/041,746, filed on Mar. 28, 1997, provisional application No. 60/041,751, filed on Mar. 28, 1997. #### (51) Int. Cl. | G06F 15/173 | (2006.01) | |-------------|-----------| | G06F 19/00 | (2011.01) | | G06Q 30/02 | (2012.01) | | G06Q 30/06 | (2012.01) | | G06Q 50/24 | (2012.01) | | H04N 21/24 | (2011.01) | | A61B 5/00 | (2006.01) | | G06Q 50/22 | (2012.01) | (52) U.S. Cl. **G06Q 30/0601** (2013.01); **G06Q 50/22** (2013.01); **G06Q 50/24** (2013.01); **H04N 21/24** (2013.01); **Y10S** 128/905 (2013.01); **Y10S** 128/92 (2013.01) #### (58) Field of Classification Search None See application file for complete search history. #### (56) References Cited To view the complete listing of prior art documents cited during the proceedings for Reexamination Control Numbers 95/002,178 and 95/002,221, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab. Primary Examiner — James Menefee #### (57) ABSTRACT A system for remotely monitoring an individual. The system includes a server system for generating a script program from a set of queries. The script program is executable by a remote apparatus that displays information and/or a set of queries to the individual through a user interface. Responses to the queries that are entered through the user interface together with individual identification information are sent from the remote apparatus to the server system across a communication network. The server system also includes an automated answering service for providing a series of questions from a stored set of questions for an individual at the remote apparatus to respond to, storing responses to each provided question in the series of questions and providing a service based on the individual's response to the questions. At the time of issuance and publication of this certificate, the patent remains subject to pending reexamination control numbers 90/013,105 and 90/013,335 filed Feb. 5, 2014 and Sep. 3, 2014 respectively. The claim content of the patent may be subsequently revised if a reexamination certificate issues from the reexamination proceedings. 1 INTER PARTES REEXAMINATION CERTIFICATE THE PATENT IS HEREBY AMENDED AS INDICATED BELOW. AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT: Claims 1-15, 18-35 and 38-43 are cancelled. Claims 16, 17, 36 and 37 were not reexamined. * * * * * 2 US008140663C2 ## (12) EX PARTE REEXAMINATION CERTIFICATE (11166th) ### **United States Patent** **Brown** (10) Number: US 8,140,663 C2 (45) Certificate Issued: *Aug. 23, 2017 ## (54) NETWORKED SYSTEM FOR INTERACTIVE COMMUNICATION AND REMOTE MONITORING OF INDIVIDUALS (75) Inventor: Stephen J. Brown, Mountain View, CA (US) (73) Assignee: HEALTH HERO NETWORK, INC., Mountian View, CA (US) #### Reexamination Request: No. 90/013,105, Feb. 5, 2014 #### Reexamination Certificate for: Patent No.: 8,140,663 Issued: Mar. 20, 2012 Appl. No.: 11/150,301 Filed: Jun. 13, 2005 Reexamination Certificate C1 8,140,663 issued Jun. 30, 2017 (*) Notice: This patent is subject to a terminal dis- claimer. #### Related U.S. Application Data - (60) Continuation of application No. 09/658,209, filed on Sep. 8, 2000, now Pat. No. 6,968,375, which is a continuation-in-part of application No. 09/300,856, filed on Apr. 28, 1999, now Pat. No. 6,368,273, which is a division of application No. 08/946,341, filed on Oct. 7, 1997, now Pat. No. 5,997,476, which is a continuation-in-part of application No. 08/847,009, filed on Apr. 30, 1997, now Pat. No. 5,897,493. - (60) Provisional application No. 60/041,746, filed on Mar. 28, 1997, provisional application No. 60/041,751, filed on Mar. 28, 1997. - (51) Int. Cl. | military City | | |---------------|-----------| | G06F 15/173 | (2006.01) | | G06F 19/00 | (2011.01) | | G06Q 30/02 | (2012.01) | | G06Q 30/06 | (2012.01) | | G06Q 50/24 | (2012.01) | | H04N 21/24 | (2011.01) | | A61B 5/00 | (2006.01) | | G06Q 50/22 | (2012.01) | | | | #### (52) U.S. Cl. (58) Field of Classification Search None See application file for complete search history. #### (56) References Cited To view the complete listing of prior art documents cited during the proceeding for Reexamination Control Number 90/013,105, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab. Primary Examiner — James Menefee #### (57) ABSTRACT A system for remotely monitoring an individual. The system includes a server system for generating a script program from a set of queries. The script program is executable by a remote apparatus that displays information and/or a set of queries to the individual through a user interface. Responses to the queries that are entered through the user interface together with individual identification information are sent from the remote apparatus to the server system across a communication network. The server system also includes an automated answering service for providing a series of questions from a stored set of questions for an individual at the remote apparatus to respond to, storing responses to each provided question in the series of questions and providing a service based on the individual's response to the questions. At the time of issuance and publication of this certificate, the patent remains subject to pending reexamination control number 90/013,335 filed Sep. 3, 2014. The claim content of the patent may be subsequently revised if a reexamination certificate issues from the reexamination proceeding. 1 EX
PARTE REEXAMINATION CERTIFICATE THE PATENT IS HEREBY AMENDED AS INDICATED BELOW. AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT: Claims 1-15, 18-35 and 38-43 were previously cancelled. 10 Claims 16, 17, 36 and 37 are cancelled. * * * * * 2 | 专利名称(译) | 用于交互式通信和远程监控个人的网络系统 | | | | |----------------|--|-------------|------------|--| | 公开(公告)号 | <u>US8140663</u> | 公开(公告)日 | 2012-03-20 | | | 申请号 | US11/150301 | 申请日 | 2005-06-13 | | | [标]申请(专利权)人(译) | 健康英雄网络 | | | | | 申请(专利权)人(译) | 健康英雄网络,INC. | | | | | 当前申请(专利权)人(译) | 健康英雄网络,INC. | | | | | [标]发明人 | BROWN STEPHEN J | | | | | 发明人 | BROWN, STEPHEN J. | | | | | IPC分类号 | G06F15/173 A61B5/00 G06F15/10 | 6 G16H10/60 | | | | CPC分类号 | A61B5/0002 G06F19/3418 G06F19/363 G06Q30/02 G06Q30/0601 G06F19/36 G06Q50/24 H04N21/24 G06Q50/22 Y10S128/92 Y10S128/905 G16H10/20 G16H40/67 | | | | | 优先权 | 60/041746 1997-03-28 US
60/041751 1997-03-28 US | | | | | 其他公开文献 | US20050228883A1 | | | | | 外部链接 | Espacenet USPTO | | | | | | | | | | #### 摘要(译) 用于远程监控个人的系统。该系统包括用于从一组查询生成脚本程序的服务器系统。脚本程序可由远程装置执行,该远程装置通过用户界面向个人显示信息和/或一组查询。通过用户界面输入的查询的响应连同个体识别信息通过通信网络从远程装置发送到服务器系统。服务器系统还包括自动应答服务,用于从存储的一组问题中为远程装置处的个人提供一系列问题,以响应,存储对一系列问题中的每个提供的问题的响应,并基于该服务提供服务。个人对问题的回答。