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(54) Wavelet-based analysis of pulse oximetry signals

(57) A pulse oximetry signal, suitably a photoplethys-
mogram (PPG), is decomposed by wavelet transform
techniques, and the decomposed signal analysed to pro-
vide selected .physiological data. The signal may be
processed to remove noise, artefacts, or transient fea-
tures. Information on respiration may also be recovered.
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Description

Field of Invention

[0001] The present invention relates to a method of analysis of medical signals, and in particular to a method of
decomposition of signals used in pulse oximetry. Specifically the invention relates to an improved method of denoising
such signals and in the extraction of clinically useful information from such signals including the monitoring and analysis
of patient respiration.

Background

[0002] Oximetry is an optical method for measuring oxygenated haemoglobin in blood. Oximetry is based on the ability
of different forms of haemoglobin to absorb light of different wavelengths. Oxygenated haemoglobin (HbO2) absorbs
light in the red spectrum and deoxygenated or reduced haemoglobin (RHb) absorbs light in the near-infrared spectrum.
When red and infrared light is passed through a blood vessel the transmission of each wavelength is inversely proportional
to the concentration of HbO2 and RHb in the blood.
[0003] Pulse oximeters can differentiate the alternating light input from arterial pulsing from the constant level contri-
bution of the veins and other non-pulsatile elements. Only the alternating light input is selected for analysis. Pulse
oximetry has been shown to be a highly accurate technique.
[0004] The contemporary pulse oximeter unit normally provides three outputs:

1. the arterial oxygen saturation
2. the heart rate
3. a fluctuating time series - the pulse oximeter trace or plethysmographic waveform

[0005] The normal pulse oximeter waveform - the photoplethysmogram (PPG) - bears a strong resemblance to an
arterial pressure waveform complete with dichrotic notch. A schematic of a typical pulse oximeter trace from a finger
probe is shown in Figure la. The repeating double humped (with a notch A in-between) nature of the waveform is evident
in the plot. Often, the second hump disappears and a signal such as that in Figure 1b is obtained. This may indicate a
clinical condition such as reduced arterial compliance. Often, for this type of signal, there is a marked change in the
gradient of the falling waveform (i.e. a kink) as indicated by the arrow B in the plot.
[0006] Figure 2 contains a plot of three simultaneously acquired signals acquired from a patient. These are: a finger
pulse oximetry trace, an ear pulse oximetry trace and an ECG. These 10 second segments have been cut from a much
longer signal. Note the significant drift associated with the pulse oximetry traces.

Summary of the Invention

[0007] The invention provides a method of measuring physiological parameters, as defined in claim 1, and also provides
a method of processing a pulse oximetry signal, as defined in claim 2.
[0008] From another aspect, the invention provides a physiological measurement system as defined in claim 22.
[0009] Preferred features and advantages of the invention will be apparent from the other claims and from the following
description.
[0010] The invention in its preferred forms provides a method for the decomposition of pulse oximetry signals using
wavelet transforms which allows for underlying characteristics which are of clinical use to be displayed and measured.
The method utilises wavelet transforms to decompose the signal in wavelet space. The wavelet decomposition of one
or more or a combination of signals can then be used to:

(a) construct a wavelet visualisation of the signal - the preferred method being that which uses wavelet energy
surfaces plotted against the location parameter b and the inverse of the dilation parameter a. This visualisation
would highlight salient information in a more useful form for clinical diagnosis (e.g. see 2D and 3D scalograms in
figures described below). This form of information presentation should facilitate the interpretation of such signals.
It is envisaged that the clinician would be provided with a real time display of the scalogram.
(b) provide, through the position and amplitude of features in the scalogram, measurable characteristics of the signal
for estimation of the health of the monitored patient. These characteristics may include wavelet-based parameters,
including ratios, for the determination of oxygen saturation. This is important for the determination of the correct
therapy for the patient.
(c) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) a
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method for measuring the cardiovascular system compliance.
(d) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) a
method for detecting the presence and location of pertinent features (e.g. maxima, minima, notch, kink, etc.) and
timescales within the pulse oximetry signal and use of this information for a clinically useful purpose.
(e) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) a
method for identifying features of the wavelet power spectrum which can be used as clinical markers of the health
of the patient at the time of data collection
(f) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) a
method for identifying features which can be used as clinical markers of the future health of the patient, that is as
markers of the subsequent deterioration or improvement of the health of the patient. These markers will be incor-
porated within a prediction algorithm.
(g) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) a
method for detecting and monitoring the patient breathing signal. This method would be suitable for the monitoring
the regularity of the breathing pattern and patient breathing rate where high levels of noise and erroneous artefact
affects the signal. This information to be used in conjunction with other relevant clinical information for clinically
useful purposes.
(h) provide, using information derived from the wavelet transform (i.e. from the transform, scalogram (energy density)
normalised scalogram, wavelet power spectrum, modulus maxima, wavelet ridges, phase representation, etc.) an
accurate method for detecting and monitoring the patient breathing rate. This information to be displayed on the
pulse oximeter device. This information to be used in conjunction with other relevant clinical information for clinically
useful purposes.
(i) provide a method for the disassociation of artefact from the pertinent signal components, where artefact includes
noise, coherent signal, movement artefact and if required breathing artefact. The preferred method of performing
this would be a modulus maxima technique.
(j) provide a method for the classification of the current status of the patient’s health based on the wavelet transform
features and incorporating a suitable classification method. The optimal combination of features will be employed.
The classification methods may include non-parametric Bayesian classification methods, neural networks, etc. and
also include preprocessing discriminant analysis techniques such as principle component analysis and/or linear
discriminant analysis for reducing the dimensionality of multidimensional data.
(k) provide a method for the prediction of the future status of the patient’s health based on the wavelet transform
features and incorporating a suitable classification method. The optimal combination of features will be employed.
The classification methods may include non-parametric Bayesian classification methods, neural networks, etc. and
also include preprocessing discriminant analysis techniques such as principle component analysis and/or linear
discriminant analysis for reducing the dimensionality of multidimensional data.

[0011] Embodiments of the invention will now be described, by way of example only, with reference to the drawings:

Figure 1(a): Arterial Pulse and Pulse Oximetry Signal, as discussed above.

Figure 1(b) Arterial Pulse and Pulse Oximetry Signal, as discussed above.

Figure 2: The Three Collected traces: Top - Ear pulse oximetry signal, Middle - Finger pulse oximetry signal, Lower
- ECG.

Figure 3(a): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into
the recording. Top: the pulse oximetry trace. Bottom: the scalogram. Standard Morlet wavelet with ωo=5.5

Figure 3(b): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into
the recording. The Phase plot. Standard Morlet wavelet with too=5.5

Figure 3(c): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into
the recording. Top: the modulus maxima plot. Bottom: the ridge plot. Standard Morlet wavelet with ωo=5.5

Figure 3(d): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into
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the recording. Top: the pulse oximetry trace. Bottom: the scalogram. Complete Morlet wavelet with ωo=3

Figure 3(e): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into
the recording. The Phase plot. Complete Morlet wavelet with ωo=3

Figure 3(f): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the ear 10 minutes into the
recording. Top: the modulus maxima plot. Bottom: the ridge plot. Complete Morlet wavelet with ωo=3

Figure 4(a): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. Top: the pulse oximetry trace. Bottom: the scalogram. Standard Morlet wavelet with ωo=5.5

Figure 4(b): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. The Phase plot. Standard Morlet wavelet with ωo=5.5

Figure 4(c): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. Top: the modulus maxima plot. Bottom: the ridge plot. Standard Morlet wavelet with ωo=5.5

Figure 4(d): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. Top: the pulse oximetry trace. Bottom: the scalogram. Complete Morlet wavelet with ωo=3

Figure 4(e): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. The Phase plot. Complete Morlet wavelet with ωo=3

Figure 4(f): Wavelet analysis of a 2 second segment of pulse oximetry signal taken from the finger 10 minutes into
the recording. Top: the modulus maxima plot. Bottom: the ridge plot. Complete Morlet wavelet with ωo=3

Figure 5: Region Segmentation in Phase Space

Figure 6(a): Wavelet Denoising and Detrending. Morlet Wavelet ωo=5.5. Original Signal.

Figure 6(b): Wavelet Denoising and Detrending. Morlet Wavelet tvo=5.5. Scalogram

Figure 6(c): Wavelet Denoising and Detrending. Morlet Wavelet ωo=5.5. Phase Plot

Figure 6(d): Wavelet Denoising and Detrending. Morlet Wavelet ωo=5.5. Cropped Scalogram

Figure 6(e): Wavelet Denoising and Detrending. Morlet Wavelet ωo=5.5. The original trace (top); the reconstructed
trace (middle); the denoised and detrended trace (bottom).

Figure 7(a): Wavelet Denoising and Detrending. Morlet Wavelet ωo=2. Original Signal.

Figure 7(b): Wavelet. Denoising and Detrending. Morlet Wavelet ωo=2. Phase Plot

Figure 7(c): Wavelet Denoising and Detrending. Morlet Wavelet ωo=2. Original and reconstructed signals

Figure 7(d): Wavelet Denoising and Detrending. Morlet Wavelet ωo=2. Blow up of Figure 7(c)

Figure 7(e): Wavelet Denoising and Detrending. Morlet Wavelet ωo=2. Three different high frequency cut-off thresh-
olds - increasing from top to bottom.

Figure 8(a): Scalogram showing the breathing ridge

Figure 8(b): A Collapsed Scalogram showing the breathing and heart rates.

Figure 9(a): The Analysis of a Plethysmogram Breathing Experiment Sub-Study:Pulse oximeter trace.

Figure 9(b): The Analysis of a Plethysmogram Breathing Experiment Sub-Study: The Modulus of the trace in Figure
9(a) showing ridges associated with pulse and breathing.
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Figure 9(c): The Analysis of a Plethysmogram Breathing Experiment Sub-Study: the phase associated with the
breathing ridges in Figure 9(b).

Figure 10(a): Phase following of respiration

Figure 10(b): Showing the steps of constant phase minima across scales.

Figure 11(a): Frequency Modulation of the dominant cardiac frequency bands

Figure 11(b): Amplitude Modulation of the dominant cardiac frequency bands

Figure 11(c): Individual Breathing features resolved using a low oscillation wavelet (One such feature indicated by
arrow.)

Figure 12: A schematic diagram of the signal, its transformation as a scalogram, the associated wavelet power
spectrum.

Figure 13: Partitioning of the test data. Power is plotted against entropy at the frequency levels given. An arbitrary
separation line has been plotted (dashed) in the plot.

Figure 14(a): Graphical illustration of Bayesian Classification of ’ill’ and ’healthy’ data sets.

Figure 14(b): Graphical illustration of Bayesian Classification of ’ill’ and ’healthy’ data sets

Figure 15: Top: PPG signal. Lower Plot: The wavelet transform modulus maxima plot corresponding to the signal.

Figure 16: Top: A raw PPG signal. Lower Plot: The wavelet transform (threshold) filtered trace with individually
isolated freatures of the trace marked by vertical lines.

Figure 17: A block schematic of an exemplary system for implementing the method of the invention.

The Wavelet transform

[0012] Wavelet transforms allow a signal to be decomposed such that both the frequency characteristics and the
location of particular features in a time series may be highlighted simultaneously. This overcomes the basic shortcoming
of Fourier analysis, where the spectrum only contains globally averaged information thus leading to location specific
features in the signal being lost. The complete analysis of a signal requires the deduction of both the frequency make
up and temporal location of the signal components. The limitation of Fourier (spectral-only) methods can be partly
overcome by introducing a sliding time window which localises the analysis in time. This local or Short Time Fourier
Transform (STFT) provides a degree of temporal resolution by highlighting changes in spectral response with respect
to time. However, this method is always a compromise between temporal and frequency resolution (higher frequency
resolution means lower temporal resolution, and vice versa) due to the fixed window width associated with it. The nature
of the wavelet transform is such that it is well suited to the analysis of signals in which a more precise time resolution is
required for higher frequencies than for lower ones. By employing a variable width window, it effectively zooms in on
the temporal signal when analysing higher frequencies, providing higher resolution where necessary.
[0013] The wavelet transform of a continuous real-valued time signal, x(t), with respect to the wavelet function, Ψ is
defined as 

where t is time, a is the dilation parameter, b is the location parameter, Ψ*((t-b))/a) is the complex conjugate of the
analysing wavelet used in the convolution and x(t) is the signal under investigation which, in this application, is the PPG
signal obtained from the pulse oximeter. The wavelet transform can therefore be thought of as the cross-correlation of
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the analysed signal with a wavelet function that has been translated by a value b and dilated by a factor a.
[0014] Contemporary literature suggests two methods of wavelet analysis using either discrete or continuous trans-
forms. The discrete wavelet transform necessitates the use of orthonormal wavelets, and dilation levels are set in the
form of integer powers of two. This provides a rapid method of signal decomposition, and guarantees energy conservation
and exact signal reconstruction. However, the discrete transform is limited by loss of both time and frequency resolution
due to the dyadic nature of the transform. Conversely, the continuous wavelet transform does provide high resolution.
Thus, proper use of wavelet analysis demands identification of the correct wavelet and transform type for the given
application. The inherent redundancy in the continuous wavelet method, although computationally more intensive, in-
creases clarity in the transform space and allows for greater temporal resolution at high dilations. For this reason we
prefer to employ a continuous wavelet transform in our method. Note that in practice a discretised approximation to the
continuous wavelet transform integral may be employed based on the FFT algorithm where the wavelet convolution in
(1) is performed as a product in Fourier space (via the convolution theorem) hence speeding up the computation.
[0015] Any wavelet function may be used in the analysis. In the examples given here we employ complex Morlet
wavelets. We define the complete Morlet wavelet as

where ωo is the central frequency of the mother wavelet, t is time, i is the complex number (-1)1/2. The second term in
the brackets is known as the correction term, as it corrects for the non-zero mean of the complex sinusoid of the first
term. In practice it becomes negligible for values of ωo >5. Most investigators concentrate on wavelet transforms with
ωo in the range 5~6, where it can be performed without the correction term since it becomes very small. In this case,
the Morlet wavelet becomes 

[0016] This truncated Morlet wavelet is invariably used in the literature and often referred to as simply the Morlet
wavelet. Here we use the name, ’standard Morlet wavelet’, for this simplified form of equation 3 and ’complete Morlet
wavelet’, for the complete form given by equation 2.
[0017] Modulus maxima and ridges correspond to loci of local maxima and minima in the wavelet transform. These
are useful in detecting singularities and following instantaneous frequencies. A vast amount of information is contained
within the continuous wavelet transform T(a,b). This can be condensed considerably by considering only local maxima
and minima of the transform. Two definitions of these maxima are commonly used in wavelet analysis practice, these are:

1 - Wavelet ridges, defined as 

which are used for the determination of instantaneous frequencies and amplitudes of signal components. Notice
that this definition of a ridge uses the rescaled scalogram l T(a,b) l2/a as it leads to a simpler analytical solution
relating the ridge to the instantaneous frequency when a standard Morlet wavelet is employed as the analysing
wavelet.
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2 - Wavelet modulus maxima, defined as 

are used for locating and characterising singularities in the signal. (Note that equations 4 and 5 also include inflection
points with zero gradient. These can be easily removed when implementing the modulus maxima method in practice.)

[0018] In the present invention described here we use modulus maxima and ridges as defined above, however, any
reasonable definition of the loci of the maxima and minima of the transform may be incorporated within the method.

Details of the Method

[0019] Figures 3 and 4 show some results from preliminary wavelet analysis undertaken on short segments of pulse
oximeter traces. Figure 3 corresponds to an ear probe signal and Figure 4 to a finger probe signal.
[0020] The left hand column (Figures 3(a),3(b),3(c), 4(a),4(b),4(c)) in each figure corresponds to the analysis performed
using the standard Morlet wavelet with ωo=5.5 and the right hand column (Figures 3(d),3(e),3(f),4(d),4(e),4(f)) corre-
sponds to the analysis performed using the complete Morlet wavelet with ωo=3. These ωo=3 wavelets are much better
for the temporal isolation of signal features.
[0021] The scalograms in Figures 3 (a),3 (d),4 (a) and 4(d) are plotted below the original signals. The ωo=5.5 plots
exhibit more compactness in frequency as evidenced by the thinner horizontal high energy band corresponding to the
’beat’ frequency of the pulse oximeter signal. Also evident are regular dips corresponding to the kinks in the signal. The
ωo=3 plots exhibit more temporal compactness where the dominant band contains undulation peaks which correspond
to the repeating temporal pattern of the signal.
[0022] The phase plots are given below the scalograms in Figures 3 and 4 and provide information on the local
matching of the wavelet with the signal. All phase plots shown exhibit regular repeating structure. The ωo=3 phase plot
is considerably less cluttered than the ωo=5.5 plot due to less oscillatory nature of the wavelet used.
[0023] The lower plots in Figures 3 and 4 show the modulus maxima (top) and ridges (bottom) associated with the
wavelet transform. These provide information concerning the location of temporal features and the instantaneous fre-
quency of the signal respectively. Both methods allow for pertinent information within the highly redundant continuous
wavelet transform to be presented (and hence extracted) in a more compact form. This information can be used within
advanced filtering and prediction algorithms.

Elements of the Signal in Wavelet Space

[0024] Figure 5 contains one of the phase plots in Figure 4 blown up and split into four distinct regions. At the very
low frequency range (region B-L) there is no obvious local coherent matching of the wavelet with the signal (see below
for more information concerning this region). At the next lower frequency range (region P1) the phase plots exhibit a
smooth repeating pattern corresponding to the regular pulsing of the signal. Above this range these undulations split
into two, (region P2) where the location of this new split corresponds to the marked change in slope (the kink) occurring
at the decreasing part of the pulse oximeter waveform (it would correspond to the location of the notch for a double
humped waveform). At the highest frequencies (region N) the phase changes become more irregular in their occurrence
and correspond to the smaller fluctuations in the signal (e.g. high frequency noise, high frequency movement artefact,
etc.) The features within each region could be further partitioned using advanced filtering techniques, for example
incorporating wavelet modulus maxima or wavelet ridge filtering technology.

Wavelet Detrending and Denoising and the Elucidation of Breathing Artefact

[0025] Figure 6a shows a 35 second segment of pulse oximeter waveform. There is obvious drift in the signal. The
corresponding scalogram and phase plots are given in Figures 6b and 6c respectively for a Morlet decomposition with
ωo=5.5. Figures 6d and 6e illustrate a simple wavelet-based method for detrending and denoising the signal where the
scalogram is essentially cropped, i.e. the high and low wavelet bandpass centre frequencies are set to zero. This removes
both the very small and very large period fluctuations associated with noise and drift respectively. Figure 6e shows, from
top to bottom, the original signal, the reconstructed signal using all the scalogram information (a check) and the denoised
and detrended signal reconstructed from the cropped scalogram in Figure 6d. More advanced detrending and denoising
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includes filtering methodologies based on the wavelet transform modulus maxima and ridges, including methods to
follow the ridges and other wavelet based features pertaining to the pulse and breathing signals through time.
[0026] Figure 7 contains the decomposition of the same signal as that in Figure 6, this time using a complete Morlet
wavelet with ωo=2. The improved temporal isolation of the pulse features is apparent in the wavelet space scalogram
of Figure 7a. In addition, the phase plot of Figure 7b shows a regular period oscillation at around 0.4 Hz particularly well.
This, 2.5 second, periodicity corresponds to the regular breathing pattern of the patient- denoted as region B in the
figure. In fact, we have separated the B-L region that was indicated in Figure 5 into region B - breathing - and (region L
- other lower frequency signal components including drift. The denoising and detrending of the signal is carried out in
the same way as in the previous figure to give the denoised and detrended signal shown in the lower plot of Figure 7c.
Figure 7d shows a blow up of the first five seconds of the signals in Figure 7c. The smoothing of the signal is obvious
in the lower plot. The choice of the upper frequency cut-off is critical in partitioning relevant signal artefacts from noise.
Figure 7e shows three plots of the denoised and detrended signal where progressively higher cut-off thresholds have
been used. This allows higher and higher frequency features back into the denoised signal.

More on the elucidation of breathing artefact

[0027] Four, wavelet-based, methodologies may be employed for the monitoring of respiration and the extraction of
the breathing rate from a standard pulse oximeter trace or photoplethysmograph (PPG) trace. These methodologies
may be used independently, for example within an algorithm, or collectively using a polling mechanism. They are given as:

1. High amplitude banding.
When the breathing artefact is particularly pronounced, the breathing rate can be identified as a strong band or ridge
of high transform values in the low (<1Hz) frequency range. The arrow in Figure 8(a) indicates one such ridge. In
one preferred embodiment, this band can be identified by collapsing the scalogram down into two dimensions, as
shown in Figure 8(b). This is a wavelet based power spectrum: the summation of coefficients across scales factored
by the reciprocal of the square of the scale value (1/a2). The primary assumptions made in this methodology are:
(1) the dominant features in the filtered trace are cardiac components and (2) the breathing rate is less than the
heart rate. Alternative assumptions can also be employed according to the clinical situation, e.g. PPGs from neonates.
In another embodiment, the breathing ridge may be followed in wavelet space using standard ridge-following tech-
niques. This allows sudden or short term changes in breathing rate to be identified and quantified in real time.
Evidence for the applicability of this methodology is found in Figure 9. Here a pulse oximeter trace, Figure 9(a), is
presented for a 60 second experiment. During the experiment the subject was instructed to half his breathing rate
after 30 seconds. As can be seen in Figure 9(b), a breathing ridge is clearly identifiable. This ridge drops in frequency
(right hand horizontal scale) after 30 seconds. By identifying the phase of the wavelet transform along the ridge a
clear indication of the timing of each breath can be determined - see Figure 9(c).
2. Phase methods.
As shown above, the phase of the wavelet coefficients can be used to identify the timing of each breath. However,
cross-scale correlation of phase values, particularly for scalograms of low oscillation wavelets, can also be used as
an indicator for low frequency, low amplitude, breathing features within the PPG trace.
In Figure 10(a) a portion of the wavelet phase space scalogram is presented. As can be seen there is a very definite
cross-scale correlation for the frequencies around the breathing rate - the dotted box (i.e. similar phase values are
aligned vertically). By plotting the number of near zero modulus minima of the phase per scale against scale one
can identify these areas of alignment as constant valued steps in the graph.
In the example of Figure 10(b) the scale (horizontal) axis is presented as the band pass centre frequency of that
scale. This diagram plots the count of phase modulus minima per scale against scale. This is indicative of the cross
scale correlation in the wavelet phase space and can be used to associate regions of the scalogram with physiological
features (e.g. breathing and heart rate). This diagram is the count of phase minima of the scalogram shown in Figure 8.
As one can clearly see in this figure, the steps of constant phase count correlate extremely well with the wavelet
spectrum peak positions of Figure 8(b) (the spectrum of the same trace as that of Figure 10(b)).
Note that the use of cross-correlation across scale can also be used to isolate individual features within the trace.
See, for example, Figure 16, where individual pulse features within the trace have been identified by finding the
dominant frequency associated with the heart rate then following the points of equal phase up to higher frequencies.
These techniques cannot be performed using conventional STFT methods where the temporal resolution at high
frequencies is inferior and phase values are relative to the STFT frame origin rather than the wavelet centre.
3. Frequency modulation.
In some cases the amplitudes of the breathing related features within the PPG are such that they cannot easily be
isolated as independent features within the transform space (e.g. they are of small amplitude, close to the dominant
cardiac signal, etc). However, their effects on the dominant cardiac features can be observed. This is shown in
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Figure 11(a) where the frequency of modulation corresponds to the breathing rate of the subject. Associated fre-
quency of the cardiac features oscillate with a frequency identified as that of the breathing rate. This method cannot
be utilised using standard Fourier techniques where temporal averaging reduces resolution in time so making
identification of this modulation undetectable.
4. Amplitude modulation.
In some cases the amplitudes of the breathing related features within the PPG are such that they cannot easily be
isolated as independent features within the transform space (e.g. they are of small amplitude, close to the dominant
cardiac signal, etc). However, their effects on the dominant cardiac features can be observed. This is shown in
Figure 11(b) where the frequency of amplitude modulation corresponds to the breathing rate of the subject. The
amplitude dominant band corresponding to the cardiac features in wavelet space oscillates with a frequency identified
as that of the breathing rate. Occasionally, when breaths are well separated individual breath features can be
identified instead of a continuous, or modulated, band. This is particularly apparent when a low oscillation wavelet
function is employed, as in Figure 11(c). Again, this method cannot be utilised using standard Fourier techniques
where temporal averaging reduces resolution in time so making identification of this modulation undetectable.

Wavelet Feature Analysis

[0028] A scheme is described for the analysis of features derived from statistical measures of the wavelet transformed
signal at a given frequency level or by following a time-frequency feature in wavelet space - where the transform can
be represented as the actual transform values, the modulus of transform values, the squared transform values (the
scalogram) or some other simple transformation of the wavelet transform values. In the preferred embodiment these
features derived from the wavelet transform at a selected frequency level may include the power, mean, skew, kurtosis
and entropy. In addition, these may be found for the peak frequency for each individual scalogram rather than a constant
predefined frequency level, where peak frequency is defined as the frequency level containing the most power when
integrated across the scalogram to produce a wavelet power spectrum. Figure 12 shows a schematic of the wavelet
transform scalogram and the wavelet power spectrum obtained from integration along the time domain at each frequency
level. The selected frequency level across which the statistical measures are obtained is shown dashed in the scalogram
plot.
[0029] The algorithm allows the analysis of segments of the pulse oximetry signals. The algorithm also allows the
visual inspection of the feature scatter in parameter space. The feature scatter is then used as input to a classification
method e.g. a Bayesian classifier or neural network.
[0030] Figure 13 shows the scatter plot derived from a signal data set obtained from two groups of children. One of
the groups comprised a number of ’controls’ taken from healthy children and were of relatively short duration these are
marked by a ’O’ in the figure. The other group were acquired from admitted patients attending the accident and emergency
department of a UK children’s hospital. Trace segments were selected from a PPG signal from each child and then
decomposed using a wavelet transform. The feature distribution within the resulting scalograms were then probed across
levels. The graph in Figure 13 has been plotted with a logarithmic vertical axis to better separate the feature points in
parameter space. This scaling is optional and linear scaling may better suit other chosen features. We can see from
visual inspection that the controls are well separated from the admitted patients. The dashed line in the plot has been
added for illustration and represents a possible separation line for dividing the two-dimensional data set into two classes.
[0031] In order to determine from a data set which illness severity the patient belongs to a Bayesian or other classification
method may be employed. Figure 14 shows an example of the Bayesian classifier for the ’ill’ and ’healthy’ entropy data
sets which gives a specificity of 84% and sensitivity of 81% for the determination of an ’ill’ patient from a data sample.
Figure 14(a) shows smoothed data PDF’s (Probability Density Functions) corresponding to the Entropy data given by
the horizontal axis of Figure 13. In Figure 14(b) Top plot: smoothed PDF’s, Second top plot: smoothed PDF’s weighted
according to class prevalence, Second bottom plot: probability of observation stemming from class ’healthy’ or ’ill’, Bottom
plot: the classifier training towards a 95% sensitivity for detecting ’ill’ patients.
[0032] Note that the two data sets have been smoothed prior to the classification. The classifier may be trained using
an iterative procedure and a risk matrix to enhance the sensitivity (say to 95% or above) at the expense of sensitivity.
For example, for 96% sensitivity, a specificity of only 43% is attained for the entropy data set produce (lowest plot of
Figure 14b).
[0033] Combinations of feature vectors can produce enhanced specificity-sensitivity values but with the requirement
of increased computational effort. Figure 13 contained a two-dimensional feature set (of power and entropy). The in-
creased computational effort arising from the use of multidimensional feature sets can be remedied somewhat by reducing
the number of components using, for example, principal component analysis or linear discriminant analysis during the
preprocessing stage.
[0034] The use of features derived from wavelet transform are useful as clinical markers of current state of the patient
health as shown in the example. The same classification method may also be used as a predictor of the future state of
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the patient’s health by correlating future outcomes with wavelet feature data.
[0035] The classification method may also be extended to include other clinical parameters including triage category,
capillary refill time, white cell count, age, etc.
[0036] The classification method may also be extended to further partition the data according to patient ’illness severity’,
where the system is initially trained on illness severities determined using suitable criteria by a clinician.

Usefulness in the Measurement of Compliance etc.

[0037] The wavelet-based denoising and feature extraction described herein will allow for a more accurate analysis
of the photoplethysmographic waveform when used in the measurement and monitoring of physiological parameters.
An example of this is in the determination of arterial compliance using the shape of, and reference points within, the
plethysmographic signal. Modulus maxima following can be used to determine the location and nature of pertinent
characteristic points in the PPG, e.g. the beginning and end of the initial upslope of the PPG trace, maxima, minima,
etc. This is shown schematically in Figure 15. Example PPG reference points used in the determination of clinically
useful parameters are shown A,B,C,D and can be identified in the modulus maxima plot. The maxima lines can be used
to better identify the characteristic points from within the signal.
[0038] In Figure 16 the lower plot shows the wavelet transform (filtered) trace with individually isolated features of the
trace marked by vertical lines. Note these have been identified through cross scale correlation of phase. Note also that
peaks and troughs have been differentiated through the phase value - near zero corresponding to peaks and near �n
corresponding to troughs.

Implementation

[0039] Figure 17 illustrates schematically one system for implementing the method of the invention.
[0040] A pulse oximeter 10 of known type has a probe 12 for obtaining readings from the finger, ear lobe or other
suitable part of a patient. The pulse oximeter outputs a raw PPG signal to a computer 14 which carries out the wavelet
transforms and associated analysis as discussed above. The computer 14 can output both the raw PPG signal and the
results of processing the PPG signal to a VDU 16 and/or provide an output in the form of data at 18. The data output
18 may be in the form of a link to a remote location, a data carrier such as a disc or tape, or any other suitable format.
[0041] The mathematics of wavelet transforms are well described in the literature and known to those of ordinary skill
in the art, and are not further described herein.
[0042] The immediately convenient manner of implementing the present invention is by connecting a computer to an
existing pulse oximeter, as shown in Figure 17. It will be readily apparent, however, that the invention could equally well
be implemented by combining a pulse oximeter with suitable computational resources within a single, stand-alone
instrument; or by passing the PPG signal from a conventional pulse oximeter over a data communications link to a
remote computer which could be shared with other users.
[0043] The following clauses are included in and form part of the description of the application :

Clause 1. A method of measuring physiological parameters, comprising using a pulse oximeter to obtain a pulse
oximetry signal, decomposing the pulse oximetry signal by wavelet transform analysis, and deriving one or more
physiological parameters from the decomposed signal.

Clause 2. A method of processing a pulse oximetry signal, in which the pulse oximetry signal is decomposed by
wavelet transform analysis.

Clause 3. A method according to clause 1 or clause 2, in which the pulse oximetry signal is a photoplethysmogram
(PPG).

Clause 4. A method as claimed in any preceding clause, including the steps of deriving the wavelet energy surfaces
of the pulse oximeter signal, and plotting the surfaces against a location parameter and a scale parameter.

Clause 5. A method of any preceding clause, including the steps of deriving the wavelet transform modulus of the
pulse oximeter signal, and plotting the modulus against a location parameter and a scale parameter.

Clause 6. A method as of clause 4 or clause 5, in which the scale parameter is a characteristic frequency of the
wavelet used in the decomposition.

Clause 7. A method of clause 4 or clause 5, in which the scale parameter is the wavelet dilation.
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Clause 8. A method of preceding clause, including visually displaying information derived from the pulse oximetry
signal by the wavelet transform analysis.

Clause 9. A method of clause 8, in which said information is displayed in real time.

Clause 10. A method of clause 8 or clause 9, in which said information includes one or more of:

the distribution of energies within the pulse oximetry signal,
coherent structures in the processed signal,
a contour plot of the decomposed waveform,
a surface plot of the decomposed waveform, and
a 2D or 3D energy scalogram.

Clause 11. A method according to any of clauses 8 to 10, in which the unprocessed pulse oximetry signal is also
displayed.

Clause 12. A method according to any preceding clause, in which the processing of the pulse oximetry signal is
effective to derive information relating to respiration.

Clause 13. A method according to clause 12, in which respiration information is derived from high amplitude ridges
using ridge-following methods.

Clause 14. A method according to clause 12, in which the respiration information is derived by phase methods.

Clause 15. A method according to clause 14, in which the respiration information is derived by cross-scale correlation
of phase values.

Clause 16. A method according clause 12, in which the respiration information is derived by analysis of amplitude
or frequency modulation.

Clause 17. A method according to any preceding clause, in which the processing of the pulse oximetry signal is
effective to remove at least one of noise, artefact, and transient features.

Clause 18. A method according to clause 17, in which said removal employs inverse transformation of the cropped
transform.

Clause 19. A method according to clause 17, in which said removal employs wavelet ridge methods.

Clause 20. A method according to clause 17, in which said removal employs modulus maxima methods.

Clause 21. A method according to any preceding clause, in which information from the transform is used to determine
the present or predicted severity of illness of a subject.

Clause 22. A physiological measurement system comprising:

a pulse oximeter which includes an optical probe and circuit means connected to the probe to derive a pulse
oximetry signal from a subject when the probe is applied to the subject, and
signal processing means arranged to receive the pulse oximetry signal and to process the signal by wavelet
transform techniques.

Clause 22. A system according to clause 21, in which the signal processing means is arranged to process the pulse
oximetry signal by the method of any of clauses 3 to 21.

Clause 23. A system according to clause 21 or clause 22, further including a visual display unit operable to display
the pulse oximetry signal and information derived therefrom in real time.
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Claims

1. A method for determining one or more physiological parameters of a subject, comprising:

obtaining a pulse oximetry signal from a subject;
decomposing the pulse oximetry signal at least in part using wavelet transform analysis;
identifying a band based at least in part on the wavelet transform analysis;
determining wavelet phase information based at least in part on the wavelet transform analysis;
determining physiological parameters of a subject based at least in part on the band and the wavelet phase
information.

2. The method of claim I, wherein identifying the band based at least in part on the wavelet transform analysis comprises:

identifying a band on a transform surface constructed by the wavelet transform analysis; and
defining a ridge along the band.

3. The method of claim 1 or claim 2, wherein the pulse oximetry signal is a photoplethysmogram signal.

4. The method of claim 2 or claim 3, wherein the band is a pulse band and wherein determining physiological information
comprises determining individual heart beats.

5. The method of claim 4, further comprising determining heart beat anomalies based at least in part on the physiological
information.

6. The method of claim 2, wherein the band is a breathing band and wherein determining physiological information
comprises determining individual breaths.

7. The method of claim 6, further comprising determining breathing anomalies based at least in part on the physiological
information.

8. The method of any of the preceding claims, wherein decomposing the pulse oximetry signal using the wavelet
transform analysis comprises performing a continuous wavelet transform of the pulse oximetry signal .

9. A monitoring system for determining one or more physiological parameters of a subject, the system comprising:

a pulse oximeter for obtaining a pulse oximetry signal from a subject; and
a signal processor capable of:

receiving the pulse oximetry signal ;
decomposing the pulse oximetry signal at least in part using wavelet transform analysis;
identifying a band based at least in part on the wavelet transform analysis;
determining wavelet phase information based at least in part on the wavelet transform analysis; and
determining physiological parameters of a subject based at least in part on the band and the wavelet phase
information.

10. The system of claim 9, wherein identifying the band based at least in part on the wavelet transform analysis comprises:

identifying a band on a transform surface constructed by the wavelet transform analysis; and
defining a ridge along the band.

11. The system of claim 9 or claim 10, wherein the pulse oximetry signal is a photoplethysmogram signal.

12. The system of claim 10, wherein the band is a pulse band and wherein determining physiological information
comprises determining individual heart beats.

13. The system of claim 9, wherein the signal processor is further capable of determining heart beat anomalies based
at least in part on the physiological information.
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14. The system of claim 9, wherein the band is a breathing band and wherein determining physiological information
comprises determining individual breaths.

15. The system of claim 14, wherein the signal processor is further capable of determining breathing anomalies based
at least in part on the physiological information.

16. The system of any of claims 9 to 15, wherein decomposing the pulse oximetry signal using the wavelet transform
analysis comprises performing a continuous wavelet transform of the pulse oximetry signal.
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