(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110495880 A (43)申请公布日 2019.11.26

G16H 20/30(2018.01)

(21)申请号 201910758648.8

(22)申请日 2019.08.16

(71)申请人 杭州电子科技大学

地址 310018 浙江省杭州市下沙高教园区2 号大街

(72)发明人 陆晟 罗志增 席旭刚 马存斌

(74) 专利代理机构 杭州君度专利代理事务所 (特殊普通合伙) 33240

代理人 杨舟涛

(51) Int.CI.

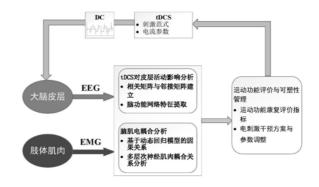
A61B 5/0476(2006.01)

A61B 5/0488(2006.01)

A61B 5/00(2006.01)

A61N 1/36(2006.01)

G06Q 10/06(2012.01)


权利要求书2页 说明书4页 附图1页

(54)发明名称

基于经颅电刺激脑肌耦合的运动障碍皮层 可塑性管理方法

(57)摘要

本发明提出了一种基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法。本发明首先分析功能脑区多导联EEG信号,采用脑功能网络建模方法计算出连通率、小世界特性的脑功能网络指标,对tDCS刺激前后的脑功能网络特性做出比较,揭示运动活动期间受激半球的功能前区、功能区和功能感知区的功能连接和神经重塑规律。然后采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,提取脑一脑、脑一肌和肌一肌耦合特征指标,从不同侧面描述了上肢运动功能的康复效果。最后研究脑肌电耦合特征与tDCS对神经可塑性的影响规律之间的相关性,为进一步tDCS的刺激方式和参数改进提供依据,实现运动功能皮层神经重塑的有效引导和管理。

CN 110495880 A

1.基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法,其特征在于: 该方法包括如下步骤:

步骤1. 采集患者处于不同的康复训练阶段的脑电EEG和相应部位肌电EMG数据;

步骤2.采用脑功能网络建模方法,提取反映神经活动特点的脑功能网络特征,揭示经 颅直流电刺激tDCS对感觉运动皮层活跃度和中枢神经可塑性变化的影响规律;

步骤3.采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,从步骤1 采集到的数据中提取脑-脑、脑-肌以及肌-肌耦合特征指标评估运功功能康复效果;

步骤4.通过研究步骤3中脑-脑、脑-肌以及肌-肌耦合特征指标与电刺激对神经可塑性影响规律之间的相关性,指导下一步tDCS的刺激方式和参数,达到运动皮层康复的可塑性管理。

- 2.根据权利要求1所述的基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法, 其特征在于:所述的步骤2具体过程如下:
- 2-1.建立脑功能网络相关性矩阵;定义EEG的每一个导联所测量区域就是网络的一个节点,其电活动为若干时间序列,建立各通道EEG信号两两之间的连接关系,并计算其强度值,由此建立相关性矩阵;
- 2-2.建立邻接矩阵和脑功能网络拓扑;以相关性矩阵为基础,通过阈值处理将相关性 矩阵转换为稀疏的邻接矩阵,判断邻接矩阵元素值与脑区节点间是否存在连接边,由此构 建脑功能网络拓扑;
- 2-3. 脑功能网络的特征提取;特征提取方法是利用图论研究网络特征与中枢神经可塑性指标之间的关系,选取有向网络的特征路径长度、聚类系数和介数来描述tDCS下中枢神经可塑性变化的脑功能网络特征;
- 2-4.tDCS下运动皮层脑功能网络特征的相关分析;采用脑功能网络分析多导联EEG信号,根据2-1得到的相关性矩阵绘制EEG各频段无向图,并计算出脑功能网络指标:连通率和小世界特性,比较tDCS刺激前、后的脑功能网络指标,从而揭示在运动活动期间受激半球的运动前区、运动区和运动感知区的脑功能网络连接关系的特征变化。
- 3.根据权利要求1所述的基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法, 其特征在于:步骤3具体过程如下:
- 3-1.对EEG和EMG信号分别进行预处理;针对EEG信号,首先对EEG信号进行0.1-100Hz带通滤波,同时滤除基线漂移和工频的噪声干扰;再结合眼电伪迹已有的先验知识,采用参考独立变量分析方法消除EEG信号中的伪迹;然后提取EEG信号中各通道内对应的频带信号;针对EMG信号,首先采用50Hz陷波器滤除EMG信号中的工频干扰,再进行0.1-100Hz带通滤波;
- 3-2.采用典型相关分析CCA理论优化选取与上肢运动关联的脑电电极,得到最优脑电导联集合;采用CCA方法选取上肢运动时EEG信号与EMG信号的相关程度,以CCA系数为参考依据,选取与特定上肢运动相关程度较高的脑电电极,作为后续脑肌电耦合分析的最优脑电导联集合:
- 3-3.采用基于动态回归模型的因果测度计算出多导联EEG-EEG、EEG-EMG和EMG-EMG信号之间的因果值;先采用小波分解、多变量经验模态分解的方法从时间序列中提取不同的频带,然后再计算各频带下多导联信号之间的因果值;

3-4.脑-脑、脑-肌以及肌-肌耦合特征指标描述了上肢运动功能恢复的进展变化,再由临床医生利用Fugl-Meyer上肢运动功能评价量表进行康复评估。

基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法

技术领域

[0001] 本发明属于模式识别领域,涉及主动康复机器人中利用运动想象进行运动康复训练,在外部刺激干预和运动康复评价基础上的一种运动功能障碍皮层可塑性管理方法,特别涉及一种基于经颅直流电刺激和脑肌电耦合分析的运动功能障碍皮层可塑性管理方法。

背景技术

[0002] 脑卒中是世界范围内常见的脑血管疾病之一,发病后患者往往会遗留运动功能障碍,并且运动功能恢复缓慢、难度大、预后差,成为康复治疗中的重点和难点。近年来脑科学发展迅猛,神经生理学、脑功能网络理论、脑机接口等多学科交叉的研究成果,给脑卒中患者的运动康复带来了新手段,成为提高康复效果和缓解康复资源不足的重要途径。

[0003] 神经可塑性理论指出,中枢神经系统受损的患者,采取及时合理的自主性康复治疗,可以通过神经组织形态改变或代偿重建运动神经通路,使运动功能获得一定的恢复。近年来,经颅电刺激(tDCS)作为一种中枢干预康复治疗方法受到广泛关注,主要是通过对相关功能脑区进行刺激,调节皮层活性,提高突触可塑性,引发长时效应致可塑性发生不可逆改变。虽然tDCS在直接调节皮层活性和引导运动神经冲动向脊髓束传递方面具有明显优势,但还缺乏其影响规律的了解。脑功能网络分析方法可以从全局角度反映肢体运动时各个脑区的信息传递与分工协作机制,能有效表达运动感觉皮层活动规律。因此本发明采用复杂脑功能网络建模方法,以不同脑区间脑电信号关联矩阵表达脑功能网络的拓扑结构,采用图论、谱分析和矩阵论等方法提取描述网络节点之间关系的拓扑特征,表达tDCS对皮层活跃度及脑功能网络特征的影响规律。

[0004] 目前基于tDCS的康复治疗方法大多采用固定的刺激方式和参数,尚没有根据康复效果评价做出灵活的改变机制,制约了运动功能中枢神经的重塑效果。根据人体运动的神经生理学理论,正常运动控制是指中枢神经系统运用现有及以往的信息,通过骨骼肌的参与将神经能转化为动能并使之完成有效的功能活动。脑电信号(EEG)和肌电信号(EMG)分别体现了大脑对肌肉的运动控制信息和肌肉功能响应的感觉反馈信息活动状态,通过脑肌电耦合分析可以反映运动控制过程中神经肌肉间的功能联系,不仅为理解运动控制过程及运动障碍的病理机制提供了理论基础,而且还可以为运动功能康复效果评价提供可靠的生物标记。本发明利用基于EEG和EMG的多层次脑功能网络和皮层肌肉耦合分析技术,研究tDCS对神经可塑性的影响规律,在康复效果方面进行及时全面的运动功能评价,根据评价结果对tDCS干预方式进行调整,实现神经重塑的有效管理。

发明内容

[0005] 为了完善现有康复治疗方法的不足,改进运动功能中枢神经的重塑效果,本发明提出了一种基于tDCS和脑肌电耦合分析的运动功能障碍皮层可塑性管理方法。首先分析功能脑区多导联EEG信号,采用脑功能网络建模方法计算出连通率和小世界特性的脑功能网络指标,比较tDCS刺激前、后的脑功能网络特性,从而揭示运动活动期间受激半球的功能前

区、功能区和功能感知区的脑功能网络连接关系的特征变化。然后采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,提取脑-脑,脑-肌肌-肌耦合特征指标,得出康复效果。最后研究脑肌电耦合特征与tDCS电刺激对神经可塑性的影响规律之间的相关性,为进一步tDCS的刺激方式和参数改进提供依据,实现运动功能皮层神经重塑的有效引导和管理。

[0006] 为了实现以上目的,本发明方法主要包括以下步骤:

[0007] 步骤1. 采集患者处于不同的康复训练阶段的脑电EEG和相应部位肌电EMG数据。

[0008] 步骤2.采用脑功能网络建模方法,提取反映神经活动特点的脑功能网络特征,揭示经颅直流电刺激tDCS对感觉运动皮层活跃度和中枢神经可塑性变化的影响规律,具体步骤为:

[0009] 2-1.建立脑功能网络相关性矩阵。定义EEG的每一个导联所测量区域就是网络的一个节点,其电活动为若干时间序列,建立各通道EEG信号两两之间的连接关系,并计算其强度,由此建立相关性矩阵。

[0010] 2-2.建立邻接矩阵和脑功能网络拓扑。以相关性矩阵为基础,通过阈值处理将相关性矩阵转换为稀疏的邻接矩阵,判断邻接矩阵元素值与脑区节点间是否存在连接边,由此构建脑功能网络拓扑。

[0011] 2-3. 脑功能网络的特征提取。特征提取方法是利用图论研究网络特征与中枢神经可塑性指标之间的关系。神经可塑性指标是指脑功能网络的改变,也用脑功能网络连接关系的特征来衡量,并以运动功能康复的量表评判结果为依据。选取有向网络的特征路径长度、聚类系数和介数来描述tDCS下中枢神经可塑性变化的脑功能网络特征。

[0012] 2-4.tDCS下运动皮层脑功能网络特征的相关分析。采用脑功能网络分析多导联 EEG信号,根据2-1得到的相关性矩阵绘制EEG各频段无向图,并计算出脑功能网络指标:连 通率和小世界特性,比较tDCS刺激前、后的脑功能网络指标,从而揭示在运动活动期间受激 半球的运动前区、运动区和运动感知区的脑功能网络连接关系的特征变化。

[0013] 步骤3.采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,从步骤1采集的数据中提取脑-脑、脑-肌以及肌-肌耦合特征指标,对运功功能康复效果进行评估,具体步骤为:

[0014] 3-1.对EEG和EMG信号分别进行预处理。针对EEG信号,首先对EEG信号进行0.1-100Hz的带通滤波,同时滤除基线漂移和工频的噪声干扰,再结合眼电伪迹已有的先验知识,采用参考独立变量分析方法消除EEG信号中伪迹。然后根据研究对象和受试者在实验中的状态,提取EEG各个通道内对应的频带信号,如1~4Hz的 δ 波、4~8Hz的 θ 波、和8~12Hz的 α 波。针对EMG信号,首先采用50Hz的陷波器滤除EMG信号中的工频干扰,再进行0.1~100Hz的带通滤波。

[0015] 3-2.采用典型相关分析CCA理论优化选取与上肢运动关联的脑电电极,得到最优脑电导联集合。采用CCA方法选取上肢运动时EEG信号与EMG信号的相关程度,以CCA系数为参考依据,选取与特定上肢运动相关程度较高的脑电电极,作为后续脑肌电耦合分析的最优脑电导联集合。

[0016] 3-3.采用基于动态回归模型的因果测度计算出多导联EEG-EEG、EEG-EMG和EMG-EMG信号之间的因果值。先采用小波分解、多变量经验模态分解的方法从时间序列中提取不

同的频带,然后再计算各频带下多导联信号之间的因果值。

[0017] 3-4. 脑-脑、脑-肌以及肌-肌耦合特征指标描述了上肢运动功能恢复的进展变化,再由临床医生利用Fugl-Mever上肢运动功能评价量表进行康复评估。

[0018] 步骤4.研究步骤3中脑-脑、脑-肌以及肌-肌耦合特征等指标与电刺激对神经可塑性影响规律之间的相关性,指导下一步tDCS的刺激方式和参数,达到运动皮层康复的可塑性管理。

[0019] 本发明用脑功能网络特征描述皮层活跃度及可塑性变化,以脑肌电耦合特征描述运动康复效果,建立tDCS刺激与皮层活跃度及可塑性变化的对应关系,通过运动康复评价,调整tDCS刺激达到皮层可塑性管理的目的。

附图说明

[0020] 图1为本发明实施的原理框图;

[0021] 图2为本发明实例的tDCS对运动感觉皮层活动影响规律研究流程图:

具体实施方式

[0022] 下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。

[0023] 如图1所示,本实施例包括如下步骤:

[0024] 步骤一,搭建康复实验平台,确定实验范式并制定康复训练方案,具体过程如下:

[0025] 采用tDCS装置组成大脑皮层的电刺激干预通道,利用tDCS装置的多通道EEG信号采集功能和无线EMG信号采集装置分别组成EEG和EMG的信号采集通道。

[0026] 实验受试者是40例符合入选标准的脑卒中后上肢功能障碍患者。首次评定患者上肢功能障碍严重程度后,针对患者的具体情况,制定电刺激干预方案。实验方案定义一周为短程实验周期,一个月为长程实验周期,每周5天,每天一次。实验方案如下:选择医学检验和评价方法相对完整的特定上肢动作作为电刺激干预的目标动作,包括肘屈、肘伸、腕屈、腕伸、握拳、展拳的基本动作。首先向被试者施加20分钟tDCS,然后采集静止的EEG信号和进行动作的EMG信号。

[0027] 步骤二,采用脑功能网络建模方法,提取反映神经活动特点的脑功能网络特征,揭示tDCS对感觉运动皮层活跃度和中枢神经可塑性变化的影响规律,具体过程如下:

[0028] 采用脑功能网络建模方法研究分析tDCS对运动感觉皮层活动影响规律,研究步骤 如图2所示。

[0029] 第1步:建立脑功能网络相关性矩阵。采用互相关、互信息量、相位同步、部分定向相干分析、同步似然法的量化方法建立各通道EEG信号两两之间的连接关系,并计算其强度值,由此建立相关性矩阵;

[0030] 第2步:建立邻接矩阵和脑功能网络拓扑。在相关性矩阵的基础上,以去除弱的连接边、保证网络连通性、降低网络密度为约束条件,将相关性矩阵转换为稀疏的邻接矩阵,判断邻接矩阵元素值与脑区节点间是否存在连接边,由此构建脑功能网络拓扑;

[0031] 第3步: 脑功能网络的特征提取。特征提取方法是利用图论研究网络特征与中枢神经可塑性指标之间的关系, 选取有向网络的特征路径长度、聚类系数和介数来描述tDCS下

中枢神经可塑性变化的脑功能网络拓扑特征;

[0032] 第4步:研究tDCS对脑功能网络的影响。采用脑功能网络分析多导联EEG信号,根据第1步得到的相关性矩阵绘制EEG各频段无向图,并计算出脑功能网络指标:连通率和小世界特性。比较tDCS刺激前、后的脑功能网络指标,从而揭示在运动活动期间受激半球的运动前区、运动区和运动感知区的脑功能网络连接关系的特征变化。

[0033] 步骤三,采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,从步骤一采集到的数据中提取脑-脑、脑-肌和肌-肌耦合特征指标,用来表征运功功能康复效果。具体过程如下:

[0034] 第1步:对EEG和EMG信号分别进行预处理。针对EEG信号,首先对EEG信号进行0.1-100Hz的带通滤波,同时滤除基线漂移和工频的噪声干扰;再结合眼电伪迹已有的先验知识,采用参考独立变量分析方法消除EEG信号中的伪迹;然后根据研究对象和受试者在实验中的状态,提取EEG信号中各通道内对应的频带信号,如1~4Hz的 δ 波、4~8Hz的 θ 波以及8~12Hz的 α 波,不同频带内的波形对应着不同的生理特征。针对EMG信号,首先采用50Hz的陷波器滤除EMG信号中的工频干扰,再进行0.1-100Hz的带通滤波;

[0035] 第2步:采用典型相关分析CCA理论优化选取与上肢运动关联的脑电电极,得到最优脑电导联集合。由于EEG信号的弥散性,与上肢运动关联的EEG信号存在一定的个体差异性,因此需要对上肢运动相关的EEG信号进行确定,优化选择与上肢运动关联度最高的EEG信号导联集合。采用CCA方法计算特定上肢运动时EEG信号与EMG信号的相关程度,以CCA系数为参考依据,选取与特定上肢运动相关程度较高的脑电电极,作为后续脑肌电耦合分析的最优脑电导联集合;

[0036] 第3步:采用基于动态回归模型的因果测度计算出多导联EEG-EEG、EEG-EMG和EMG-EMG信号之间的因果值。为了体现因果值随信号频率的变化信息,拟先采用小波包分解、多变量经验模态分解的方法从时间序列中提取不同的频带,然后再计算各频带下多导联信号之间的因果值;

[0037] 步骤四,通过研究步骤三中脑-脑、脑-肌以及肌-肌耦合特征指标与tDCS对神经可塑性影响规律之间的相关性,指导下一步tDCS的刺激方式和参数,达到运动皮层康复的可塑性管理。

[0038] 采用多层次神经肌肉耦合分析方法提取患者处于不同康复阶段,在进行训练时大脑不同区域之间、中枢神经与肌肉运动响应之间以及运动肌肉单元之间的神经振荡联系描述了上肢运动功能恢复的进展变化,再由临床医生利用Fugl-Meyer上肢运动功能评价量表进行康复评估。若在原tDCS刺激位置进行微弱刺激后康复效果变好,可以进一步加强刺激强度;若原tDCS后康复效果变差,可以更换刺激位置或将原阳极刺激换为阴极刺激。康复评估为进一步tDCS刺激的方式、参数改进提供有效的依据,可以通过对tDCS干预方式的调整,实现神经重塑的有效引导和管理。

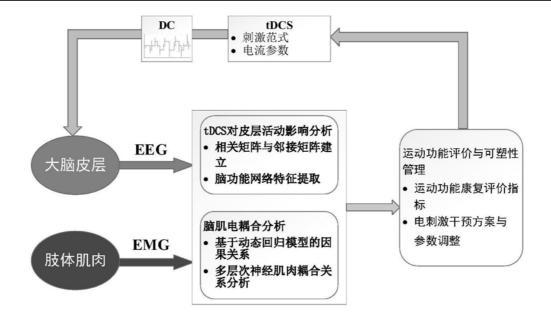
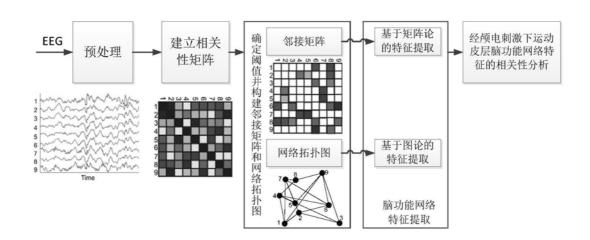
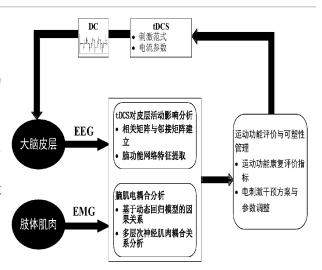


图1




图2

专利名称(译)	基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法		
公开(公告)号	<u>CN110495880A</u>	公开(公告)日	2019-11-26
申请号	CN201910758648.8	申请日	2019-08-16
[标]申请(专利权)人(译)	杭州电子科技大学		
申请(专利权)人(译)	杭州电子科技大学		
当前申请(专利权)人(译)	杭州电子科技大学		
[标]发明人	陆晟 罗志增 席旭刚 马存斌		
发明人	陆晟 罗志增 席旭刚 马存斌		
IPC分类号	A61B5/0476 A61B5/0488 A61B5/00 A61N1/36 G06Q10/06 G16H20/30		
CPC分类号	A61B5/0476 A61B5/0488 A61B5/7203 A61B5/7225 A61B5/725 A61N1/36003 G06Q10/06393 G16H20 /30		
外部链接	Espacenet SIPO		

摘要(译)

本发明提出了一种基于经颅电刺激脑肌耦合的运动障碍皮层可塑性管理方法。本发明首先分析功能脑区多导联EEG信号,采用脑功能网络建模方法计算出连通率、小世界特性的脑功能网络指标,对tDCS刺激前后的脑功能网络特性做出比较,揭示运动活动期间受激半球的功能前区、功能区和功能感知区的功能连接和神经重塑规律。然后采用基于动态回归模型因果测度的多层次神经肌肉耦合分析的方法,提取脑-脑、脑-肌和肌-肌耦合特征指标,从不同侧面描述了上肢运动功能的康复效果。最后研究脑肌电耦合特征与tDCS对神经可塑性的影响规律之间的相关性,为进一步tDCS的刺激方式和参数改进提供依据,实现运动功能皮层神经重塑的有效引导和管理。

