

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 072 222 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 31.01.2001 Patentblatt 2001/05

(21) Anmeldenummer: 00115207.3

(22) Anmeldetag: 13.07.2000

(51) Int. Cl.⁷: **A61B 5/00**

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 28.07.1999 DE 19935165

(71) Anmelder: Roche Diagnostics GmbH 68305 Mannheim (DE)

(72) Erfinder:

 Gessler, Ralf 88255 Baienfurt (DE)

- Hoss, Udo Valencia, CA 91355 (US)
- Zieten, Hans-Ulrich 89186 Illerrieden (DE)
- Pfleiderer, Hans-Jörg 89075 Ulm (DE)
- Fussgaenger, Rolf 89134 Blaustein-Weidach (DE)
- (74) Vertreter:

Pfiz, Thomas, Dr. et al Patentanwälte Wolf & Lutz Hauptmannsreute 93 70193 Stuttgart (DE)

(54) Verfahren und Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit

(57)Die Erfindung betrifft ein Verfahren und eine Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit. Bei der hierfür angewandten Mikrodialysetechnik wird glucosehaltiges Perfusat in intermittierenden Förderschüben durch eine in die Körperflüssigkeit eingreifende Mikrodialysesonde (10) hindurchgefördert und dabei gewonnenes Dialysat zu einer Meßzelle (16) zur Erfassung des Glucosegehalts weitergeleitet. Um eine exakte Glucosebestimmung auch bei reduzierter Dialysedauer ermöglichen, wird vorgeschlagen, daß der Ausgangsgehalt der Glucose im Perfusat mittels einer Regeleinrichtung (18,20) nach Maßgabe einer aus den Meßsignalen der Meßzelle (16) abgeleiteten Führungsgröße an den Glucosegehalt der Körperflüssigkeit angeglichen wird. Dabei kann bei verschwindender Regelabweichung der momentane Ausgangsgehalt der Glucose im Perfusat als Maß für den Glucosegehalt der Körperflüssigkeit bestimmt werden.

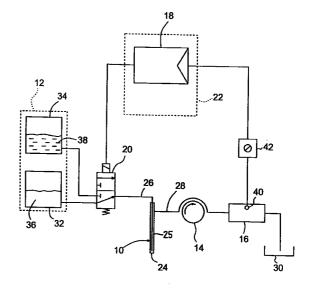


Fig. 1

35

45

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren und eine Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit, insbesondere Gewebeflüssigkeit, gemäß dem Oberbegriff des Patentanspruchs 1 bzw. 14 bzw. 22.

[0002] Ein Verfahren und eine Anordnung dieser Art sind aus der WO 97/42868 bekannt. Dort werden intermittierende Förderschübe vorgeschlagen, um einerseits eine fortlaufende Signalkalibrierung zu ermöglichen und andererseits den Meßvorgang zu beschleunigen. Dabei gleicht sich während Ruhephasen zwischen den Förderschüben das momentan in der Mikrodialysesonde befindliche Perfusatvolumen aufgrund des Dialysevorgangs an die Konzentration der Gewebeglucose an, während angrenzende Volumenbereiche in der nachfolgend mit hoher Fließgeschwindigkeit weitertransportierten Flüssigkeitssäule weitgehend unverändert bleiben. Entsprechend dem Konzentrationsgradient wird an der Meßzelle eine Signalspitze während eines Förderschubs beobachtet, aus welcher der Glucosegehalt des Dialysats und damit auch der Körperflüssigkeit bestimmbar ist. Zur Kalibrierung wird glucosehaltige Perfusionsflüssigkeit eingesetzt, deren vorgegebene Glucosekonzentration den Grundlinienwert der Signalspitze definiert. Dabei wird neben einem vollständigen Konzentrationsausgleich während der Dialysephasen ein lineares Sensorverhalten vorausgesetzt, und es wird angenommen, daß das Konzentrationsprofil im dem aus der Sonde abtransportierten Volumen bis zur Meßzelle nicht zerfällt. Besonders die letzte Annahme trifft jedoch häufig nicht zu, weil insbesondere bei laminarer Strömung eine Durchmischung stattfindet. Hinzu kommt, daß Diffusionsaustausch das Glucosegleichgewicht in dem die Sonde umgebenden Gewebe gestört wird.

[0003] Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, die vorgenannten Nachteile und insbesondere Konzentrationsstörungen in der Körperflüssigkeit zu vermeiden und eine exakte Glucosebestimmung bei reduzierter Dialysedauer zu ermöglichen.

[0004] Zur Lösung dieser Aufgabe werden die in den Patentansprüchen 1, 14 und 22 angegebenen Merkmalskombinationen vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

[0005] Der Erfindung liegt der Gedanke zugrunde, den Glucosegehalt des Perfusats selbsteinstellend bzw. adaptiv an die Glucosekonzentration der Körperflüssigkeit anzupassen. Dementsprechend wird zur verfahrensmäßigen Lösung der vorstehend genannten Aufgabe vorgeschlagen, daß der Ausgangsgehalt der Glucose im Perfusat mittels einer Regeleinrichtung nach Maßgabe einer aus den Meßsignalen der Meßzelle abgeleiteten Führungsgröße an den Glucosegehalt der Körperflüssigkeit angeglichen wird. Damit

werden Glucosegradienten ausgeglichen und entsprechend die erforderliche Zeitdauer für einen vollständigen Dialyseausgleich verringert. Weiter werden auch bei hoher Durchströmung der Mikrodialysesonde und Glucoseschwankungen der Körperflüssigkeit auf Glucosegradienten beruhende Störeffekte vermieden.

[0006] Eine besonders bevorzugte Ausgestaltung der Erfindung sieht vor, daß bei verschwindender Regelabweichung der momentane Ausgangsgehalt der Glucose im Perfusat als Maß für den Glucosegehalt der Körperflüssigkeit bestimmt wird. Damit ist es möglich, eine quantitative Konzentrationsbestimmung über den momentanen Ist-Wert der Regelgröße mittelbar vorzunehmen, während die fortlaufend abgegriffenen Meßsignale der Meßzelle lediglich als Reglereingangsgrößen verwertet werden. Alternativ oder ergänzend ist es grundsätzlich möglich, daß aus den Meßsignalen unmittelbar der Glucosegehalt der Körperflüssigkeit abgeleitet wird.

[0007] Vorteilhafterweise wird der Ausgangsgehalt der Glucose im Perfusat aus der Stellgröße des Stellglieds der Regeleinrichtung ermittelt. Mit dieser Maßnahme kann der Ausgangsgehalt beispielsweise durch Vergleich mit normierten Tabellenwerten exakt ermittelt werden, ohne daß zusätzliche Glucosesensoren erforderlich wären. Prinzipiell ist es jedoch auch möglich, daß der Glucosegehalt des Perfusats vor der Einleitung in die Mikrodialysesonde gemessen wird.

[0008] Für eine variable Einstellung ist es von Vorteil, wenn der Ausgangsgehalt der Glucose im Perfusat durch Strömungsmischen von zwei in getrennten Reservoirs mit voneinander verschiedener Glucosekonzentration bereitgehaltenen Perfusionsflüssigkeiten beeinflußt wird.

[0009] Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung ist es vorgesehen, daß das Perfusat in alternierend aufeinanderfolgenden Transport- und Dialyse-Intervallen mit unterschiedlicher Fließgeschwindigkeit durch die Mikrodialysesonde hindurchgeleitet wird, wobei die Fließgeschwindigkeit während der Transportintervalle höher ist als während der Dialyseintervalle. Dadurch kann die Messung insgesamt verkürzt und die Auswertung weiter vereinfacht werden, da ein vorhandener Konzentrationsgradient auch bei nur teilweisem Dialyseausgleich über das Meßsignal qualitativ erkennbar ist. Dabei sollte die Fließgeschwindigkeit während der Transportintervalle so weit erhöht werden, daß der Ausgangsgehalt der Glucose im Perfusat beim Durchgang durch die Mikrodialysesonde im wesentlichen erhalten bleibt. Hingegen wird während der Dialyseintervalle die Förderung unterbrochen oder zumindest die Fließgeschwindigkeit so verringert, daß die Glucosekonzentration im Dialysat an den Glucosegehalt der Körperflüssigkeit angenähert wird.

[0010] Eine besonders einfache Regelung sieht vor, daß die den Sollwert festlegende Führungsgröße durch Integration oder Differentiation des zeitlichen Verlaufs

der Meßsignale oder durch eine qualitative Erkennung von Signalspitzen im zeitlichen Verlauf der Meßsignale ermittelt wird. Alternativ kann die Führungsgröße durch Vergleich des aktuellen Signalverlaufs der Meßsignale mit in einem Speichermittel hinterlegten kalibrierten Signalmustern ermittelt werden. Eine weitere Möglichkeit besteht darin, daß die Führungsgröße aus dem Spitzenwert des Signalverlaufs der Meßsignale während eines jeden Transportintervalls ermittelt wird. Um das Reglereingangssignal quantitativ zu definieren, kann die Führungsgröße - entsprechend dem Glucosegehalt c der Körperflüssigkeit - gemäß der Beziehung

$$c = \left[\frac{S_g}{S_g \cdot (1-b) + b \cdot S_0} - 1\right] \cdot a \cdot c_0 + c_0$$

bestimmt werden, wobei S_g den Spitzenwert und S_0 den Grundlinienwert der Meßsignale während eines Transportintervalls, c_0 den momentanen Ausgangsgehalt der Glucose im Perfusat und a, b empirisch bestimmte Korrekturfaktoren zur Kompensation von Diffusions- und Mischungseffekten sowie verbleibenden Angleichungs- bzw. Recovery-Effekten zwischen Körper- und Perfusionsflüssigkeit während des Transportintervalls bezeichnen.

[0011] Eine besonders einfache Reglerfunktion sieht vor, daß der Ausgangsgehalt der Glucose im Perfusat durch einen Zweipunktregelvorgang unstetig geregelt wird, wobei bei einer Regelabweichung der Ausgangsgehalt der Glucose im Perfusat um einen vorgegebenen Stellwert verändert wird.

[0012] Im Hinblick auf eine Meßanordnung wird zur Lösung der eingangs genannten Aufgabe eine Regeleinrichtung zur Angleichung des Ausgangsgehalts der Glucose im Perfusat an den Glucosegehalt der Körperflüssigkeit nach Maßgabe einer aus den Meßsignalen der Meßzelle abgeleiteten Führungsgröße vorgeschlagen. In bevorzugter Ausgestaltung ist eine Auswerteeinheit vorgesehen, mittels welcher der Glucosegehalt der Körperflüssigkeit entsprechend dem momentanen Ausgangsgehalt der Glucose im Perfusat bei verschwindender Regelabweichung bestimmt wird.

[0013] Die Perfusionseinrichtung umfaßt einen Perfusatvorrat sowie eine Fördereinheit zur Förderung von Perfusat. Die Fördereinheit arbeitet vorzugsweise intervallweise, d.h. mit unterschiedlichern Förderstrom in aufeinanderfolgenden Zeitintervallen. Um den Glucoseausgangsgehalt variieren zu können, ist es von Vorteil, wenn der Perfusatvorrat mindestens zwei gesonderte Reservoirs zur Aufnahme von Perfusionsflüssigkeiten mit voneinander verschiedener Glucosekonzentration aufweist. Vorteilhafterweise weist der Perfusatvorrat ein glucosefreie Perfusionsflüssigkeit enthaltendes erstes Reservoir und ein glucosehaltige Perfusionsflüssigkeit enthaltendes zweites Reservoir auf. Dabei sollte in letzterem der Glucosegehalt oberhalb der physiologischen Grenzwerte liegen. Eine baulich einfache Stelleinrich-

tung zur Einstellung des Ausgangsgehalts der Glucose im Perfusat sieht einen vorzugsweise durch ein Mischventil oder getaktet schaltbares Wegeventil gebildeten Strömungsmischer als Stellglied vor. Dabei ist es günstig, wenn der Strömungsmischer zuströmseitig mit mindestens zwei Reservoirs zur Zuleitung von Perfusionsflüssigkeiten mit voneinander verschiedenem Glucosegehalt verbunden ist und abströmseitig in eine zu der Mikrodialysesonde führende Perfusatleitung mündet.

[0014] Zur variablen Verarbeitung des Signalflusses weist die Regeleinrichtung vorteilhafterweise einen digital arbeitenden, vorzugsweise durch einen Mikrocontroller gebildeten Regler auf.

[0015] Im folgenden wird die Erfindung anhand eines in der Zeichnung in schematischer Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

Fig. 1 ein Blockschaltbild einer Mikrodialyseanordnung zur Konzentrationsbestimmung von Glucose in Gewebeflüssigkeit; und

Fig. 2 ein Zeitdiagramm des Perfusatstroms, des Glucose-Meßsignals im Dialysat und der adaptiv nachgeregelten Glucosekonzentration im Perfusat.

[0016] Die in der Zeichnung dargestellte Mikrodialyseanordnung besteht im wesentlichen aus einer in subkutanes Gewebe eines Probanden implantierbaren Mikrodialysesonde 10, einer Perfusionseinrichtung 12, 14 zur intervallweisen Perfusion der Mikrodialysesonde 10 mit glucosehaltigem Perfusat, einer Durchfluß-Meßzelle 16 zur Erfassung des Glucosegehalts im durchfließenden Dialysat, einer Regeleinrichtung 18, 20 zur Angleichung des Ausgangsgehalts der Glucose im Perfusat an den Glucosegehalt der Gewebeflüssigkeit und einer Auswerteeinheit 22 zur Bestimmung des Glucosegehalts der Gewebeflüssigkeit.

[0017] Die Mikrodialysesonde 10 weist eine Dialysemembran 24 auf, über welche ein Diffusionsaustausch von Glucose zwischen dem in der Sonde befindlichen Perfusat und der die Sonde umgebenden interstitiellen Flüssigkeit unter Gewinnung von Dialysat möglich ist. Hierzu ist in dem röhrenförmigen doppellumigen Sondengehäuse 25 ein zumindest teilweise von der Dialysemembran 24 begrenzter Durchflußkanal vorgesehen, welcher im proximalen Sondenbereich eintaßseitig mit einer Perfusatleitung 26 zur Einleitung von Perfusat und auslaßseitig mit einer Dialysatleitung 28 zur Ableitung des beim Dialysevorgang aus dem Perfusat gebildeten Dialysats verbunden ist. Das Dialysat läßt sich über die Dialysatleitung 28 zu der Meßzelle 16 und von dort in einen Auffangbehälter 30 weiterleiten. Geeignete Mikrodialysesonden der beschriebenen Art sind insbesondere aus der DE-A 33 42 170 bzw. US-PS 4,694,832 wohlbekannt und können von der in

Solna, Schweden ansässigen Firma CMA/Microdialysis AB unter der Bezeichnung "CMA 60 Microdialysis Catheter" bzw. "CMA 70 Brain Microdialysis Catheter" erworben werden.

[0018] Zur intervallweisen Beaufschlagung der Mikrodialysesonde 10 mit glucosehaltigem Perfusat umfaßt die Perfusionseinrichtung einen Perfusatvorrat 12 und eine Fördereinheit 14. Der Perfusatvorrat 12 ist durch zwei gesonderte Reservoirs 32, 34 gebildet, von denen eines glucosefreie Perfusionsflüssigkeit 36 und das andere mit Glucose von vorgegebener Konzentration versetzte Perfusionsflüssigkeit 38 enthält. Die Glucosekonzentration der Flüssigkeit 38 zweckmäßig mehr als 4g/l, so daß durch Mischen der Flüssigkeiten 36, 38 in nachstehend beschriebener Weise der physiologische Bereich der Gewebeglucose im Perfusat abgedeckt werden kann. Um das Perfusat in dosierten Förderschüben von wenigen Mikrolitern durch die Mikrodialysesonde 10 und die nachgeordnete Meßzelle 16 zu fördern, ist eine intervallweise betriebene Schlauchpumpe 14 als Fördereinheit vorgesehen. Diese ist vorteilhafterweise in der Dialysatleitung 28 angeordnet, um während der Förderpausen die Mikrodialysesonde 10 gegenüber der extrakorporal angeordneten Meßzelle 16 abzusperren.

[0019] Die Meßzelle 16 weist einen von der durchströmenden Perfusionsflüssigkeit bzw. dem darin enthaltenen Dialysat beaufschlagten, elektrochemischenzymatisch arbeitenden Elektrodensensor 40 zur kontinuierlichen Signalerfassung auf. Der Sensor 40 weist mit dem als Elektrolyt dienenden Dialysat beaufschlagte nicht gezeigte Meßelektroden auf, über welche von dem Glucosegehalt des Dialysats linear abhängige Meßsignale als kontinuierlicher Meßstrom fortlaufend abgegriffen werden. Nähere Einzelheiten dieses Meßprinzips sind im Stand der Technik insbesondere aus der DE-A 44 01 400 bekannt, worauf hier ausdrücklich Bezug genommen wird. Es versteht sich, daß die Meßsignale auch den Glucosegehalt der Körperflüssigkeit wiederspiegeln, soweit in der Mikrodialysesonde ein vollständiger Ausgleich eines Konzentrationsgradienten zwischen dem Perfusat und der Körperflüssigkeit stattfindet bzw. der Angleichungsgrad bekannt ist.

[0020] Die Meßsignale des Sensors 40 werden in dem nachgeschalteten Meßumformer 42 elektronisch aufbereitet und über einen getakteten Analog-Digital-Wandler als zeitliche Abfolge von Digitaiwerten in einen digital arbeitenden Regler 18 der Regeleinrichtung eingespeist. Der Regler 18 ist dabei durch einen Mikrocontroller realisiert, welcher zugleich die Auswerteeinheit 22 bildet. Ausgangsseitig ist der Regler 18 zur Einstellung des Ausgangsgehalts an Glucose im Perfusat mit einem Wegeventil 20 als Stellglied der Regeleinrichtung verbunden. Das Wegeventil 20 verbindet die Perfusatleitung 26 in einer federzentrierten ersten Schaltstellung mit dem glucosefreien Reservoir 32 und in der elektromagnetisch betätigten zweiten Schaltstellung mit dem glucosehaltigen Reservoir 34. Damit läßt sich in

einem getakteten Betrieb durch geeignete Wahl der Schaltfrequenz das Mengenverhältnis der durch die Schlauchpumpe 14 angesaugten Flüssigkeiten 36, 38 und durch nachfolgend in der Perfusatleitung 26 stattfindendes Strömungsmischen die Glucosekonzentration im Perfusat als Regelgröße beeinflussen.

[0021] Beim Betrieb der Mikrodialyseanordnung wird gemäß dem oberen Diagramm in Fig. 2 das Perfusat in durch Ruhe- bzw. Dialyseintervalle 44 voneinander getrennten Transportintervallen 46 durch die Mikrodialysesonde 10 und die Meßzelle 16 gepumpt. Die Dialyseintervalle 44 können dabei so bemessen werden, daß der Glucosegehalt des in der Mikrodialysesonde 10 ruhenden Perfusatvolumens durch Diffusionsaustausch nahezu vollständig an die Gewebeglucose angeglichen wird. Während der Transportintervalle 46 hingegen bleibt die Glucosekonzentration im Perfusat aufgrund des raschen Durchtritts durch die Sonde im wesentlichen unverändert. Der Angleichungsgrad bzw. die "Recovery" hängt u.a. von der Verweildauer bzw. Fließgeschwindigkeit des Perfusats in der Mikrodialysesonde 10 ab. Bei dem in Fig. 2 gezeigten Ausführungsbeispiel beträgt die Dauer eines Dialyseintervalls 360 s bei unterbrochener Förderung, während die Dauer eines Transportintervalls 180 s bei einem Förderstrom V von 0,08 μl/s beträgt.

[0022] Bei jedem Förderschub wird das im vorangehenden Dialyseintervall gebildete Dialysat in einer Förder- bzw. Flüssigkeitssäule vollständig aus der Mikrodialysesonde 10 heraus zumindest in die Dialysatleitung 28 und vorzugsweise bis zur Meßzelle 16 verdrängt. Dementsprechend wird dort während der Transportintervalle 46 ein Signal S abgegriffen, das bei Konzentrationsunterschieden zwischen der Gewebeund Perfusatglucose einen der Gewebeglucose entsprechenden Spitzen- bzw. Extremwert S_g und einen der Ausgangskonzentration an Glucose im Perfusat entsprechenden Grundlinienwert S_0 zeigt (mittleres Diagramm in Fig. 2).

[0023] Zur Angleichung der Ausgangsglucose im Perfusat an die Gewebeglucose wird mittels der Auswerteeinheit 22 aus den Meßsignalen eine der Gewebeglucose entsprechende Führungsgröße abgeleitet und dem Regler 18 unter Bildung der Regeldifferenz gegenüber der Regelgröße, d.h. dem Momentanwert der Ausgangsglucose eingespeist. Dabei ist die Führungsgröße mit den Signalspitzen S_g korreliert, während die Regelgröße durch den Grundlinienwert S_0 erfaßbar ist.

[0024] Für eine besonders einfache Regelung genügt es, wenn die Führungsgröße bzw. die Regeldifferenz durch eine qualitative Erkennung von Signalspitzen S_g ermittelt und der Ausgangsgehalt der Glucose im Perfusat durch einen Zweipunktregelvorgang unstetig angepaßt wird. Dabei wird durch das Stellglied 20 der Glucose-Ausgangsgehalt c_p bei Auftreten einer positiven Signalspitze (Signalpeak 48) um einen vorgegebenen Wert Δp erhöht und bei einer negativen Spitze

55

45

10

15

30

35

45

(Signaldip; nicht gezeigt) entsprechend reduziert. Für diesen Regelbetrieb reicht bereits eine geringe Angleichung bzw. Recovery (< 50%) während der Dialyseintervalle aus, so daß deren Dauer entsprechend verringert werden kann.

[0025] Das Stellsignal läßt sich bei gleichbleibenden Transportintervallen erst nach Ablauf eines Dialyseintervalls umsetzen. Um diese Totzeit zu vermeiden, ist es auch denkbar, bei einer Regelabweichung die Dauer des momentanten Transportintervalls zu verlängern, um sicherzustellen, daß die Perfusionsflüssigkeit mit dem nachgeregelten Glucosegehalt sogleich in die Mikrodialysesonde 10 gelangt.

[0026] Bei verschwindender Regelabweichung wird schließlich ein Konstantsignal 50 beobachtet, welches anzeigt, daß der Glucose-Ausgangsgehalt $c_{\rm p}$ mit dem aktuellen Wert cq der Gewebeglucose übereinstimmt (Fig. 3 unten). Auf diese Weise ist es möglich, auf eine fehleranfällige unmittelbare Auswertung der Meßsignale zu verzichten und die Gewebeglucose mittelbar aus dem Gleichgewichtswert cp beim Auftreten eines Konstantsignals 50 zu bestimmen. Dies läßt sich ohne zusätzlichen Meßaufwand dadurch bewerkstelligen, daß der Ausgangsgehalt der Glucose im Perfusat mittels der Auswerteeinheit 22 aus der aktuellen Stellgröße, also der Schaltfrequenz des Ventils 20 gegebenenfalls durch Vergleich mit zugeordneten Kalibrierwerten bestimmt wird.

[0027] Eine Möglichkeit zur quantitativen Auswertung der Meßsignale besteht darin, daß die Führungsgröße durch Mustererkennung, d.h. durch Vergleich des aktuellen Signalverlaufs der Meßsignale mit in einem Speichermittel hinterlegten kalibrierten Signalmustem ermittelt wird. Alternativ kann die Regeldifferenz als Differenz des Spitzenwerts und des Grundlinienwerts des Signalverlaufs der Meßsignale bestimmt werden. In diesem Fall wird also der Ist-Wert der Regelgröße als Grundlinienwert S_0 durch Messung erfaßt.

[0028] Wie vorstehend ausgeführt, wird das Sensorsignal nur während der Transportintervalle ausgewertet. Der Signalverlauf umfaßt dabei einen mit der Dialysephase korrelierten Teil S_g, welcher proportional zum Gewebeglucosegehalt ist, und einen Teil S₀, welcher auf einen hohen Sondendurchfluß zurückführbar ist und nahezu (bis auf verbleibende Recovery-Effekte) die Ausgangskonzentration der Glucose im Perfusat wiederspiegelt. Um eine von Sensitivtätsschwankungen unabhängige Regelung zu ermöglichen, kann die Führungsgröße entsprechend dem Glucosegehalt c der Gewebeflüssigkeit gemäß der Beziehung

$$c = \frac{S_g}{S_0} \cdot c_0 \tag{1}$$

bestimmt werden, wobei c_0 den - durch die Stellgröße bestimmbaren - momentanen Ausgangsgehalt der Glucose im Perfusat bezeichnet.

[0029] Weitere Einflußgrößen lassen sich dadurch berücksichtigen, daß die Gewebeglukosekonzentration bzw. die Führungsgröße nach der Beziehung

$$c = \left[\frac{S_g}{S_g \cdot (1-b) + b \cdot S_0} - 1 \right] \cdot a \cdot c_0 + c_0$$
 (2)

ermittelt wird, wobei a, b empirisch bestimmte Korrekturfaktoren zur Kompensation von Diffusions- und Mischungseffekten sowie verbleibenden Glucose-Angleichungseffekten zwischen Körper- und Perfusionsflüssigkeit während des Transportintervalls bezeichnen. Der Spitzenwert $S_{\rm g}$ ist der Sensorwert zu einem definierten Zeitpunkt während des Transportintervalls. Dieser Zeitpunkt kann $in\ vitro$ bestimmt werden und ist durch die Förderdauer des Dialysats von der Mikrodialysesonde 10 zu der Meßzelle 16 gegeben. S_0 kann als Mittelwert der Meßsignale in einem geeigneten Zeitabstand vor und nach dem Zeitpunkt von S_g bestimmt werden. Für a, b = 1 geht die Beziehung (2) in (1) über.

[0030] Denkbar ist es, das vorstehend beschriebene Prinzip der selbstanpassenden Regelung des Glucosegehalts auch bei Messungen mit kontinuierlichem Perfusatstrom anzuwenden. Grundsätzlich ist diese Mikrodialysetechnik auch nicht auf subkutane Messungen am menschlichen Körper beschränkt.

[0031] Vielmehr können andere Körperflüssigkeiten wie Blut gegebenenfalls auch ex vivo untersucht werden.

Patentansprüche

- 1. Verfahren zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit, insbesondere Gewebeflüssigkeit, bei dem glucosehaltiges Perfusat durch eine in die Körperflüssigkeit eingreifende Mikrodialysesonde (10) hindurchgefördert und dabei gewonnenes Dialysat zu einer Meßzelle (16) weitergeleitet wird, und bei dem an der Meßzelle (16) mit dem Glucosegehalt des Dialysats korrelierte Meßsignale abgegriffen werden, dadurch gekennzeichnet, daß der Ausgangsgehalt der Glucose im Perfusat mittels einer Regeleinrichtung (18,20) nach Maßgabe einer aus den Meßsignalen der Meßzelle (16) abgeleiteten Führungsgröße an den Glucosegehalt der Körperflüssigkeit angeglichen wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei verschwindender Regelabweichung der momentane Ausgangsgehalt der Glucose im Perfusat als Maß für den Glucosegehalt der Körperflüssigkeit bestimmt wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ausgangsgehalt der Glucose im Perfusat aus der Stellgröße eines Stell-

55

15

20

25

30

35

45

50

55

glieds (20) der Regeleinrichtung (18,20) ermittelt wird.

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Glucosegehalt 5 des Perfusats vor der Einleitung in die Mikrodialysesonde (10) gemessen wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Ausgangsgehalt der Glucose im Perfusat durch Strömungsmischen von zwei in getrennten Reservoirs (32,34) mit voneinander verschiedener Glucosekonzentration bereitgehaltenen Perfusionsflüssigkeiten (36,38) beeinflußt wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Perfusat in alternierend aufeinanderfolgenden Transport- und Dialyseintervallen mit unterschiedlicher Fließgeschwindigkeit durch die Mikrodialysesonde (10) hindurchgeleitet wird, wobei die Fließgeschwindigkeit während der Transportintervalle höher ist als während der Dialyseintervalle.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Fließgeschwindigkeit während der Transportintervalle so weit erhöht wird, daß der Ausgangsgehalt der Glucose im Perfusat beim Durchgang durch die Mikrodialysesonde (10) im wesentlichen erhalten bleibt, und daß während der Dialyseintervalle die Förderung unterbrochen oder zumindest die Fließgeschwindigkeit so verringert wird, daß die Glucosekonzentration im Dialysat an den Glucosegehalt der Körperflüssigkeit angenähert wird.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Führungsgröße durch Integration oder Differentiation des zeitlichen 40 Verlaufs der Meßsignale ermittelt wird.
- 9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Führungsgröße durch eine qualitative Erkennung von Signalspitzen im zeitlichen Verlauf der Meßsignale ermittelt wird.
- 10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Führungsgröße durch Vergleich des aktuellen Signalverlaufs der Meßsignale mit in einem Speichermittel hinterlegten kalibrierten Signalmustern ermittelt wird.
- 11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Führungsgröße aus dem Spitzenwert des Signalverlaufs der Meßsignale während eines jeden Transportintervalls ermittelt wird.

12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß die Führungsgröße entsprechend dem Glucosegehalt c der Körperflüssigkeit gemäß der Beziehung

$$c = \left[\frac{S_g}{S_a \cdot (1-b) + b \cdot S_0} - 1\right] \cdot a \cdot c_0 + c_0$$

bestimmt wird, wobei S_g den Spitzenwert und S_0 den Grundlinienwert der Meßsignale während eines Transportintervalls, c_0 den momentanen Ausgangsgehalt der Glucose im Perfusat und a, b empirisch bestimmte Korrekturfaktoren zur Kompensation von Diffusions- und Mischungseffekten sowie verbleibenden Recovery-Effekten während eines Transportintervalls bezeichnen.

- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Ausgangsgehalt der Glucose im Perfusat durch einen Zweipunktregelvorgang unstetig geregelt wird, wobei bei einer Regelabweichung der Ausgangsgehalt der Glucose im Perfusat um einen vorgegebenen Stellwert verändert wird.
- 14. Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit, insbesondere Gewebeflüssigkeit, mit einer Mikrodialysesonde (10) zum Diffusionsaustausch von Glucose mit umgebender Körperflüssigkeit, einer Perfusionseinrichtung (12,14) zur Perfusion der Mikrodialysesonde (10) mit glucosehaltigem Perfusat unter Gewinnung von Dialysat und einer der Mikrodialysesonde (10) nachgeordneten Meßzelle (16) zur Erfassung von mit dem Glucosegehalt des Dialysats korrelierten Meßsignalen, gekennzeichnet durch eine Regeleinrichtung (18,20) zur Angleichung des Ausgangsgehalts der Glucose im Perfusat an den Glucosegehalt der Körperflüssigkeit nach Maßgabe einer aus den Meßsignalen der Meßzelle (16) abgeleiteten Führungsgröße.
- **15.** Anordnung nach Anspruch 14, **gekennzeichnet durch** eine Auswerteeinheit (22) zur Bestimmung des momentanen Ausgangsgehalts der Glucose im Perfusat bei verschwindender Regelabweichung als Maß für den Glucosegehalt der Körperflüssigkeit
- 16. Anordnung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Perfusionseinrichtung einen Perfusatvorrat (12) sowie eine Fördereinheit (14) zur vorzugsweise intervallweisen Förderung von Perfusat aufweist.
- **17.** Anordnung nach Anspruch 16, **dadurch gekennzeichnet**, daß der Perfusatvorrat (12) mindestens

zwei gesonderte Reservoirs (32,34) zur Aufnahme von Perfusionsflüssigkeiten (36,38) mit voneinander verschiedener Glucosekonzentration aufweist.

- **18.** Anordnung nach Anspruch 16 oder 17, **dadurch** 5 gekennzeichnet, daß der Perfusatvorrat (12) ein glucosefreie Perfusionsflüssigkeit (36) enthaltendes erstes Reservoir (32) und ein glucosehaltige Perfusionsflüssigkeit (38) enthaltendes zweites Reservoir (34) aufweist.
- 19. Anordnung nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, daß die Regeleinrichtung einen vorzugsweise durch ein Mischventil oder getaktet schaltbares Wegeventil gebildeten Strömungsmischer (20) als Stellglied zur Einstellung des Ausgangsgehalts der Glucose im Perfusat aufweist.
- 20. Anordnung nach Anspruch 19, dadurch gekennzeichnet, daß der Strömungsmischer (20) zuströmseitig mit mindestens zwei Reservoirs (32,34) zur Zuleitung von Perfusionsflüssigkeiten mit voneinander verschiedenem Glucosegehalt verbunden ist und abströmseitig in eine zu der 25 Mikrodialysesonde (10) führende Perfusatleitung (26) mündet.
- 21. Anordnung nach einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, daß die Regeleinrichtung einen digital arbeitenden, vorzugsweise durch einen Mikrocontroller gebildeten Regler (18) aufweist.
- 22. Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit, insbesondere Gewebeflüssigkeit, mit einer in die Körperflüssigkeit eingreifenden Mikrodialysesonde (10), mindestens zwei Reservoirs (32,34) zur Aufnahme von Perfusionsflüssigkeiten (36,38) mit voneinander verschiedenem Glucosegehalt, einer Fördereinheit (14) zur Perfusion der Mikrodialysesonde (10) mit glucosehaltigem Perfusat unter Gewinnung von Dialysat und einer der Mikrodialysesonde (10) nachgeordneten Durchfluß-Meßzelle (16) zur Erfassung von mit dem Glucosegehalt des Dialysats korrelierten Meßsignalen, gekennzeichnet durch eine eingangsseitig mit der Meßzelle (16) verbundene Regeleinrichtung (18,20), die eine zuströmseitig mit den Reservoirs (32,34) und abströmseitig mit der Mikrodialysesonde (10) verbundenen Strömungsmischer (20) als Stellglied zur Regelung des Ausgangsgehalts der Glucose im Perfusat aufweist.

55

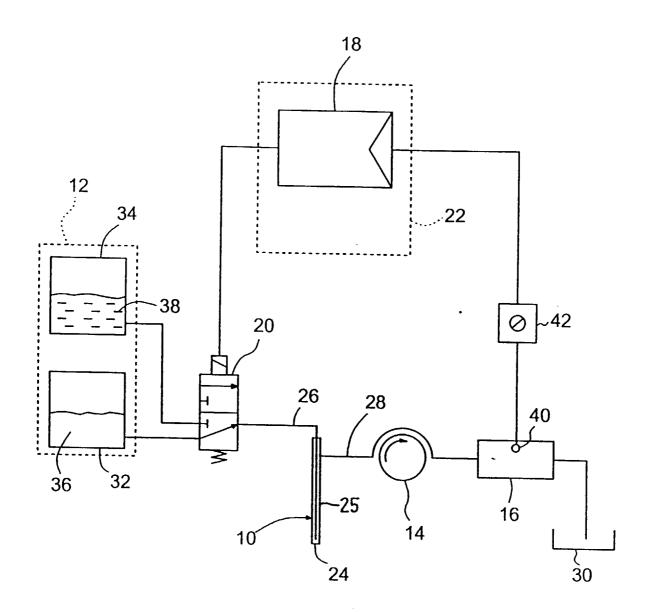


Fig. 1

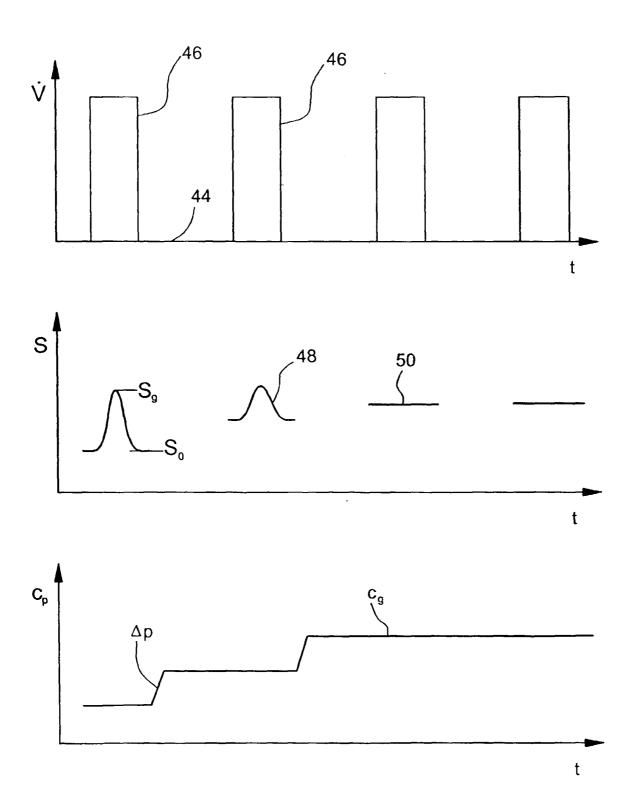


Fig. 2

专利名称(译)	用于测定体液中葡萄糖浓度的方法和装置			
公开(公告)号	EP1072222A2	公开(公告)日	2001-01-31	
申请号	EP2000115207	申请日	2000-07-13	
[标]申请(专利权)人(译)	罗氏诊断公司			
申请(专利权)人(译)	罗氏诊断有限公司			
当前申请(专利权)人(译)	罗氏诊断有限公司			
[标]发明人	GESSLER RALF HOSS UDO ZIETEN HANS ULRICH PFLEIDERER HANS JORG FUSSGAENGER ROLF			
发明人	GESSLER, RALF HOSS, UDO ZIETEN, HANS-ULRICH PFLEIDERER, HANS-JÖRG FUSSGAENGER, ROLF			
IPC分类号	G01N33/66 A61B5/00 G01N33/487			
CPC分类号	A61B5/14865 A61B5/14528 A61B5/145	32		
优先权	19935165 1999-07-28 DE			
其他公开文献	EP1072222A3 EP1072222B1			
外部链接	Espacenet			

摘要(译)

确定体液,尤其是组织液中的葡萄糖浓度包括使含有葡萄糖的灌注液通过微透析探针(10),其中测量池(16)产生对应于葡萄糖含量的信号。根据从细胞(16)信号导出的指导值,通过控制系统(18,20)将灌注液中的起始葡萄糖水平与体液的葡萄糖含量对齐。根据来自测量单元的测量信号,包括用于确定体液中葡萄糖含量的装置的独立权利要求,其具有控制系统(18,20)以使灌注液中的起始葡萄糖含量与体液葡萄糖含量对齐。(16)。优选特征:评估单元(22)确定灌注液中实际起始葡萄糖含量对不显着的控制偏差,如测量体液葡萄糖含量。灌注组件具有灌注液供应装置(12)和优选间隔地供给灌注液的系统(14)。灌注液供应站(12)具有至少两个专用贮存器(32,34),其容纳具有不同葡萄糖浓度的灌注流体(36,38)。第一储存器(32)保持不含葡萄糖的灌注流体(36),第二储存器(34)包含具有葡萄糖的灌注流体(38)。控制系统具有流动混合器(20),优选作为混合阀或循环路径阀,以设定灌注液中的起始葡萄糖含量。用灌注流体将通道连接到贮存器

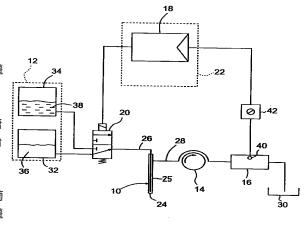


Fig. 1

(32,34)的连接位于混合阀(20)的流入侧,以采取单独的流动,并且流出侧的通道(26)将混合的灌注流体运送到微透析探针 (10)。