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Description

Field Of The Invention

[0001] The present invention relates generally to the field of human health monitoring, and more particularly to the
use of multivariate models for analysis of measurements of biological parameters to provide residual-based assessment
of human health indicators.

Brief Description Of The Related Art

[0002] Medicine has for centuries been practiced as a reactive, crisis-driven process. Unfortunately, it remains largely
so to this day. Chronic diseases represent a disproportionate share of the crushing economic cost of healthcare, much
of which could be avoided by early warning of deterioration. Current healthcare practices are episodic and reactionary,
with little visibility into patient health outside the controlled setting of the clinic or hospital. However the medical arts are
only now beginning to explore out-patient telemetry from wearable devices, and there is virtually no answer to who is
going to watch all this data, or how it will be analyzed to provide early warning with a low false alert rate. Moreover, out-
patient telemetry poses considerable challenges due to ambulatory motion artifact and normal physiology variation in
the course of daily activities not usually dealt with when a patient is sedated and supine in a hospital bed.
[0003] Other industries (nuclear, aviation, refining, computer systems) have in recent years adopted advanced intel-
ligent algorithms for condition monitoring, that accommodate normal variation and dynamics exhibited in the sensor data
collected from a target system, and differentiate it from subtle early warning signs of deterioration. One kind of machine
learning technique, Similarity-Based Modeling ("SBM") technology, has proven successful in many applications including
those mentioned above. SBM is a nonparametric data driven modeling technique which learns normal behavior from
multivariate data from a complex system, and distinguishes it from the onset of adverse behavior in a monitored system.
[0004] Visibility into health issues with SBM is contingent on the availability of multivariate data. Continuous telemetry
from a wearable sensing device with multiple sensors could provide such data. However, existing devices are data-poor,
in most instances univariate, and are primarily aimed at very narrow health related issue, e.g. glucose monitoring for
diabetics, or blood pressure for hypertension. The devices are usually not meant for continuous monitoring, and any
analysis performed is done using gross population statistics, i.e. not personalized to the individual. Further, current
commercial telehealth devices are not easily wearable, and do not take advantage of the latest mobile technologies.
[0005] There is a need to make multivariate continuous data available for analysis, whether from a wearable device
on an out-patient basis or from bedside equipment in a hospital, so that machine learning technology like the aforemen-
tioned SBM can be applied to automate early detection of incipient changes indicating the health of the patient is potentially
subject to deterioration. Because medical staff is commonly overworked and short on time to spend deeply studying
analytical results for each patient, especially where large populations of at-home patients may be involved, an important
issue is how to summarize the results of such machine learning techniques in a simple metric for actionability.
[0006] In US 7,403,869 B2, reference data observations for given system are used to develop a reference set of such
observations. Subsequent observations (comprising, in one embodiment, current observations) are then used to facilitate
selection of portions of this reference set to yield a resultant set of observations that serves as a model. This model can
then be used in comparison to actual system performance to detect, for example, a trend towards a faulty condition.
Pursuant to a preferred approach, the model is recomputed from time to time and, pursuant to a particular embodiment,
is recomputed with each new set of current observations.
[0007] In US 7,409,320 B2, a system, method and program product for monitoring a complex signal for ultrasensitive
detection of state changes, or for signature recognition and classification is provided. A complex signal is decomposed
periodically for empirical modeling. Wavelet analysis, frequency band filtering or other methods may be used to decom-
pose the complex signal into components. A library of signature data may be referenced for selection of a recognized
signature in the decomposed complex signal. The recognized signature may indicate data being carried in the complex
signal. Estimated signal data may be generated for determination of an operational state of a monitored process or
machine using a statistical hypothesis test with reference to the decomposed input signal.
[0008] According to US 2007/0149862 A1, improved human health monitoring is provided in the context of sensor
measurements of typical vital signs and other biological parameters, by a system and method using an empirical model
of the parameters and disposed to estimate values of the parameters in response to actual measurements. Residuals
resulting from the difference between the estimates and actual measurements are analyzed for robust indications of
incipient health issues. Residual analysis is both more robust and more sensitive than conventional univariate range
checking on vital signs.
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Summay Of The Invention

[0009] According to the present invention, there is provided a computerized system for monitoring the health of a
human according to Claim 1.

Brief Description Of The Drawings

[0010]

FIG. 1 is a block diagram showing a general arrangement according to one embodiment;
FIG. 2 shows an example of sensor placement on a human;
FIG. 3 shows an example chart of raw physiological waveforms or signals;
FIG. 4 shows a signal amplitude chart of photoplethysmography components used to determine a feature related
to SpO2 (blood oxygen saturation), which may be understood to represent the light components picked up by a
photosensor stacked additively;
FIG. 5 is a multi-chart example plot showing in the top four plots raw physiologically-related signals, and in the
bottom five plots the related feature data derived there from;
FIG. 6 is a plot of an exemplary physiological feature time series showing perturbations of that time series used in
accuracy and robustness calculations;
FIG. 7A is one of a pair of related plots of a multivariate health index and has been derived merely for raw feature
data showing an index for unperturbed data and for perturbed data;
FIG. 7B is a multivariate health index plot derived for residual data generated from kernel-based models of feature
data showing and index for unperturbed data and for perturbed data; and
FIG. 8 is a block diagram showing an alternative embodiment.

Detailed Description Of The Preferred Embodiments

[0011] An end-to-end human health monitoring solution is disclosed, comprised of a wearable wireless sensing device
that continuously collects vital signs sensor data and transmits it (in real-time or in periodic bursts) to a base-station
computer (or cell-phone/PDA) for preprocessing. The preprocessed data is then sent to a server over the web for analysis
using a kernel-based machine learning analytical method tailored for human monitoring, such as SBM. The SBM tech-
nology is trained to be specific to each individual’s normal vital signs characteristics. Due to the variation in vital signs
data from human to human, this capability is crucial for any human monitoring system to be effective.
[0012] The server can be remotely located from the patient. The analysis performed at the server with SBM or other
related kernel-based method works by generating estimates of the vital signs (i.e., physiological data) that have been
determined from the sensor data. These estimates represent what a trained SBM model can determine as the closest
allowable normal physiological data that corresponds to the monitored data. The estimates made of the physiological
data are differenced with the actual, monitored physiological data to generate residuals, representing the differences
between the expected values according to the trained model, and what has been measured by the wearable sensing
device. These residuals form the basis for further analysis that provides early detection of subtle warning of health
problems, which would likely be missed using conventional medical methods of comparing vital signs to demographically
acceptable ranges (e.g., population-based standards for blood pressure).
[0013] Residuals for normal physiology (physiology as previously modeled) are different from residuals for physiology
that is beginning to deviate from normal, and can be statistically distinguished. The further computerized analysis of the
residuals comprises one or more of the steps of: determining a likelihood that the residuals derived for any given
multivariate input observation of monitored data are representative of a pattern of residuals characteristic of normal
physiology, based on a "mixture of Gaussians" density estimation; generating a multivariate health index based on that
likelihood as a logarithm of the inverse of the likelihood; applying a threshold to the index thus generated to render a
decision whether the inputted vital signs are characteristic of normal physiological behavior; and combining a series of
such decisions to provide an early indication of deviation from normal of the physiological health of a patient. The
multivariate health index advantageously summarizes the residual analysis from multiple variables into a single index
for the management of prioritized lists of patients.
[0014] The health monitoring solution can also be applied to multivariate physiological parameters obtained in a hospital
from bedside monitors. An SBM model of typical human physiology can be used to make estimates and residuals for
patients in the hospital, particularly those at risk for developing complications such as sepsis or pneumonia, and partic-
ularly patients who are sedated and/or ventilated and not able to express discomfort or feelings of incipient illness.
Bedside data feeds amenable to the health monitoring solution include electrocardiographs, pulse oximeters, ventilator
data, arterial and venous pressures measured by noninvasive means or by catheters, and the like. Such data can be
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streamed to a server for the hospital ward, or to off-site servers for monitoring multiple hospital facilities, and decision
support can be rendered by application of SBM to these data streams and displayed to healthcare workers for prioritizing
patient treatment.
[0015] The analytics of an embodiment of the present invention can be performed on generic computing platforms
specially configured by software. Data collected from sensors on the patient can be wirelessly transmitted to an ambulatory
or portable device, e.g., via Bluetooth or other extremely local radio protocol. The portable device can be a cell phone
carried by the patient, a "personal digital assistant", PDA, or the like, or a portable computing device moved with a patient
in the hospital bed. This device may receive raw sensor signals and perform the aforementioned preprocessing to extract
vital sign "features" (physiological data) from the sensor signals, for example a heart rate from an EKG/ECG signal; or
may receive already-preprocessed features extracted by sensor microprocessing facilities from raw sensor signals. The
resulting physiological "feature" data can be analyzed with SBM either on the device (the cell phone or PDA) or on a
computer/server to which such physiological data is transferred. The computer can be a home computer collocated with
the patient, or can be a remote server at an analytics data center. The transfer of data from the device can be by means
of cabled offload or by wireless retransmission.
[0016] There are a plethora of chronic ailments and illnesses of which a patient may suffer, but for which the patient
cannot be kept indefinitely in a hospital. A patient may have heart failure, chronic obstructive pulmonary disease, renal
failure, diabetes, early stage dementia and other conditions, which can devolve from a stable, managed state into an
emergency health risk with little apparent warning. It is desirable to detect such devolution early because medical
intervention at the early stage can prevent the emergency, avoid costs, prevent disease progression, and improve
outcomes.
[0017] Even patients in the hospital under care of medical staff can develop complications that are best detected early.
Patients on ventilators suffer a high rate of developing pneumonia. Infection and sepsis can occur due to hospital-
acquired cross-contaminant infections or from post-surgical complications. Conventional bedside monitoring typically
employs thresholds on vital signs to alert staff of patient deterioration, but these conventional alerting methods are
coarse, either suffering a high false alert issue and rapidly disappearing into the ignored background noise, or catching
the deterioration later than is desired.
[0018] Unlike the majority of monitoring approaches used in the healthcare industry today, SBM is a multivariate
approach that takes advantage of the interrelationships between vital signs signals (e.g., heart rate (HR), blood oxygen
saturation (SpO2), Respiration Rate, Blood Pressure). Such an approach is critical for the analysis of physiology in the
presence of normal variation, that is, variation of physiological data due to normal changes in physiology responsive to
metabolic needs, activity, environment, diurnal cycles and the like. Over the course of a day, a typical human exhibits
a wide range of heart rates, respiration rates, blood pressures, blood oxygen levels and so on. In contrast to a sedated
patient in a hospital setting, ambulatory conditions are exceptionally plagued by such variation, and as a result there
has been little traditional medical monitoring of humans in their normal lives at home except in extremely controlled
circumstances. Even in a sedated condition in the hospital, normal patient physiology still exhibits substantial variation.
Such variation hides early changes in physiological parameters that evidence incipient deterioration of health. Conven-
tional alerts placed on single parameters cannot see such changes against the background of normal variation until
such changes become extreme. For example, a threshold placed on heart rate cannot be set to trigger an alert merely
because the heart rate rises by 10 beats per minute, because this may readily occur in normal physiology. But if the
threshold is set to 160 bpm, a patient’s condition may already have deteriorated substantially by the time the threshold
is exceeded.
[0019] In addition, much of the sensing technology being developed today is burdened by the necessity to provide an
exactly calibrated reading of the vital sign of interest. In contrast, SBM requires only relative proxies of the vital sign of
interest, thereby avoiding the problem of attaining absolute calibration of a physiological parameter in order to measure
health. This is because the detection of incipient health problems is based on relative changes between all biosignals
in aggregate, not on exceedances from population-based vital sign ranges.
[0020] SBM achieves these advantages by embodying normal variation in a model ("leaning"). This model is then
used to generate multivariate estimates of the learned physiological parameters when presented with a multivariate
measurement of those parameters. These estimates represent the closest possible set of values for normally varying
physiology, to the presented (measured) values. The estimates are differenced with the presented values to yield re-
siduals. Analysis is advantageously shifted from testing raw physiological values which are plagued by normal variation,
to testing residuals which represent differences beyond merely normal variation. In effect, SBM removes normal variation
by subtracting the estimated behavior from the measured behavior, leaving just deviations.
[0021] As described herein, the residuals are analyzed using a multivariate density estimation technique. According
to this novel approach, the multidimensional distribution of residual vectors (vectors of dimension n where n is the number
of physiological parameters for which estimates were differenced with actual measured values) for data representative
of the patient’s normal physiology is used to form a multivariate density estimator. The density estimator is a Gaussian
mixture model, and is used to determine the likelihood that any new input residual vector (i.e., from newly monitored
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data) is part of the same distribution. This likelihood obtained from the multidimensional density estimator effectively
consolidates the behaviors of the individual residuals for each of the physiological parameters, into one overall index
that can be used to summarize patient priority. This likelihood can be used as a multivariate health index (MHI), and can
be subsequently tested with a number of persistence rules to assess patient priority over a time series of observations
of the multiple physiological parameters being monitored.
[0022] Advantageously, this MHI analysis of model-generated residuals provides earlier warning of incipient health
issues when compared to conventional medical univariate thresholds on raw physiological data, and when compared
to multivariate density estimates of raw physiological data.
[0023] Turning to FIG. 1, the overall approach can be appreciated. In step 105, multiple biosignals are acquired from
sensors on or in the patient. Examples of appropriate biosignals include electrocardiographs (ECG), thoracic bioimped-
ance (bio-Z), photoplethysmographs (PPG), temperature differentials, systolic or diastolic blood pressures, accelerom-
eter-measured motion, piezoelectric signals of respiratory activity, and instant airflow measurements from respiration,
to name a few. In step 110, these biosignals are used to derive physiological feature data. A variety of physiological
features can be derived from such biosignals, with a commonly understood example being heart rate determined from
landmarks of the ECG signal. Similarly, thoracic bioimpedance can yield respiratory rate and depth; PPG can yield pulse
transit time (when cross referenced to the ECG) and the blood oxygen saturation, and so on. A variety of physiological
features are known in the art, and the application of SBM in subsequent steps readily contemplates the use of new
features as well, because the method is agnostic to the signals used (as long as the model is trained on the same kind
of data) so long as they interrelate through the feedback loops and control mechanisms of human physiology. In optional
step 115, the derived features can be supplemented with other physiologically-relevant data, that is, data that impacts
the physiological behavior or response of the monitored human. An example is FiO2, the fraction of oxygen in inspired
air, which can be increased over room air with the use of supplementing oxygen. In step 120, a kernel-based model
such as SBM that has been trained on normal variation of these same physiological features generates estimates of an
input observation of the features. Typically, an estimate is made for all elements in an input vector comprised of the
collection of physiological parameters sampled contemporaneously. In step 125, the residuals are generated between
those features measured and corresponding estimates of those features, in the instant monitored observation. Optionally,
threshold tests can be applied in a univariate manner or in a multivariate pattern-matching manner to the residuals in
step 130. In parallel with that option, the residuals are processed in step 135 by a mixture model developed from "normal"
residuals, and a multivariate health index is determined for the input observation in step 140. This MHI is an index of
the likelihood that the residuals from the input observation belong to the multivariate distribution of the mixture model.
The MHI can also be tested with a threshold to determine if the likelihood is insufficient such that the input observation
evidences deviations not characteristic of normal physiology. In step 145, persistence rules can be applied to a time
series of MHI determinations to further test observation-over-observation in time the persistence of threshold exceed-
ances, providing greater confidence that a deviation is occurring in the patient’s health, and is not merely a transient
phenomenon in the data. In a step 150, the alerts from the MHI and its test, along with any previous tests on individual
residuals or residual patterns, is managed for prioritization of patient care via a user interface. Alert management can
facilitate user-initiated annotations into a medical record system relating to the alerts of "dismissal", "elevation" or "monitor"
and other actions.
[0024] The biosignals of step 105 can be acquired from typical hospital vital signs equipment such as bedside monitors
and ventilators, from mobile vital signs monitors, implanted devices such as implantable cardioverter defibrillators and
pacemakers with instrumentation, and from wearable ambulatory monitors. Whatever data source device is used, it must
collect biosignals capable of providing multiple related physiological variables or features contemporaneously and at
least periodically, if not continuously. In one form, a patient uses a non-invasive ambulatory sensing device or has an
implantable device to acquire biosignals on at least a semi-continuously basis throughout the patient’s normal daily
activities. Data acquired by a sensing device can be offloaded from device memory on a periodic basis and thereafter
processed on a computer; or can be continuously transmitted by cellular network or WiFi, to be processed either con-
tinuously or in batch-mode by a receiving computer or server. The physiological features can even be analyzed using
the residual-based method on a smartphone or PDA, carried by the patient, since the computing requirements of the
analytical process are well within the capabilities of modern mobile devices. Then, resulting alerts or health status
conditions can be reported locally on the mobile device, and can also be uploaded to a central server to be shared with
medical practitioners.
[0025] One non-invasive wearable sensing device that can be used with the present invention is designed to acquire
data from 4 types of signals: ECG, red and infrared (IR) photoplethysmograph (PPG), bioimpedance, and a 3-axis
accelerometer. These sensors provide a rich waveform set from which physiologic features can be extracted. The
extracted features (as opposed to the raw waveform data) are what ultimately drive the SBM-based human health
monitoring approach. The device can be designed to record relevant biosignals for local storage, e.g., on an onboard
microSD card; or for transmission via a built-in Bluetooth radio to a cell phone or PDA carried by the patient. The device
can be designed to have a USB Mini-B connector that can be used to supply power to the device when recharging its
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battery, and that provides a mechanism for high-speed communication with a PC for periodically off-loading data, if raw
real-time sensor data are stored on a micro-SD card of the device. The device may use a microprocessor selected from
the well known Texas Instruments MSP430 line, ideal given its low power consumption characteristics, built-in ADC,
DAC, timers, and multiple serial peripheral interfaces (SPI/UART/I2C). The Bluetooth interface can be provided via a
BlueCore 3 Plug-n-Go IC, a 96-pin BGA module from CSR, Inc., with minimal external component requirements, and a
2.4 GHz chip antenna.
[0026] A number of sensing interfaces can be used to provide data for the present invention. The electrocardiogram
(ECG) can be implemented by using a two-stage analog high pass filter (HPF), followed by a radio-frequency interference
(RFI) filter and a micro-power instrumentation amp. It is crucial in an ambulatory mode to employ an RFI filter in front of
this high gain differential amplifier. Without it, a phenomenon called RF rectification can occur in the differential amplifier
IC. Once an RF signal becomes rectified inside the IC, it results in a DC offset error at the output and no amount of low
pass filtering can remove the error. As the RFI changes over time the DC offset changes as well resulting in an ECG
signal that is highly susceptible to artifacts. Two pickup electrodes can be used to acquire the signal, for example on
either side of the chest. The ECG is typically sampled at 12 bits and 256 Hz by the microprocessor.
[0027] A bioimpedance measurement can be made by using a dedicated 12-bit impedance converter network analyzer
IC (Analog Devices AD5933) in conjunction with a voltage to current stage and a programmable gain instrumentation
amplifier. An electrode placed under the left armpit can be used to inject 425 mA of current at 50 KHz to a ground
electrode found on the opposite side of the torso. The same electrodes used to pickup the ECG signal can be used to
pick up the 50 KHz signal through a 5 KHz HPF and an RFI filter. The difference in voltage is proportional to body’s
impedance through the relationship V = IR. The AD5933 IC is capable of measuring the complex impedance of the signal.
[0028] The PPG signal can be acquired by controlling a pair of LEDs (Red and Infrared) via a current limiting H-Bridge
for light generation. The unabsorbed light is measured using a reverse-biased PID photodetector connected to a tran-
simpedance amplifier for initial gain. The measured signal is then fed to a second stage differential amplifier along with
a DC-offset value generated in firmware from the output of the microprocessor’s DAC. The DC-offset value is meant to
keep the signal within the rails of the differential amplifier so that the signal gain can be maximized. The output of the
second stage amplifier is preferably then oversampled by a factor of 8 at 16384Hz (for a final sampling rate of 256 Hz)
after a waiting period of 488 mS after the LEDs have changed states. The oversampling is applied to increase the signal-
to-noise ratios of the PPG signals, which are highly susceptible to noise.
[0029] Accelerometer data can be generated by a LIS302DL MEMS digital accelerometer at 400 Hz (8 bits per axis).
The digital readings are preferably read by the microprocessor at a rate of 100 Hz.
[0030] The acquired data can be placed into two buffers: one that is flushed out to the file system (micro-SD), and
one that is fed to the Bluetooth IC for transmission. Each value is preceded with a single byte ID for identification, and
periodic "sync" blocks are inserted into the Bluetooth stream to aid in data alignment. Each packet of data consists of
the ID byte, followed by two bytes containing the sample value. Periodic 32-bit timestamps are also transmitted by
utilizing two packets to represent the high and low words of a 32-bit seconds counter.
[0031] In one form, a subject is outfitted with four electrodes and one pulse oximetry sensor. Two types of electrodes
can be used, carbon-rubber non-adhesive electrodes and carbon-rubber adhesive electrodes, although other commer-
cially available electrodes are readily contemplated for use in the embodiment. The electrodes are placed on the body
as shown in FIG. 2: (A) corresponds to the Bioimpedance current source electrode, (C) is the +ECG electrode, (F) is
the -ECG electrode, and (H) is the analog ground electrode (AGND). The ECG leads are also used to simultaneously
pick up the bioimpedance response signal. The device can be worn by either being placed in a stretchable chest strap
with the non-adhesive electrodes attached to the inside of the strap via Velcro, or it is placed in a pouch worn around
the neck with leads running to the adhesive electrodes. The PPG signal is acquired via a disposable Nellcor reflective
pulse oximetry sensor affixed to the forehead and connected to the device. A typical example of the signals captured
by the wearable sensing device described above from a human subject is shown in FIG. 3. The signals are: (A) ECG,
(B) x-axis accelerometer, (C) infrared photoplethysmograph (PPG), (D) real component of bioimpedance, and (E) im-
aginary component of bioimpedance. Not shown are the y and z axis accelerometer signals, and the red PPG signal
which are all captured as well.
[0032] Turning now to physiological feature generation, the raw data collected from the wearable device is not directly
analyzed with SBM. Instead a set of physiological features are derived from the raw waveform data. These derived
features are what provide the insight into the status of human cardiopulmonary control system and in turn the overall
health of an individual. According to one example, several features from two categories can be used, cardiac derived
and respiratory derived. The cardiac derived features are heart rate (HR), pulse transit time (PTT) and the Red absorption
to IR absorption PPG ratio (or Q). In one example, the HR feature can be obtained directly by measuring the interval
between consecutive QRS peaks in the ECG signal. The peaks are detected using a multi-step procedure. First a digital
HPF is applied to the ECG signal. Then the filtered signal is split into 10 second data windows that are detrended to
remove a straight line fit to the data. Next, within each window, the 98th percentile is calculated and the locations of all
samples above the 98th percentile are found. All samples found reside on a set of local peaks within the 10 second
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window. The last step is to find the sample location of the maximum value for each of the local peaks within the window.
These locations are the individual QRS peaks in the ECG waveform. Then the HR rate is simply the reciprocal of the
time interval between each heart beat.
[0033] PTT is the delay time between the QRS peak and PPG pulse peak. This feature is known to be inversely
proportional to blood pressure. To calculate it, the robustness of the ECG QRS peak detection algorithm is exploited
with first principles. Since it is known that a transit time of more than 250 ms is unlikely in a human, 250 ms windows
starting from the QRS peak location for each heart beat can be used to search for the corresponding PPG peak. The
maximum value within the window is the PPG peak. This is done for both the red and IR PPG signals. Because the PPG
signals tend to be naturally noisy, before the peaks are located, the PPG signals are first digitally filtered using a median
filter (to remove spiking) followed by a band-pass filter with lower and upper cutoff frequencies of 0.5Hz and 5 Hz
respectively.
[0034] The Q feature is the ratio of the blood absorption of red light to infrared light. Q is inversely known to be
proportional to SpO2 (blood oxygen saturation). Calculating Q is more complicated due to the analog and digital signal
processing that takes place before the raw PPG data are acquired. With reference to FIG. 4, Q is calculated as follows.
The basic equation for Q is given by 

[0035] Here REDAC (IRAC) is the amount of red (infrared) light absorbed by the blood and REDDC (IRDC) is the amount
of red (infrared) light absorbed by the surrounding tissue. The PPG implementation comprises an LED driving stage, a
PID photodiode with a transimpedance amplifier, and a second gain stage which subtracts out a DC offset (RED OUT-
PUTOFFSET in the FIG. 4) and adds additional gain. Some level of background light is detected by the sensor, and
needs to be subtracted from the measured signal as well (OFF SIGNAL + OFF OUPUTOFFSET). The RED DC TRACK
parameter is the lower envelop of the actual acquired signal. Then Q can be given by the following equations (shown
for red only). 

Here RED’AC is the peak-to-peak value of the actual acquired PPG signal, and α and β are scaling factors that are
function of the analog to digital converters.
[0036] There are two respiratory derived features that can be used in the embodiment, respiration rate (RR) and tidal
volume (TV) (or depth of breath). Both are calculated from the bioimpedance signal. The device acquires the real and
imaginary parts of the bioimpedance separately. These are combined to form the magnitude which is used for extracting
RR and TV. Bioimpedance is highly susceptible to motion artifacts. Muscle movement and organ movement change the
impedance of the human body causing undesired variation in the acquired signal. At the same time the signal is noisy
and somewhat aperiodic in nature with respect to breathing. Because of these factors one method to obtain reasonable
results for extracting RR and TV is a spectral-based approach. The bioimpedance signal is first bandpass filtered with
a narrow band digital filter with lower and upper cutoff frequencies of 0.133 Hz and 1Hz (corresponding to a RR range
of 8 to 60 breaths per minute). Next, a sliding window Discrete Fourier Transform (DFT) is applied to the filtered data
with overlap to produce feature values every 20 seconds. The RR rate feature corresponds to the frequency at which
the maximum value of the magnitude of the DFT occurs in each window. To reduce edge effects each window of data
is multiplied with a window function that suppresses the end points to zero before the DFT is calculated. TV is defined
to be the value of the magnitude of the DFT at the RR frequency, and quantitatively relates to true tidal volume but is
not a directly calibrated measure of tidal volume.
[0037] In one form, two last steps are taken to finalize the feature generation process. First, in a noise filtering step
that removes spikes and smoothes the feature data at the same time, a moving window trimmed mean filter is applied
with 50% window overlap. The default window size is 40 seconds and with an overlap of 50% the resulting filtered
features occur at a rate of 1 sample every 20 seconds. The second step is to align all the feature data in time so that



EP 2 523 625 B1

8

5

10

15

20

25

30

35

40

45

50

55

they can be analyzed with SBM. This is achieved by interpolating all of the filtered features at the same time points using
a shape-preserving piecewise cubic interpolator. An example of the filtered features is shown in FIG. 5 along with some
of the raw signals: (A) ECG, (B) y-axis accelerometer, (C) red PPG, (D) bioimpedance magnitude, (E) respiration rate,
(F) tidal volume, (G) heart rate, (H) pulse transit time, and (I) red to infrared ratio. Data region 505 occurred while the
subject held his breath as is evident by tidal volume (F) going to zero. During the same period the red to IR PPG ratio
(I) starts to increase indicating that 02 saturation is lowering. Region 510 occurred while the subject was walking briskly
around. After about 45 seconds into the walk his respiration rate, tidal volume and heart rate increase ((E), (F) and (G)
respectfully). Pulse transit time drops (H), indicating an increase in blood pressure, while the PPG ratio (I) begins to
slowly climb again, indicating lower 02 saturation. Finally region 515 represents the subject running up and down a
staircase three times with short rests in between. As expected, similar behavior to that of region 510 is seen.
[0038] Invariably sensor noise, artifacts due to sensor movement and other unexpected interference contaminate
random time periods of the acquired sensor data. Including tainted data in an SBM model can potentially degrade model
performance. SBM is purely data driven and learns normality from the training data. If the training data is contaminated
with non-health related artifacts the model’s representation of normal will be undesirably broadened. This generally
affects its sensitivity in predicting the onset of anomalous behavior.
[0039] To deal with sensor noise a number of digital filtering techniques can be applied to either the raw data or to the
calculated features themselves. These include the techniques of median filtering, Infinite Impulse Response (IIR) filters
and Finite Impulse Response (FIR) filters).
[0040] According to one approach, a strategy for detecting artifacts in the raw sensor data is based on a number of
components. First, the first order difference of each axis of the accelerometer data is monitored for times when the
absolute value of the difference is above a predefined threshold. These times indicate when sudden movements have
occurred. Generally, these sudden movements result in transient behavior in the sensor data, most notably in the PPG
data and bioimpedance data. The data from all sensors are then ignored from the first indication of sudden movement
until 10 seconds after the difference signals falls below the threshold again. This approach works well for detecting
transients but does not detect sensor problems. The second component combines heuristic rules with first principles
rules to detect sensor and/or feature generation errors. The set of rules is summarized below:

1. If TV < Ttv (a threshold constant) then RR is unreliable and is not used. Calculating RR is based on extracting
the maximum spectral component of the bioimpedance signal within a narrow band and if TV is below Ttv the person
is not breathing, or is breathing so shallowly that the maximum component is meaningless; it’s just the maximum
noise component in the frequency band during this state.
2. If HR > 200 or Q (PPG Red to IR ratio) > TQ (a threshold constant), ignore the calculated feature value. A value
of HR above 200 is well above the normal HR for a human so anything above 200 is likely an error. Similarly, Q, a
proxy for SpO2, is only realistic in a certain range; however unlike HR the range varies from person to person due
to sensor placement and the physical characteristics of the skin. So a unique TQ is preferably calculated for each
individual.
3. If the PTT variance is greater than the HR variance by more than threshold constant Tvar, then ignore the feature
data. This means that the pulsatile peaks of the PPG signals are not being identified correctly indicating that the
PPG sensor is physically out of place or is being overcome by noise.

[0041] Turning now to the process for estimating observations in order to be able to obtain residuals, a number of
different kernel-based multivariate estimator methods may be used. What is generally intended by the term "kernel-
based" is a multivariate estimator that operates with a library of exemplary observations (the learned data) on an input
observation using a kernel function for comparisons. The kernel function generally yields a scalar value (a "similarity")
on a comparison of the input observation to an exemplary observation from the library. The scalar similarity can then
be used in generating an estimate as a weighted sum of at least some of the exemplars. For example, using Nadaraya-
Watson kernel regression, the kernel function is used to generate estimates according to: 
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where Xnew is the input multivariate observation of physiological features, Xi are the exemplary multivariate observations
of physiological features, Xest are the estimated multivariate observations, and K is the kernel function. In the inferential
case, exemplars comprise a portion Xi comprising some of the physiological features, and a portion Yi comprising the
remaining features, Xnew has just the features in Xi, and Yest is the inferential estimate of those Yi features. In the
autoassociative case, all features are included in Xnew, Xi and in the Xest together - all estimates are also in the input.
[0042] The kernel function, by one approach, provides a similarity scalar result for the comparison of two identically-
dimensioned observations, which:

1. Lies in a scalar range, the range being bounded at each end;
2. Has a value of one of the bounded ends, if the two vectors are identical;
3. Changes monotonically over the scalar range; and
4. Has an absolute value that increases as the two vectors approach being identical.

In one example, kernel functions may be selected from the following forms: 

where Xa and Xb are input observations (vectors). The vector difference, or "norm", of the two vectors is used; generally
this is the 2-norm, but could also be the 1-norm or p-norm. The parameter h is generally a constant that is often called
the "bandwidth" of the kernel, and affects the size of the "field" over which each exemplar returns a significant result.
The power λ may also be used, but can be set equal to one. It is possible to employ a different h and λ for each exemplar
Xi. Preferably, when using kernels employing the vector difference or norm, the measured data should first be normalized
to a range of 0 to 1 (or other selected range), e.g., by adding to or subtracting from all sensor values the value of the
minimum reading of that sensor data set, and then dividing all results by the range for that sensor; or normalized by
converting the data to zero-centered mean data with a standard deviation set to one (or some other constant). Further-
more, a kernel function according to an embodiment of the invention can also be defined in terms of the elements of the
observations, that is, a similarity is determined in each dimension of the vectors, and those individual elemental similarities
are combined in some fashion to provide an overall vector similarity. Typically, this may be as simple as averaging the
elemental similarities for the kernel comparison of any two vectors x and y: 

[0043] Then, elemental kernel functions that may be used according to an embodiment of the invention include, without
limitation: 
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[0044] The bandwidth h may be selected in the case of elemental kernels such as those shown above, to be some
kind of measure of the expected range of the mth parameter of the observation vectors. This could be determined, for
example, by finding the difference between the maximum value and minimum value of a parameter across all exemplars.
Alternatively, it can be set using domain knowledge irrespective of the data present in the exemplars or reference vectors,
e.g., by setting the expected range of a heart rate parameter to be 40 to 180 beats per second on the basis of reasonable
physiological expectation, and thus h equals "140" for the mth parameter in the model which is the heart rate.
[0045] According to one approach, Similarity-Based Modeling is used as the kernel-based multivariate estimator.
Three types of SBM models can be used for human data analysis tasks: 1) a fixed SBM model, 2) a localized SBM
model that localizes using a bounding constraint, and 3) a localized SBM model that localizes using a nearest neighbor
approach. The fixed SBM modeling approach generates estimates using the equation bellow. 

[0046] Here, D is a static m-by-n matrix of data consisting of n training data vectors with m physiological features, pre-
selected from normal data during a training phase. The kernel function K is present as a kernel operator ⊗ whereby
each column vector from the first operand (which can be a matrix, such as D is) is compared using one of the kernel
functions described above, to each row vector of the second operand (which can also be a matrix). The monitored input
observation is here shown as xin(t), and the autoassociative estimate is shown as xin(t). In contrast, localized SBM
(LSBM) is given by the following equation: 

[0047] Although similar in form to the fixed SBM model, here the D matrix is redefined at each step in time using a
localizing function F(·) based on the current input vector xin(t) and a normal data reference matrix H. Accordingly, matrix
H contains a large set of exemplars of normal data observations, and function F selects a smaller set D using each input
observation. By way of example, F can utilize a "nearest neighbor" approach to identify a set of exemplars to constitute
D for the current observation as those exemplars that fall within a neighborhood of the input observation in m-dimensional
space, where m is the number of features. As another example, function F can compare the input observation to the
exemplars for similarity using a kernel-based comparison, and select a preselected fraction of the most similar exemplars
to constitute D. Other methods of localization may be used in an embodiment of the invention, including selection on
the basis of fewer than all of the physiological features, and also selection on the basis of a distinct parameter not among
the features, but associated with each exemplar, such as an ambient condition measure.
[0048] Models used for estimation in an embodiment of the present invention are preferably empirical models deter-
mined from data, in contrast to first-principles models that relate parameters by deterministic equations. Therefore,
instead of deriving a model, the model must be trained with empirical data. Training a model of physiology comprises
gathering exemplary observations of the physiological parameters or features to be modeled and building a reference
library of exemplars. These features can be range-normalized, or can be used in their native units of measurement in

^
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combination with an elementary kernel function, such as those shown in equations 10-12, that uses a bandwidth that is
proportional to the expected range in those native units of measure. In personalized modeling, observations are obtained
of the features in question from the patient who will be monitored, during conditions in which the patient is deemed to
be medically normal or medically stable. The patient need not be in pristine health, as the method of an embodiment of
the present invention looks for relative change. The normal data preferably includes representation from all manner of
activity that is to be modeled, and need not be limited to highly immobile, sedated or "steady state" conditions, unless
those are the only conditions that will be modeled. Exemplars are typically just observations selected for inclusion in the
reference library from the larger set of available normal observations; exemplars can also be determined as computed
"centers" of clustered normal data in the alternative.
[0049] Once a model is trained by constituting its reference library, and selecting the kernel function(s) that will serve
as similarity operations for estimate generation, the model can be used to generate estimates responsive to monitored
input observations. With each input observation, an estimate of at least some of the physiological features is generated
according to one of the embodiments of equations 4, 5, 13 or 14 above. The estimated features are then differenced
with the measured values of those features in the instant observation to create a residual for each such feature. Given
that real-world signals have inherent measurement noise and inherent system noise, and given that empirical models
will have some inherent inaccuracy, residuals will occur not only for deviating data from deteriorating physiology, but
also for data from normal physiology. However the statistical character of the residuals for normal data will be much
better behaved than for deviating data. A number of well known methods for testing raw data can be applied to the
residuals, including thresholds. A threshold can be applied to a residual such that small variations are tolerated, by larger
values trigger an alert. Series of decisions on residuals for individual physiological parameters can be the basis for rules
relating to the genuine existence of a persistent deviating health condition, for example by counting the number of
threshold exceedances in a window of observations. Rule patterns can be applied across residuals for different physi-
ological features, triggered only when the pattern of deviations in the residuals is identified. Generally, these decision
methods applied to residuals are more sensitive and less prone to error than the same approaches applied to raw data,
because normal variation has been removed in the residuals by the differencing with the estimated features from the
model. Essentially, SBM is removing the normal variation in the actual data and leaving behind abnormal data in the
form of residuals (normal as defined by the training data).
[0050] The performance of a model can be measured using a nonparametric perturbation-based approach that is
particularly well suited for comparing modeling techniques used for anomaly detection applications. The performance
of a model is assessed using three metrics: 1) robustness, 2) spillover and 3) error. The robustness metric is a meas-
urement of the likelihood that a model will follow (or over-fit) a perturbation introduced into the data. With reference to
FIG. 6, to measure robustness, first estimates for all of the variables in a model are made based on a test data set
containing normal data (x0 in FIG. 6). Next, a perturbation Δ is added to each variable one at a time in the model as
shown (xΔ in FIG. 6). Finally, estimates are generated for each of the perturbed variables (xΔ in FIG. 6). The robustness
metric for each variable in a model is then given by the following equation: 

[0051] Here, perfect robustness is achieved when Robustness is equal to 0, that is, when the unperturbed and perturbed
estimates are identical. A larger value indicates more over-fitting and hence less model robustness.
[0052] The spillover metric measures the relative amount that variables in a model deviate from normality when another
variable is perturbed. In contrast to robustness, spillover measures the robustness on all other variables when one
variable is perturbed. The spillover measurement for each variable is calculated using a similar calculation, which is
given by 

where xi0 is the estimate for variable i when no variables are perturbed, xi|Δ, is the estimate of variable i when variable
j is perturbed by Δj, and Δi is the perturbation amount used when variable i is itself perturbed.
[0053] Finally, the error metric is simply the root mean squared error of the difference between the actual value and
its estimate divided by the standard deviation of the actual value, or equivalently the residual RMS divided by the actual

^
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value standard deviation: 

[0054] The equations listed above define the metrics for each variable in a model. In each case, a smaller value is
better. The overall performance metrics for a model are calculated by averaging the results for each variable in each case.
[0055] Turning to one form of residual testing, a multivariate density estimation approach can be applied to the residual
data. The approximated densities in the normal behavior of the data are used to determine the likelihood (in the form of
a multivariate health index (MHI)) that a new data point is part of the normal behavior distribution. The density estimates
are calculated using a non-parametric kernel estimator with a Gaussian kernel. The estimator is shown in the equation
bellow. The resulting density function is essentially a mixture of N individual multivariate Gaussian functions each centered
at xi: 

where N is the number of training vectors, h is a bandwidth parameter, d is the dimensionality of the vectors, and ƒ(x)
is a scalar likelihood. Importantly, the X and Xi here are not multivariate observations of physiological features, but are
instead multivariate residual observations derived from the original observations by differencing with the estimates.
Importantly also, the density "estimation" here is not the same as the estimation process described above for estimating
physiological feature values based on measured values; the "estimate" here is empirically mapping out a probability
distribution for residuals using the normal multivariate residual exemplars, as a Gaussian mixture model. This estimated
distribution is then used to compute a likelihood that a new multivariate residual from an input observation of physiological
features is a member of that distribution or not. The exemplars Xi can be selected from regions of normal data residuals
generated by SBM using test data that is deemed "normal" or representative of desired or stable physiological behavior.
Before the density estimates are made, all residuals are scaled to have unit variance and zero mean, or at least are
scaled to have unit variance. The means and standard deviations used for the scaling procedure are calculated from
known normal data residuals. The multivariate health index (MHI) in one form is a function of ƒ(x) and is given by: 

Of course, the likelihood determined from equation 18 need not be converted as in equation 19 in order to be useful,
and equation 19 is used primarily to invert the signal trend (so that higher equates to rising health risk). Tests may be
applied directly to the result of equation 18.
[0056] A comparison of the efficacy of applying the multivariate density estimation approach to residuals is highlighted
in FIGs. 7A-7B. Chart 705 (FIG. 7A) shows a multivariate density estimation similar to that described above except
applied to raw physiological feature data (the actual values of heart rate, respiration rate, etc.); while chart 710 (FIG.
7B) shows the multivariate density estimation as described above applied to residuals generated from a kernel-based
model (SBM). MHI results are shown for physiological data both unperturbed (normal) and with an artificially-induced
perturbation (abnormal). The perturbation was introduced as a slow drift in a subset of ambulatory physiological features
from the start of the data, with a maximum drift achieved at the end of the data. In both chart 705 and 710, the MHI
computed for "normal" unperturbed data is shown as a solid line, and the MHI computed for "abnormal" perturbed data
is shown as a dotted line. A detection threshold (717, 720) was determined for each approach based on statistics for a
test set of normal data, where the statistics were for raw data in the case of chart 705 and for residuals in the case of
chart 710. A decision algorithm was further applied to the MHI to ascertain a persistent, reliable threshold exceedance
alert, in this case x successive MHI threshold exceedances yields an alert decision. The decision can be latched until
a series of y successive values for MHI are observed bellow the threshold, in which case the alert is removed. Alternatively,
an alert can be latched when there have been x threshold exceedances in a window of m observations, and the alert
removed when there have been y observations bellow the threshold in a window of b observations. In each case, the
vertical line (730, 735) indicates the point at which a decision was made that the data are not from the normal behavior

^
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distribution and hence indicate an abnormal condition. As can be seen, detection occurs about one-third of the way from
the start of the simulated disturbance for the residual-driven MHI, whereas detection using raw data in combination with
a multivariate density estimation does not occur until much later in the data. This is due to the combination of a model
of normally removing normal variation, with the multivariate density estimation of likelihood of normalcy applied to
residuals. This residual-based MHI method has the novel advantages of providing substantially earlier detection of an
incipient pattern of deviation in health, and providing a single index of patient deviation to summarize individual residuals
for the multiple physiological features being monitored.
[0057] According to one approach, the system described herein can be deployed to provide predictive monitoring of
patient health in an ambulatory, at-home environment, particularly for patients with chronic diseases that may deteriorate
unpredictably. Multiple physiological features are derived from one or more biosignals and parameters captured from a
wearable or implanted device (or both), and transmitted to an analytics data center, where one or more servers are
disposed to process the physiological features using empirical, kernel-based models. The models are preferably per-
sonalized to the data from the patient captured during periods when the patient is considered to be in normal or acceptably
stable health, to provide a model of normal physiology for the patient. Monitored data is estimated using the personalized
model, and the monitored values are differenced with the estimated values of the physiological parameters to yield
residuals. The residuals are then processed through one or more methods of analysis to yield alerts regarding the
patient’s health status. According to one technique, the residuals can individually be tested with rules, such as thresholds.
These thresholds can further be tested for persistence. Patterns of residual tests can be recognized to yield even more
specific health status information. According to another technique, the multivariate observation of residuals can be
examined for likelihood of belonging to a "normal" residual distribution using an empirical multivariate probability density
estimation, and this likelihood may then be converted to a multivariate health index, typically as an inverse log value of
the likelihood. The MHI provides an instant ranking of patient health status, and the MHI can be tested using a threshold,
as well as persistence rules, to yield alerts regarding patient health status. All such analytics can be presented via a
web-based or client-server-based user interface to medical practitioners, and in this way a large population of patients
can be monitored together by medical staff with improved efficiency. All such monitored patients of a health care institution
or practice group can be managed for early warning of deteriorating health at home, and the patients can be prioritized
for specific follow-up based on health status. Patients with early indications of health deterioration can be contacted to
verify compliance with medications, inquire about how the patient feels, and investigate recent patient behavior that may
have exacerbated a chronic illness. Medical staff may advantageously avert a more costly health emergency for the
patient with efficient interventions including instructing the patient to make adjustments to medications, comply with
medications, or come in for an examination and preventative intervention.
[0058] SBM can also be deployed with cross subject modeling, instead of an entirely personalized model. A model
then comprises data from other human subjects. Due to the person to person variation in feature data it is necessary to
scale each subject’s data. A generic cross population model can be used as a temporary means for monitoring a human
when no historical data are available for the individual as long as the individual’s feature data are properly scaled. The
scaling can be accomplished based on statistics calculated during a standardized set of activities when the monitoring
device is first put on. The data acquired during the standard activities (which can comprise lying down, sitting, standing,
walking and climbing stairs, for example) is typically scaled to a zero-mean, one-standard deviation range. The monitoring
is not as sensitive as it would be for a personalized model but it at least provides a minimal level of health monitoring
while waiting to acquire a suitable set of data to generate a personalized model.
[0059] Turning to FIG. 8, another approach obtains residuals from reference data representative of a known illness,
malady or health deterioration, so that a multivariate probability density estimator can be determined for that health
deterioration, in contrast to determining it for normal or stable health. Hence, one or more probability density estimators
810 can be created in this way (including one for normal data), and applied to multivariate residual observations 820
from monitored data 830. Likelihoods that the monitored residual observation belongs to each of the distributions can
be compared in parallel in a decisioning step 840, and not only can deviation from normal be detected, but the nature
of the health deterioration can be categorized. Likelihoods can simply be displayed to medical staff, or the likeliest
scenario or the set of scenarios with a sufficiently high likelihood can be indicated as the probable state(s) of the patient
in 840. In another approach to decisioning 840, the likelihoods or MHI values for each of a plurality of maladies are
normalized using test statistics generated from known examples of each such malady processed through model esti-
mation and residual generation, so that they can be expressed in terms of the typical variance expected for residual
vectors fitting each such category. Then the normalized values are compared to determine which category is in fact
most likely represented by the current monitored data. Series of MHI or likelihood values for each malady category can
also be processed heuristically to rank categories, for example with moving window averages or medians.
[0060] According to another form, patients in a hospital are monitored with multivariate physiological parameters
derived from sensors using conventional bedside monitors, ventilators, and/or wearable or implanted devices. Data is
streamed via Ethernet network or WiFi to a central station / nursing station or to a hospital centralized data center,
coupled to interfaces for medical staff real-time monitoring. Data is also streamed via Ethernet network or WiFi to analytics
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server(s) for processing using empirical, kernel-based models as described herein. Estimates are made of the physio-
logical features, and residuals are generated; models may be generic instead of personalized, since no personal data
may be available for a patient from a period when that patient was in acceptable physiological health. In such a case,
a model can comprise data from other humans collected in similar hospital conditions when the humans were in acceptable
health. Such a model can further be tailored to the monitored patient on the basis of major contributors to normal
physiological variation, such as body mass, gender, age, and medical condition (e.g., similar cardiac ejection fraction
or similar respiratory performance). Residuals are processed as described above to generate MHI and/or rules-based
decisions. Patient health status for all monitored patients in the ward or hospital or ICU can be monitored by onsite
medical staff or off-site medical staff to provide early warning of developing health issues, such as infection, pneumonia,
and sepsis.
[0061] With the advantage of early warning as provided by an embodiment of the invention, the health alerts of patients
can be managed in a proactive manner, rather than being a crisis that must be immediately responded to. The user
interface provides for several levels of alert management: Alerts can be dismissed (investigation by medical staff shows
the alert to be anomalous); alerts can be confirmed and elevated (investigation by medical staff shows a definite health
issue is present that needs intervention); and alerts can be marked for further follow-up and observation (investigation
shows close monitoring is warranted but immediate intervention is not required or advised).
[0062] A system is provided for advanced warning of health problems, using a wearable sensing device for capturing
rich physiological data streams from a human outside the hospital, in the daily routine of their home life, providing high
visibility into a patient’s physiological status outside the reach of the physician’s office or the hospital ward. Automated
processing of this data using algorithms that remove the normal variation present in ambulatory data, to provide robust
and early detection of anomalies indicative of incipient health issues is novel and inventive. The potential for this com-
bination of device plus algorithm to revolutionize patient care is enormous, especially for the chronically ill patient pop-
ulation. This platform is exactly the kind of tool needed by physicians to improve patient outcomes, avoid unnecessary
costs, and greatly extend the leverage of the medical workforce.
[0063] It will be appreciated by those skilled in the art that modifications to the foregoing preferred embodiments may
be made in various aspects and as set forth with particularity in the appended claims.

Claims

1. A computerized system for monitoring the health of a human, comprising:

means for obtaining (105) sensor data from a human;
means for generating (110) with a programmed microprocessor a plurality of features from said sensor data,
characteristic of physiological health of said human; and
a computing platform configured by software to perform the steps of:

estimating (120) values for said features characteristic of normal human physiology using a multivariate
model, based on the values of said generated plurality of features;
differencing (125) the estimated values and the generated features to provide residuals for the features;
determining (140) a likelihood that said residuals are representative of a pattern of normal residuals using
a Gaussian mixture model based on a set of normal residual reference patterns; and
applying (145) a test to said likelihood to render a decision whether the generated features are characteristic
of normal physiological behavior to provide an early indication of deviation of the physiological health of
said human from normal.

2. A computerized system according to claim 1, wherein said step of applying a test comprises deriving an index of
said likelihood as a logarithm of the inverse of said likelihood, and comparing the index to a threshold.

3. A computerized system according to any of claims 1 or 2, wherein said Gaussian mixture model is of the form: 

where N is the number of normal residual reference patterns, h is a bandwidth parameter, d is the dimensionality
of the vectors, X is an observation of said features, Xi are said normal residual reference patterns and ƒ(x) is a^
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scalar likelihood.

4. A computerized system according to claim 3, wherein said computing platform is further configured to, before said
determining, scale the residuals for each monitored observation to have unit variance, using the means and standard
deviations calculated from residuals for known normal data using said estimation model, and wherein said set of
normal residual reference patterns are likewise scaled.

5. A computerized system according to claim 1, wherein said computing platform performs the further step of testing
a series of said rendered decisions for persistence of decisions that the features are not characteristic of normal
physiological behavior.

6. A computerized system according to claim 1, wherein said step of estimating values further comprises making a
kernel-based comparison of a feature vector, comprising the values of said feature signals, to at least some of a
library of exemplary vectors, each comprising values representative of said feature signals in a known health state,
in order to generate said estimate as a linear combination of those exemplary vectors, weighted in relation to said
comparisons.

7. A computerized system according to claim 6, wherein said feature vector is compared to said exemplary vectors
comprising said library in order to select a subset of said exemplary vectors to use in said kernel-based comparison
for generating said estimate.

8. A computerized system according to claim 6, wherein said estimate is generated as a linear combination of said
exemplary vectors, weighted in relation to said comparisons according to: 

where Xnew is said feature vector, Xi are said exemplary vectors, Xest is said estimate, and K is said kernel-based
comparison.

9. A computerized system according to claim 6, wherein said estimate is generated as a linear combination of said
exemplary vectors, weighted in relation to said comparisons according to: 

where Xnew is said feature vector, D is a matrix of at least some of said exemplary vectors, Xest is said estimate,
and ⊗ is an operator for performing said kernel-based comparisons between matrices.

10. A computerized system according to claim 1, wherein said means for obtaining sensor data comprises an implanted
cardiac device.

11. A computerized system according to claim 1, wherein said means for obtaining sensor data comprises a cell phone
disposed to receive wireless transmissions via extremely local radio protocol of measurements of sensors attached
to the monitored human.

12. A computerized system according to claim 1, wherein said means for obtaining sensor data comprises a ventilator.

13. A computerized system according to claim 1, wherein said means for generating a plurality of features is a cell
phone, and said cell phone transmits said features to said computing platform.

14. A computerized system according to claim 1, wherein said multivariate model is personalized to data from said
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human, captured during periods when said human is considered to be in normal or acceptably stable health, to
provide a model of normal physiology.

Patentansprüche

1. Computerisiertes System zur Überwachung der Gesundheit eines Menschen umfassend:

ein Mittel zum Erhalten (105) von Sensordaten von einem Menschen;
ein Mittel zum Erzeugen (110) mit einem programmierten Mikroprozessor von mehreren Merkmalen anhand
der Sensordaten, die charakteristisch für die physiologische Gesundheit des Menschen sind; und
eine Rechenplattform, die durch Software konfiguriert ist, um folgende Schritte durchzuführen:

Schätzen (120) von Werten für die Merkmale, die charakteristisch für eine normale menschliche Physiologie
sind, unter Verwendung eines Multivariat-Modells basierend auf den Werten der erzeugten mehreren Merk-
male;
Unterscheiden (125) der geschätzten Werte und der erzeugten Merkmale, um Restgrößen für die Merkmale
bereitzustellen;
Bestimmen (140) einer Wahrscheinlichkeit, dass die Restgrößen ein Muster von normalen Restgrößen
darstellen unter Verwendung eines Gaußschen Mischverteilungsmodells basierend auf einer Gruppe von
normalen Restgrößenbezugsmustern; und
Anwenden (145) eines Tests auf die Wahrscheinlichkeit, um eine Entscheidung zu treffen, ob die erzeugten
Merkmale charakteristisch für ein normales physiologisches Verhalten sind, um eine frühzeitige Angabe
einer Abweichung der physiologischen Gesundheit des Menschen von der normalen bereitzustellen.

2. Computerisiertes System nach Anspruch 1, wobei der Schritt des Anwendens eines Tests das Ableiten eines Indexes
der Wahrscheinlichkeit als einen Logarithmus der Umkehrfunktion der Wahrscheinlichkeit und das Vergleichen des
Indexes mit einem Schwellenwert umfasst.

3. Computerisiertes System nach einem der Ansprüche 1 oder 2, wobei das Gaußsche Mischverteilungsmodell fol-
gende Form aufweist: 

wobei N die Anzahl an normalen Restgrößenbezugsmustern ist, h ein Bandbreitenparameter ist, d die Dimensio-
nalität der Vektoren ist, x eine Beobachtung der Merkmale ist, xi die normalen Restgrößenbezugsparameter sind
und ƒ(x) eine skalare Wahrscheinlichkeit ist.

4. Computerisiertes System nach Anspruch 3, wobei die Rechenplattform ferner konfiguriert ist, um vor dem Bestimmen
die Restgrößen für jede überwachte Beobachtung derart zu skalieren, dass sie eine Einheitsvarianz aufweisen,
unter Verwendung der Mittelwerte und Standardabweichungen, die anhand von Restgrößen für bekannte normale
Daten unter Verwendung des Schätzmodells berechnet werden, und wobei die Gruppe von normalen Restgrößen-
bezugsmustern ähnlich skaliert werden.

5. Computerisiertes System nach Anspruch 1, wobei die Rechenplattform den weiteren Schritt des Testens einer Reihe
der getroffenen Entscheidungen auf die Beständigkeit der Entscheidungen, dass die Merkmale nicht charakteristisch
für ein normales physiologisches Verhalten sind, durchführt.

6. Computerisiertes System nach Anspruch 1, wobei der Schritt des Schätzens von Werten ferner das Durchführen
eines kernelbasierten Vergleichs eines Merkmalsvektors umfassend die Werte der Merkmalssignale mit mindestens
einer Bibliothek von beispielhaften Vektoren umfasst, welche jeweils Werte umfassen, die die Merkmalssignale in
einem bekannten gesunden Zustand darstellen, um die Schätzung als eine lineare Kombination dieser beispielhaften
Vektoren bezüglich den Vergleichen gewichtet zu erzeugen.

7. Computerisiertes System nach Anspruch 6, wobei der Merkmalsvektor mit den beispielhaften Vektoren umfassend
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die Bibliothek verglichen wird, um eine Untergruppe der beispielhaften Vektoren auszuwählen zur Verwendung in
dem kernelbasierten Vergleich zum Erzeugen der Schätzung.

8. Computerisiertes System nach Anspruch 6, wobei die Schätzung als eine lineare Kombination der beispielhaften
Vektoren bezüglich der Vergleiche gewichtet folgendermaßen erzeugt wird: 

wobei xnew der Merkmalsvektor ist, xi die beispielhaften Vektoren sind, xest die Schätzung ist und K der kernelbasierte
Vergleich ist.

9. Computerisiertes System nach Anspruch 6, wobei die Schätzung als eine lineare Kombination der beispielhaften
Vektoren folgendermaßen im Verhältnis zu den Vergleichen gewichtet erzeugt wird: 

wobei xnew der Merkmalsvektor ist, D eine Matrix mindestens einiger der beispielhaften Vektoren ist, xest die Schät-
zung ist und ⊗ ein Operator zum Durchführen der kernelbasierten Vergleiche zwischen Matrizen ist.

10. Computerisiertes System nach Anspruch 1, wobei das Mittel zum Erhalten von Sensordaten eine implantierte Kar-
diovorrichtung umfasst.

11. Computerisiertes System nach Anspruch 1, wobei das Mittel zum Erhalten von Sensordaten ein Mobiltelefon umfasst,
das angeordnet ist, um drahtlose Übertragungen über ein extrem lokales Funkprotokoll von Messungen von Sen-
soren, die an dem überwachten Mensch befestigt sind, zu erhalten.

12. Computerisiertes System nach Anspruch 1, wobei das Mittel zum Erhalten von Sensordaten einen Ventilator umfasst.

13. Computerisiertes System nach Anspruch 1, wobei das Mittel zum Erzeugen von mehreren Merkmalen ein Mobilte-
lefon ist, und das Mobiltelefon die Merkmale zu der Rechenplattform überträgt.

14. Computerisiertes System nach Anspruch 1, wobei das Multivariat-Modell bezüglich Daten von dem Menschen
personalisiert ist, die während Zeiträumen aufgenommen werden, wenn erachtet wird, dass der Mensch eine normale
oder annehmbar stabile Gesundheit hat, um ein Modell einer normalen Physiologie bereitzustellen.

Revendications

1. Système informatisé pour surveiller la santé d’un être humain, comprenant :

des moyens pour obtenir (105) des données de capteur provenant d’un être humain ;
des moyens pour générer (110) à l’aide d’un microprocesseur programmé une pluralité de caractéristiques à
partir desdites données de capteur, représentatives de la santé physiologique dudit être humain ; et
une plate-forme de calcul configurée à l’aide d’un logiciel pour exécuter les étapes comprenant :

l’estimation (120) de valeurs pour lesdites caractéristiques représentatives de la physiologie humaine nor-
male en utilisant un modèle multivarié, basé sur les valeurs de ladite pluralité de caractéristiques générée ;
le calcul de différences(125) entre les valeurs estimées et les caractéristiques générées pour fournir des
valeurs résiduelles pour les caractéristiques ;
la détermination (140) d’une probabilité que lesdites valeurs résiduelles soient représentatives d’un modèle
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de valeurs résiduelles normales en utilisant un modèle de mélange de gaussiennes basé sur un ensemble
de modèles de référence de valeurs résiduelles normales ; et
l’application (145) d’un test à ladite probabilité pour rendre une décision selon laquelle les caractéristiques
générées sont représentatives d’un comportement physiologique normal ou non, pour fournir une indication
précoce de la déviation de la santé physiologique dudit être humain par rapport à la normale.

2. Système informatisé selon la revendication 1, dans lequel ladite étape d’application d’un test comprend la dérivation
d’un indice de ladite probabilité sous la forme d’un logarithme de l’inverse de ladite probabilité, et la comparaison
de l’indice à un seuil.

3. Système informatisé selon l’une quelconque des revendications 1 ou 2, dans lequel ledit modèle de mélange de
gaussiennes a la forme : 

 où N est le nombre de modèles de référence de valeurs résiduelles normales, h est un paramètre de largeur de
bande, d est la dimensionnalité des vecteurs, X est une observation desdites caractéristiques, Xi sont lesdits modèles
de référence de valeurs résiduelles normales et ƒ(x) une probabilité scalaire.

4. Système informatisé selon la revendication 3, dans lequel ladite plate-forme de calcul est en outre configurée pour,
avant ladite détermination, étalonner les valeurs résiduelles de chaque observation surveillée pour avoir une variance
unitaire, en utilisant les moyennes et les écarts-types calculés à partir de valeurs résiduelles pour des données
normales connues en utilisant ledit modèle d’estimation, et dans lequel ledit ensemble de modèles de référence de
valeurs résiduelles normales est étalonné de la même manière.

5. Système informatisé selon la revendication 1, dans lequel ladite plate-forme de calcul exécute l’étape supplémentaire
dans laquelle une série desdites décisions rendues est testée pour évaluer la persistance des décisions selon
lesquelles les caractéristiques ne sont pas représentatives d’un comportement physiologique normal.

6. Système informatisé selon la revendication 1, dans lequel ladite étape d’estimation de valeurs comprend en outre
la mise en oeuvre d’une comparaison basée sur un noyau d’un vecteur de caractéristique, comprenant les valeurs
desdits signaux de caractéristique, avec au moins une partie d’une banque de vecteurs exemplaires, comprenant
chacun des valeurs représentatives desdits signaux de caractéristique dans un état de santé connu, afin de générer
ladite estimation sous la forme d’une combinaison linéaire de ces vecteurs exemplaires, pondérée par rapport
auxdites comparaisons.

7. Système informatisé selon la revendication 6, dans lequel ledit vecteur de caractéristique est comparé auxdits
vecteurs exemplaires comprenant ladite banque afin de sélectionner un sous-ensemble desdits vecteurs exemplai-
res à utiliser dans ladite comparaison basée sur un noyau pour générer ladite estimation.

8. Système informatisé selon la revendication 6, dans lequel ladite estimation est générée sous la forme d’une com-
binaison linéaire desdits vecteurs exemplaires, pondérée par rapport auxdites comparaisons selon : 

où Xnew est ledit vecteur de caractéristique, Xi sont lesdits vecteurs exemplaires, Xest est ladite estimation, et K est
ladite comparaison basée sur un noyau.

9. Système informatisé selon la revendication 6, dans lequel ladite estimation est générée sous la forme d’une com-
binaison linéaire desdits vecteurs exemplaires, pondérée par rapport auxdites comparaisons selon : 

·
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Où Xnew est ledit vecteur de caractéristique, D est une matrice d’au moins certains desdits vecteurs exemplaires,
Xest est ladite estimation, et ⊗ un opérateur pour effectuer lesdites comparaisons basées sur un noyau entre matrices.

10. Système informatisé selon la revendication 1, dans lequel lesdits moyens pour obtenir des données de capteur
comprennent un dispositif cardiaque implanté.

11. Système informatisé selon la revendication 1, dans lequel lesdits moyens pour obtenir des données de capteur
comprennent un téléphone cellulaire disposé pour recevoir des transmissions sans fil via un protocole radio extrê-
mement localisé de mesures de capteurs fixés sur l’être humain surveillé.

12. Système informatisé selon la revendication 1, dans lequel lesdits moyens pour obtenir des données de capteur
comprennent un ventilateur.

13. Système informatisé selon la revendication 1, dans lequel lesdits moyens pour générer une pluralité de caractéris-
tiques sont un téléphone cellulaire, et ledit téléphone cellulaire transmet lesdites caractéristiques à ladite plate-
forme de calcul.

14. Système informatisé selon la revendication 1, dans lequel ledit modèle à variables multiples est personnalisé en
fonction des données provenant dudit être humain, captées pendant les périodes où ledit être humain est considéré
comme étant en état de santé normal ou suffisamment stable, pour fournir un modèle de physiologie normale.
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