0 02/25233 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

(10) International Publication Number

WO 02/25233 A2

(51) International Patent Classification’: G01J 3/00

(21) International Application Number: PCT/US01/25706

(22) International Filing Date: 16 August 2001 (16.08.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/664,973 18 September 2000 (18.09.2000) US

(71) Applicant: INSTRUMENTATION METRICS, INC.
[US/US]; 7470 West Chandler Blvd., Chandler, AZ 85226
(US).

(72) Inventors: HAZEN, Kevin, H.; 1534 W. Islandia Drive,
Gilbert, AZ 85233 (US). BLANK, Thomas, B.; 2922
E. Tulsa Street, Chandler, AZ 85225 (US). MONFRE,
Stephen, L.; 1289 E. Palo Blanco Way, Gilbert, AZ 85296
(US). RUCHTI, Timothy, L.; 1501 West Sea Haze Drive,
Gilbert, AZ 85233 (US).

(74) Agents: GLENN, Michael et al.; Glenn Patent Group, Ste.
L., 3475 Edison Way, Menlo Park, CA 94025 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD OF CHARACTERIZING SPECTROMETER INSTRUMENTS AND PROVIDING CALIBRATION
MODELS TO COMPENSATE FOR INSTRUMENT VARIATION

(57) Abstract: Spectrometer instruments are characterized by classifying their spectra into previously defined clusters. The spectra
are mapped to the clusters and a classification is made based on similarity of extracted spectral features to one of the previously
defined clusters. Calibration models for each cluster are provided to compensate for instrumental variation. Calibration models are
provided either by transferring a master calibration to slave calibrations or by calculating a separate calibration for each cluster. A
simplified method of calibration transfer maps clusters to eachother, so that a calibration transferred between clusters models only
the difference between the two clusters, substantially reducing the complexity of the model.



10

15

20

25.

30

35

WO 02/25233

A METHOD OF CHARACTERIZING SPECTROMETER
INSTRUMENTS AND PROVIDING CALIBRATION MODELS TO
COMPENSATE FOR INSTRUMENT VARIATION

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The invention relates to variation in spectrometer instruments. More particularly
the invention relates to characterizing spectrometer instruments by classifying their
spectral responses into a limited number of clusters and developing calibration
transfer models between clusters that compensate for instrument variations.

DESCRIPTION OF THE PRIOR ART

Many of the analytical applications for spectrometers require calibration data sets
that are time-consuming and expensive to create. Typically, these calibrations are
highly specific. For example, apparently identical instruments produced by the
same manufacturer may exhibit minor instrument variations; such variations may
be seen when one instrument is built with a component that varies slightly from
the same component in another instrument. In addition, a calibration set for an
instrument produced by one manufacturer is generally not suitable for a similar
instrument produced by another manufacturer. Furthermore, repairs to a single
instrument can cause the instrument’s spectral response to vary. As an instrument
ages, it's spectral response may change. An instrument's spectral response may
vary according to fluctuations in the operating environment. In applications
requiring analysis of very low concentration analytes, non-invasive blood glucose
prediction, for example, even minor instrument variation can introduce an
unacceptable degree of emor into the analysis. Providing another calibration
model that takes the instrument’s current spectral response into account can
compensate for instrument variation. However, development of new calibration
models is time-consuming, labor-intensive and costly.

In the development of spectroscopy-based analyzers for biomedical
applications, there is a need for production of thousands to as many as millions of
analyzers for a specific application. No methodology exists for providing
calibrations for large numbers of instruments quickly and inexpensively.
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Therefore, efforts have been directed at transferring calibrations from one
analyzer to another. See, for example, E. Bouveresse, C. Hartmann, D.
Massart, |. Last, K. Prebble, Standardization of near-infrared spectrometric
instrumments, Anal. Chem., vol. 68, pp. 982-990 (1996) and M. Defernez, R.
Wilson, Infrared spectroscopy: instrumental factors affecting the long-term validity
of chemometric models, Anal. Chem., vol. 69, pp. 1288-1294 (1997), and E.
Bouveresse, D. Massart, P. Dardenne, Calibration transfer across near-infrared
spectrometric instruments using Shenk’s algorithm: effects of different
standardization samples, Analytica Chimica Acta, vol. 297, pp. 405-416, (1994)
and Y. Wang, D. Veltkamp, B. Kowalski, Multivariate instrument calibration, Anal.
Chem., vol. 63, pp. 2750-2756 (1991).

Most of the reported methods of calibration transfer have been applied n
situations involving high-concentration analytes, wherein the signal-to-noise ratio is
high. Because these currently known methods act as a smoothing function when
transferring calibrations, they degrade the signal to noise that can be observed,
thus hindering analysis of low concentration analytes. Additional problems of
changes in resolution or bandwith across time or between instruments have not
been addressed.

Furthermore, the currently known methods have only been successfully applied
in situations involving a small number of instruments. The reported methods are
not capable of modeling the complexity encountered when large numbers of
instruments are involved.

A need exists for the calibration of large numbers of analyzers. It would be
desirable to provide a means of reducing the complexity inherent in the transfer
of calibrations to large numbers of analyzers. It would also be advantageous to
provide a means of transferring calibrations without significant degradation of the
signal-to-noise ratio, rendering calibration transfer practical in analysis of low
concentration analytes.

SUMMARY OF THE INVENTION

The invention provides a method -of characterizing large numbers of
spectrometer instruments by classifying their spectra into a limited number of
previously defined clusters according to similarity of spectral features and

2-
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performance characteristics. The method may also be used to track variation over
time within a single instrument. The spectral features used for classification may
be related to known instrument parameters, or they may be abstract features
derived using a variety of computational methods. The clusters are defined n
advance based on an exemplar data set, using either supervised or
unsupervised methods. Calibration models for each cluster compensate for
instrument variation, either across instruments or across time within a single
instrument.

In a preferred embodiment of the invention, calibration models are provided
using a method of calibration transfer wherein the clusters are mapped to each
other, so that a calibration transferred from one cluster to another need only model
the difference between the two clusters. In an altemate embodiment, a different
calibration is separately calculated for each cluster. In either embodiment, the
number of calibration transfers is significantly reduced since each cluster
represents a multitude of instruments.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a block schematic diagram of a method of characterizing
spectrometer instruments by clustering according to spectral features, according
to the invention;

Figure 2 provides a flow diagram of a method of generating calibration models
by transferring a master calibration to slave calibration models, according to the
invention; '

Figures 3A and 3B illustrate decreases in spectral cutoff related to decreases n
detector temperature in a spectrometer instrument; and

Figure 4 illustrates changes in light throughput related to changes in source
temperature in a spectrometer instrument.

DETAILED DESCRIPTION

The invention provides a method of characterizing spectrometer instruments by
classifying spectral responses from a large number of spectrometers (analyzersy
into a limited number of previously defined clusters. The clusters constitute

-3-
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groups that are defined based on the similarity of specific features. Grouping of
instruments according to spectral features and performance characteristics reduces
the specitral variation between instruments in a given group. Therefore, spectral
measurements corresponding to an individual cluster are more homogeneous
than those from the entire group of analyzers. Calibrations created for each cluster
may then be utilized for subsequent analysis. The calibration created for a cluster
will have instrument variations included in the model that mirror variations resulting
from the particular analyzer employed for the subsequent analysis. Calibration
models specific to the clusters are expected to be less complex and have an
improved level of accuracy. Therefore, multivariate analysis will require fewer
factors to model instrument variation resulting in earlier faciors modeling the
sample and earlier factors modeling small absorbing analytes. The net result is
that fewer factors are required for sample analysis and a more robust algorithm is
created.

In one embodiment of the invention, a separate calibration data set is réquired for
every cluster, requiring a large number of samples in a calibration set for every
cluster. In the preferred embodiment, sufficient samples for a calibration model
are only required in a single cluster. Principal features defining that cluster and
other clusters are determined, and the clusters are mapped to each other,
revealing the specific differences from one cluster to another. Subsequently, the
calibration from the initial cluster is transferred to another cluster based upon the
specific differences between clusters.

The parent application to the current application, S. Malin and T. Ruchti, An
intelligent system for noninvasive blood analyte prediction, U.S. Patent
Application Ser. No. 09/359,191 (July 22, 1999), provides a detailed
description of a method of classifying spectral measurements into previously
defined clusters through similaries observed in absorbance spectra. The
classification system of the sampled tissue volume of the subjects is herein
expanded to include classification of instrumentation variations.

Referring now to Figure 1, a general method of classifying spectral
measurements into previously defined clusters is represented. Briefly the steps

of the method are:

1. Measurement. (11)

PCT/US01/25706
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2. Classification (12), in which the measured spectrum is assigned
membership in any one of a number of predefined clusters 13.
3. Calibration (14), in which calibration models suited to each cluster are
provided.
4. ldentifying outliers (15)
MEASUREMENT

In general, instrumental variations may affect spectral response by producing
either signal intensity changes, bandwidth changes, wavelength changes, or
combinations thereof. These instrumental variations may include:

’
2
3
4
5.
6
7
8

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

. wavelength shifts;

. honlinear wavelength shifts;
. wavelength expansions;

. wavelength contractions;

nonlinear wavelength expansions;

. source intensity drifts;
. blackbody profile changes;
. bandwidth changes;

resolution changes;
baseline deviations;
change with time;
temperature effects;
detector response;
differences in optical components (e.g. long-pass filters or fiber optics);
variation related to mounting of references;
differences in the optical interface to the sample (fiber spacing);
linearity;
detector cut-off;

and many others, which will be apparent to those skilled in the art. Spectra used
for classification will typically be those of commonly known standards. Standards
particularly useful for classifying shifts observed in the wavelength axis include
polystyrene, rare earth oxides: holmium oxide, erbium oxide or dysprosium

oxide,

for example; or combinations thereof. Standards such as the diffuse

reflectance standards supplied by Labsphere, Inc. (North Sutton NH) may be
used to classify shifts in the intensity axis. Spectra of samples may also be used
for classification. Additional intensity and wavelength standards will be known to
those skilled in the art.
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In the specific case of near-IR noninvasive glucose determination these standards
cover the near-IR spectral region. Additional spectroscopy and chromatography-
spectroscopy hyphenated techniques such as AA (atomic absorption
spectroscopy) or GC-MS (gas chromatography mass spectroscopy) will each
require their own standards which are known by those skilled in the art.
Additionally, spectra of tissue phantoms collected on an instrument may also be
used to characterize that instrument. Tissue phantoms are helpful in characterizing
an instrument because spectra of these phantoms simulate noninvasive spectra
of living tissue. There are tissue phantoms that simulate the absorption
coefficients of various skin tissues; while others simulate the scattering coefficients
of the body. Some common simulants include:

1. milk and milk products

2. mik products in combination with India ink, used to adjust the absorption
coefficient;

3. emulsions of fatty substances in water maintained in solution with an
emulsifier such as lecithin. One such commercial product is INTRALIPID,
supplied by Kabivitrum AB (Stockholm, Sweden);

4. Intra-serum and Intra-gel. See K. Hazen, J. Welch, S. Malin, T. Ruchti, A
Lorenz, T. Troy, S. Thenadil, T. Blank, Intra-serum and intra-gel for
modeling human skin tissue, U.S. Patent Application Ser. No.
09/502,877 (February 10, 2000).

Other scattering and absorbing mediums are known to those skilled in the art.
Concentrations of these tissue simulants may be adjusted to match the
scattering and absorption coefficients of body tissues such as skin or intemal
organs.

It will also be apparent that a set of exemplar measurements is required for
cluster definition and development of calibration models, in addition to the actual
spectral measurements utilized for classification.

CLASSIFICATION
New spectral measurements are passed to a pattern classification system that
classifies the measurements into previously defined clusters having a high
degree of intemal constistency through spectral features related to instrumental
variation.
The classification itself includes the following steps:

1. Feature extraction; and

PCT/US01/25706
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2. Classification of features according to a classification model.

FEATURE EXTRACTION

The process of feature extraction is more fully described in the parent application
to the current application, U.S. Patent Application Ser. No. 09/359,191, supra.
Feature extraction is any mathematical transformation that enhances a particular
aspect or quality of the data that is useful for interpretation. Features may be of
two categories:

1. Abstract, and
2. Simple.

Instruments may be classified by abstract features, meaning that they may be
classified using computational methods. These methods may be supervised or
unsupervised. Examples include plotting primary principal components versus
one another and identifying clusters of results; discriminant analysis, such as
measurement of the Mahalanobis distance, and k-means clustering. Additional

methods will be readily apparent to those skilled in the art. |

It is important to note that the clustering techniques listed above are not mutually
exclusive. Clustering of raw spectra into one or more groups may be achieved
through one or more of these methods and with combinations of these
approaches.

Simple features are derived from an a priori understanding of the system, and
can be related directly to an instrument parameter or component (or parameters
or components). For example, the measured bandwith, noise characteristics, or
linearity and detector cutoffs.

CLUSTER DEFINITION

As indicated above, clusters must have been previously defined, using a data
set of exemplar spectral measurements. Cluster definition is the assignment of
the measurements in the exploratory data set to clusters. After cluster definition,
the measurements and class assi‘gnments are used to determine the mapping
from the features to cluster assignment.

Cluster definiton is performed using either supervised or unsupervised

methods. In the supervised case, clusters may be defined using specific
knowledge of the system. For example, source intensity and detector

-7
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temperatures have specific effects on the spectra, as demonstrated further
below. The use of a prioriinformation in this manner is the first step in supervised
pattern recognition, which develops classification models when the class
assignment is known.

Alternatively, clusters may be defined in an unsupervised manner using abstract
features such as clustering within plots of principal component scores X’ versus
spectral loading ‘y’. The result is that within a given cluster, all of the spectra have
the same characteristics (interferences, instrument variations or sample issues).
Clusters formed from features with physical meaning can be interpreted based
on the known underlying phenomenon causing variation in the feature space.

CLASSIFICATION

Subsequent to class definition, a classifier is designed through supervised
pattern recognition. A model is created, based on cluster definitions, that
transforms a measured set of features to an estimated classification. The
classification model is a method for determining a set of similarity measures with
the predefined clusters. A decision rule assigns membership on the basis of a
set of measures calculated by a decision engine.

CALIBRATION

Once the spectra have been classified into clusters, calibration models 14 are

required for each cluster. Provision of the clusters is by one of two methods. In -
the preferred embodiment, a master calibration is developed for a first cluster,

subsequently the master calibration is transferred to slave calibrations, one for

each remaining cluster. An altemate embodiment, described further below,

individually calculates calibrations for each cluster.

In the case of spectra collected utilizing a master and slave instrument, the term
“calibration transfer,” as commonly used in the art, may have different meanings.
Calibration transfer may refer to transforming the slave spectral to look like the
master spectra or vice versa. Additionally, spectra from both the master and the
slave can be transferred to a common standard spectrum not present in the
master or slave data sets. Furthermon"e, calibration transfer can refer to
preprocessing steps, multivariate adjustments of the sample spectra, or
adjustments to the predicted analyte concentrations based upon standards.

Referring now to Figure 2, the process of calibration transfer is shown.
Calibrations 14 are required for each of n clusters. A master calibration 21 is

-8-
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calculated for a first cluster; then, to provide calibrations for each of the remaining n
clusters, the master calibration is transferred to slave calibrations. In this case,
Calibration transfer refers to the process of transforming spectra on a slave
instrument to match the characteristics of the master such that the master calibration
can be applied to the slave spectra. For clusters, calibration transfer refers to the
process of transforming spectra on a slave instrument to match the characteristics
of the master such that a new calibration is generated that satisfies the
specification of a cluster other than the one for which the master cluster was
developed. The clusters may also be organized into groups of clusters, so that
the master calibration is transferred to slave calibrations 23, which in tum are
transferred to the slave calibration for the various clusters within each group.

Prior art methods of calibration transfer have been unsuccessful at modeling the
complexity involved in providing calibration models for large numbers of
instruments. Classifying the spectral measurements in to clusters having a high
degree of internal consistency reduces the complexity of the problem to a level
that makes it possible to apply calibration transfer to large numbers of
instruments. Clustering the acquired spectra into a limited number of subgroups
allows the calibration transfer issues to be broken up into subsets so that only a
subset of the overall issues needs to be addressed between any two clusters.
The result is that within a given cluster, all of the spectra have the same
characteristics. A calibration is generated for a given cluster using spectra of
samples containing the limited number of characteristics of that cluster. This
eliminates having to deal with all of the variations possible in the raw
measurements, significantly reducing the complexity that needs to be modeled
by the calibration. Thus, the calibration utilized for a given cluster will have
instrument variations included in the model that are similar to variations resulting
from the analyzer employed. As each cluster has its own specification, the
calibration transfer technique need only deal with the differences between those
two clusters. For example, if the only difference between the clusters is a linear
x-axis shift, then the calibration transfer technique need only deal with that
parameter. This allows a more specific calibration transfer technique to be
employed that is more robust, resulting in fewer factors, since fewer instrument
variations need to be modeled. This will result in analysis of lower concentration
analytes due to retention of signal to noise in the calibration transfer step.

Typically, calibration transfer techniques have to address instrument-to-instrument

variations, such as wavelength shifts, nonlinear wavelength shifts, wavelength
expansions (contraction), nonlinear wavelength expansions, source intensity

-0-
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drifts, blackbody profile changes, bandwidth (resolution) changes, baseline
deviations, chahge with time, temperature effects and others known to those
skilled in the art.

However, in addition to instrumentation issues in calibration transfer, sample
composition and sample handling considerations are very important in calibration
transfer. Therefore, every sample analyzed for prediction of results should be an
interpolation within the matrix space of the calibration data set; otherwise the
calibration may not calculate an accurate prediction of analyte concentration. For
example, if the calibration data set contains glucose samples ranging from 40 to
400 mg/dL, then predictions on samples with glucose outside of this range are
suspect.

Thus, an important additional benefit of the invented classification algorithm is that
outlier spectra may be identified, as shown in Figure 1. Each cluster has its own
set of classiﬁcatioq requirements. [f a spectrum does not fall within the parameters
of a given cluster, ancther cluster must be found which has parameters allowing
analysis of that spectrum. If no cluster is found, then the sample is reported as an
outlier rather than having a value reported for the analyte that may not be correct.
In this manner, analysis on samples or instruments for which no satisfactory
calibration model has been developed is prevented.

Spectra classified as outliers may assume two forms. In some instances, the
outlier spectrum is close to a given cluster. In such a case, conventional calibration
transfer techniques may be applied to this spectrum to transform the spectrum
such that it falls within one of the clusters for which calibrations exist. In case of
failure, the spectrum remains classified as an outlier, as will spectra that are
characterized as gross outliers.

Classification and calibration transfer need not be limited to differences n
instrumentation; it may also be applied to sample spectra for analyte prediction.
For example, a cluster may be defined for healthy 18 to 30 year old men. A
noninvasive glucose model may be built for this narow demographic. A
separate cluster may be for 18 to 30 year’old non-pregnant women. Differences
between the two clusters such as body fat and sampled volume may be
addressed and a calibration transfer technique may be optimized for those
differences based on relatively few spectra, thus allowing a glucose model initially
generated for a narrow demographic to be gradually expanded.

-10-
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The foregoing embodiment does not require calibrations to be built for every
cluster, and thereby provides the important advantage of sparing the
considerable time, money and effort required for building a separate calibration
for every cluster. The actual calibration transfer technique employed may be
selected from the many algorithms known to those skilled in the art.

An altemative embodiment classifies spectra into clusters, as in the preferred
embodiment, and builds individual calibrations for each cluster. The requirement
for calibration transfer is eliminated at the expense of the requirement for more
spectra. However, an additional measure of reliability is gained by having
clusters with well-defined and narrow parameters. As in the previous
embodiment, fewer instrument variations need to be modeled so that early
factors can focus on analyte information, resulting in a more robust model.

While the foregoing description of the invention has been directed to
characterizing different instruments, the invented method also finds application in
classifying spectra from a single instrument according to known variations in
instrument components or known environmental variations. Two examples are
described.

1. The cutoff of the 2.6 | m InGaAs detector employed in many near-IR
analyzers blue shifts as the temperature of the detector decreases. Air
spectra collected on a NICOLET 860, supplied by the Nicolet Instrument
Corporation (Madison WI) with the InGaAs detector ranging from 0 to
—20°C are presented in Figure 3A. The spectral cutoff region from 2400
to 2600 nm is expanded in Figure 3B. The cut-off decreases as the
detector temperature decreases. Using reference or air spectra, a simple
analysis, such as determining the wavelength at which 10% of the peak
intensity is observed, allows the instrument to be classified as to whether
the detector is properly cooled and to the extent that it was cooled.

2. As atungsten halogen source increases in temperature, the blackbody
emission increases in magnitude and additional light throughput is
observed. For example, in diffuse reflectance spectra of a 5%
Labsphere diffuse reflectance standard, the overall intensity is observed
to increase as the source temperature increases, as shown in Figure 4.
This effect can be used to classify the instrument in terms of the source
temperature and total light throughput.

-11-
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It is a relatively simple task to characterize the instrument in terms of additional
components. Examples are slit width, affecting bandwidth or room temperature,
affecting total light throughput. There are, however, a limited" number of
components to a spectrometer; it has been observed that instruments group
into a relatively small number of clusters.

Once an instrument, or a given spectrum, is classified into a cluster, the
appropriate calibration routine can be employed. A single analyzer may be
loaded with multiple calibration routines, as the instrument may vary during its
lifetime. In fact, environmental factors may cause the appropriate calibration to
change with every spectrum collected. |

This instrument classification approach was designed for use on noninvasive
glucose analyzers where glucose is measured using diffuse reflectance spectra of
skin on the human body. However, the same technology can be applied to any
form of noninvasive analysis including but not limited to: noninvasive analysis of
albumin, globulin, urea, creatinine, oxygen, hemoglobin A,C and electrolytes
such as Na', K*, CI. The technology may also be utilized in biomedical
applications.

The classification approach disclosed here finds application in various fields of
endeavor, the agricultural field, for example. Exemplary agricultural applications
are: analysis of fat in.milk, protein or moisture analysis in wheat, or analysis of
sugars in fruits. The classification approach may also benefit pharmaceutical
companies in the analysis of intact tablets or in the characterization of raw
materials. Finally, petrochemical companies may ‘util‘ize the method in classification
of fuels, fuel by-products and in raw fuel materials. In general, this technique is
useful wherever a large number of analyzers are utilized to quantify analytes in
samples.

Although the invention is described herein with reference to the preferred
embodiment, one skilled in the art will readily appreciate that other applications
may be substituted for those set forth herein without departing from the spirit and

‘scope of the present invention. Accordingly, the invention should only be fimited

by the claims included below.

-12-
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CLAIMS
What is claimed is:

1. A method of characterizing spectrometer instruments according to instrumental
variation, comprising the steps of:

providing standard spectral measurements from at least one spectrometer
instrument; and

classifying said spectral measurements into predefined clusters on the
basis of extracted specitral features; and

providing calibration models for each of said predefined clusters, wherein
said calibration model compensates for said instrumental variation.

2. The method of Claim 1 wherein said instrumental variation comprises any
of:

wavelength shifts;

nonlinear wavelength shifts;

wavelength expansions;

wavelength contractions;

nonlinear wavelength expansions;

source intensity drifts;

blackbody profile changes;

bandwidth changes;

resolution changes;

baseline deviations;

changes over time;

temperature effects;

detector response;

differences in optical components (e.g. long-pass filters or fiber optics);

variation related to mounting of references;

differences in the optical interface to the sample (fiber spacing);

linearity; and

detector cut-off.

3. The method of Claim 1, wherein said standard spectra are measured on a
plurality of spectrometer instruments.

-13-
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4. The method of Claim 1, wherein said standard spectral are measured on a
single spectrometer instruments at successive time intervals.

5. The method of Claim 1, wherein said classifying step comprises the
steps of:

extracting features; and

classifying said features according to a classification model and decision
rule.

6. The method of Claim 5, wherein said feature extraction step comprises
any mathematical transformation that enhances. a particular aspect or quality of
data that is useful for interpretation.

7. The method of Claim 3, wherein said classification model comprises
means for determining a set of similarity measures with predefined classes.

8. The method of Claim 5, wherein said decision rule comprises means for
assigning class membership on the basis of a set of measures calculated by a
decision engine.

9. The method of Claim 4, wherein individual features are divided into two
categories, said categories comprising:

abstract wherein said features are extracted using various computational
methods ; and

simple features that are derived from an a priori understanding of a
system, wherein said feature is directly related to an instrument parameter or
component.

10.  The method of Claim 7, wherein said abstract features are calculated using
any of:

plotting primary principal components versus one another and identifying
resulting clusters; )

discrminant anlysis; and

k-means clustering.

11.  The method of Claim 5, wherein said classification step further comprises
the step of employing factor-based methods to build a model capable of
representing variation in a measured spectrum related to variations in spectral
response;

-14-
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wherein projection of a measured absorbance spectrum onto said model
constitutes a feature that represents spectral variation related to instrument
variation.

12.  The method of Claim 5, wherein said classifying step further comprises
the steps of:

measuring the similarity of a feature to predefined clusters; and

assigning membership in a cluster.

13.  The method of Claim 5, further comprising the step of:
assigning measurements in an explolratory data set to clusters.

14.  The method of Claim 13, further comprising the step of:
using measurements and class assignments to determine a mapping from
features to cluster assignments.

15.  The method of Claim 13, further comprising the steps of:

defining clusters from said features in a supervised manner, wherein each
set of features is divided into two or more regions, and wherein classes are
defined by combinations of feature divisions;

designing a classifier subsequent to class definition through supervised
pattern recognition by determining an optimal mapping or transformation from the
feature space to a class estimate which minimizes the number of
misclassifications; and

creating a model based on class definitions which transforms a measured
set of features to an estimated classification.

16.  The method of Claim 1, further comprising the step of providing calibration
models for analysis of new sample measurements.

17. The method of Claim 16, wherein said calibration models model
differences between said predefined clusters.

18.  The method of Claim 16, wherein a master calibration model is
developed for a first of said clusters from a set of exemplar spectra with

reference values and pre-assigned classification definitions.

19.  The method of Claim 18, further comprising the step of transfering said
master calibration model to a plurality of slave calibration models, wherein a slave
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calibration model is calculated for each remaining cluster, and wherein a transform
modifies said master calibration model to a slave calibration model in accordance
with principal features defining each of said classes.

20.  The method of Claim 19, wherein said transfening step comprises the
steps of:

transferring said master calibration model to a first slave calibration model;

transferring said first slave calibration model to a second slave calibration
model;

and repeating said transfer from one slave calibration model to another

slave calibration model, until a calibration has been provided for each of said

predefined clusters;
wherein a transform modifies said transferred calibration models n
accordance with principal features defining each of said clusters.

21.  The method of Claim 18, further comprising the step of transferring said
master calibration model to a plurality of slave calibration models, wherein a slave
calibration model is calculated for each remaining cluster, and wherein a transform
modifies said slave calibration model to said master calibration model in
accordance with principal features defining each of said classes.

22.  The method of Claim 21, wherein said transferring step comprises the
steps of: :

transferring said master calibration model to a first slave calibration model;

transferring said first slave calibration model to a second slave calibration
model;

and repeating said transfer from one slave calibration model to another
slave calibration model, until a calibration has been provided for each of said
predefined clusters;

wherein a transform modifies said transferred calibration models in
accordance with principal features defining each of said clusters.

23. The method of Claim 16, wherein a different calibration model is
developed for each class, and wherein said calibration models are developed
from a set of exemplar spectra, with reference values and pre-assigned cluster
definitions.
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24.  The method of Claim 23, wherein a spectrum is assigned to one of many
predefined clusters for which a calibration model has been developed.

25.  The method of Claim 1, further comprising the steps of:

providing new spectral measurements;

comparing said new spectral measurements to each of said pre-defined
clusters according to extracted spectral features;

reporting those measurements as outliers for which a matching cluster is
not found.

26. A method of developing -calibration models for spectral analysis

~ comprising the steps of:

defining clusters from an exemplar data set of spectral measurements,
wherein said clusters exhibit a high degree of internal similarity; '

mapping said clusters to one another, wherein principal features
distinguishing clusters from one another are determined; :

calculating a calibration model for a first of said clusters, said calibration
model comprising a master calibration;

transferring said master calibration to at least one slave calibration, wherein
a slave calibration comprises a calibration derived by applying a transform to
slave spectra such that the master calibration now models the difference between
the master cluster and another cluster corresponding to said slave spectra.
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