(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 107485390 A (43)申请公布日 2017.12.19

(21)申请号 201710841356.1

(22)申请日 2017.09.18

(71)申请人 山东正心医疗科技有限公司 地址 264000 山东省烟台市经济开发区北 京南路8号503室

申请人 江苏正心智能科技有限公司

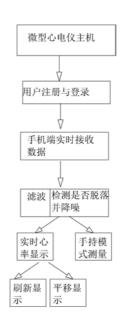
(72)发明人 赵卫 张毅 周成龙 周京镇

(74)专利代理机构 苏州国诚专利代理有限公司 32293

代理人 韩凤

(51) Int.CI.

A61B 5/0402(2006.01) *A61B 5/00*(2006.01)


权利要求书1页 说明书3页 附图1页

(54)发明名称

一种心电数据图形化处理方法

(57)摘要

本发明提供了一种心电数据图形化处理方法,其使得心电采集设备所获得的数据具备准确性、直观性和抗干扰性。其在智能设备端通过用户注册登录模块使得用户和微型心电仪主机之间形成一对一绑定关系,登录之后对心电仪所获得心电数据进行心电实时数据波形图展示,心电实时数据波形图展示根据实时心电图波形进行QRS检波,所述滤波模式包括陷波滤波、带通滤波,进而展示出直观、准确、抗干扰性强的心电波形图。

CN 107485390 A

- 1.一种心电数据图形化处理方法,其特征在于:其在智能设备端通过用户注册登录模块使得用户和微型心电仪主机之间形成一对一绑定关系,登录之后对心电仪所获得心电数据进行心电实时数据波形图展示,心电实时数据波形图展示根据实时心电图波形进行QRS检波、滤波模块处理后,展示出直观、准确、抗干扰性强的心电波形图。
- 2.如权利要求1所述的一种心电数据图形化处理方法,其特征在于:所述微型心电仪主机接收电极采集的心电信号,进行放大、滤波、模数转换,并进行滤波处理和无损压缩处理, 其通过无线信号把数据发送到智能设备端或者云服务器端。
- 3. 如权利要求1所述的一种心电数据图形化处理方法, 其特征在于: 所述滤波模块包括陷波滤波、带通滤波。
- 4.如权利要求1所述的一种心电数据图形化处理方法,其特征在于:其中心电实时数据 波形图展示可分为刷新和平移两种显示模式、供使用者选择,让使用者通过图形化处理获 得直观心电数据。
- 5.如权利要求4所述的一种心电数据图形化处理方法,其特征在于:所述心电实时数据 波形图的走速、增益可由用户自定义。
- 6.如权利要求1所述的一种心电数据图形化处理方法,其特征在于:所述心电实时数据 波形图展示过程中,内部算法检测电机是否脱落、并对噪音进行降噪处理后实时输出心电 波形图。
- 7.如权利要求1所述的一种心电数据图形化处理方法,其特征在于:其还可以进行手持模式测量,当进行手持模式测量时,进行固定时间的测量,数据实时展示于智能设备端的同时,实时上传服务器出分析报告。

一种心电数据图形化处理方法

技术领域

[0001] 本发明涉及心电数据采集的技术领域,具体为一种心电数据图形化处理方法。

背景技术

[0002] 随着人们生活方式、饮食结构的改变,以心血管疾病为主的慢性病逐渐成为人类健康的头号杀手,并以惊人的速度从城市向农村蔓延。据统计2016年我国有超过3亿心血管疾病患者,而高危人群超过5亿人,每年有数百万人直接或间接死于心血管疾病。心血管疾病有发展周期长、前期症状不明显、发病急迫且严重的特点,发病后如果错过最佳治疗时机往往造成死亡或严重残疾。以往由于缺乏足够的医疗资源和技术手段,又无法有效在疾病发展期进行慢病管理与预防。

[0003] 目前国内心血管病的诊治力量集中于手术、药物治疗,但是防治手段薄弱,形成了医疗资源越来越紧张但病患越治越多的困境。近年来随着临床医学和公共卫生学的进步,医学界已意识到降低心血管疾病的发病率重在筛查预防和慢病管理,并正在通过医疗改革将医疗资源大幅度的从后期治疗向前期预防调整。

[0004] 心电图对于心血管疾病的前期筛查和慢病管理有着不可替代的临床价值。但目前普遍使用的常规心电图和Holter动态心电仪存在监测时间短、佩戴不舒适、信号干扰大、缺少辅助软件等缺陷,无法满足现代慢病管理的需求。

[0005] 目前市场上已经推出了一些有价值的用于检测心电图的设备,包括医用心电图机、便携式动态心电图仪、手持式心电记录仪。其中医用心电图机的体积大,仅限于固定场所的专业医生使用,其无法被普通人群通用;现有的便携式动态心电图仪和手持式心电记录仪,存在抗干扰能力差、波形易失真、缺少简单易读的显示界面等缺陷。综上,现有的心电数据处理方法无法让使用者获得实时的准确、直观、抗干扰性强的心电波形图。

发明内容

[0006] 针对上述问题,本发明提供了一种心电数据图形化处理方法,其使得心电采集设备所获得的数据具备准确性、直观性和抗干扰性;其能准确显示采集到的用户实际的心电图波形,精度达到99%以上;其算法滤波能够准确地把干扰信号滤除,保留有效信号,不会因为滤波而导致波形失真;其抗干扰性中的共模抑制比(CMRR)达到100dB以上。

[0007] 一种心电数据图形化处理方法,其特征在于:其在智能设备端通过用户注册登录模块使得用户和微型心电仪主机之间形成一对一绑定关系,登录之后对心电仪所获得心电数据进行心电实时数据波形图展示,心电实时数据波形图展示根据实时心电图波形进行QRS检波、滤波模块处理后,展示出直观、准确、抗干扰性强的心电波形图。

[0008] 其进一步特征在于:微型心电仪主机接收电极采集的心电信号,进行放大、滤波、模数转换,并进行滤波处理和无损压缩处理,其通过无线信号把数据发送到智能设备端或者云服务器端;

[0009] 所述滤波模块包括陷波滤波、带通滤波:

[0010] 为实现低功耗,设计了特殊的电源管理系统,针对控制单元的程序进行优化设计,使各功能模块协调运行,极大降低了无效能量损耗;设计了高性能低功耗无损压缩算法,使存储、传输的数据量大大降低,从而极大的降低能耗,并且提高数据安全性;

[0011] 其中心电实时数据波形图展示可分为刷新和平移两种显示模式、供使用者选择, 让使用者通过图形化处理获得直观心电数据;

[0012] 所述心电实时数据波形图的走速、增益可由用户自定义;

[0013] 所述心电实时数据波形图展示过程中,内部算法检测电机是否脱落、并对噪音进行降噪处理后实时输出心电波形图:

[0014] 其还可以进行手持模式测量,当进行手持模式测量时,进行固定时间的测量,数据实时展示于智能设备端的同时、实时上传服务器出分析报告。

[0015] 采用本发明的方法后,其使得智能设备端搭配心电监测结构,通过心电监测结构所获得的数据被实时传输到对应的智能设备端,由于实时传输,故该方法能准确显示采集到的用户实际的心电图波形,精度达到99%以上;且心电实时数据波形图展示根据实时心电图波形进行QRS检波,所述滤波模式包括陷波滤波、带通滤波,算法滤波能够准确地把干扰信号滤除,保留有效信号,不会因为滤波而导致波形失真;此外,由于波形输出前、通过内部算法检测电机是否脱落、并对噪音进行降噪处理后实时输出心电波形图,使得整个输出的抗干扰性强;综上,其通过将心电监测结构所获得的数据实时生成直观的心电波形图,使得使用者可以直观观测,且所输出的实时波形具备准确性、直观性和抗干扰性,为全面监护使用者的身体健康提供强有力的保障。

附图说明

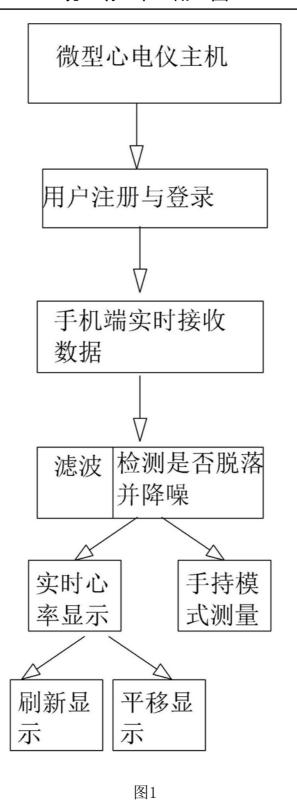
[0016] 图1为本发明的方法流程示意框图。

具体实施方式

[0017] 一种心电数据图形化处理方法,见图1:其在智能设备端通过用户注册登录模块使得用户和微型心电仪主机之间形成一对一绑定关系,登录之后对心电仪所获得心电数据进行心电实时数据波形图展示,心电实时数据波形图展示根据实时心电图波形进行QRS检波、滤波模块处理后,展示出直观、准确、抗干扰性强的心电波形图。

[0018] 其进一步特征在于:微型心电仪主机接收电极采集的心电信号,进行放大、滤波、模数转换,并进行滤波处理和无损压缩处理,其通过无线信号把数据发送到智能设备端或者云服务器端:

[0019] 所述滤波模块包括陷波滤波、带通滤波;

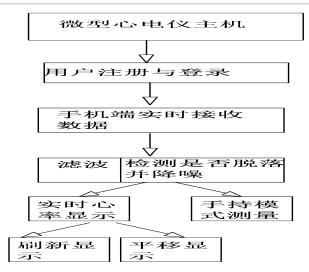

[0020] 心电实时数据波形图的走速、增益可由用户自定义;

[0021] 心电实时数据波形图展示过程中,内部算法检测电机是否脱落、并对噪音进行降噪处理后实时输出心电波形图;

[0022] 其还可以进行手持模式测量,当进行手持模式测量时,进行固定时间的测量,数据实时展示于智能设备端的同时、实时上传服务器出分析报告。

[0023] 以上对本发明的具体实施例进行了详细说明,但内容仅为本发明创造的较佳实施例,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变

化与改进等,均应仍归属于本专利涵盖范围之内。



专利名称(译)	一种心电数据图形化处理方法			
公开(公告)号	CN107485390A	公开(公告)日	2017-12-19	
申请号	CN201710841356.1	申请日	2017-09-18	
[标]发明人	赵卫 张毅 周成龙 周京镇			
发明人	赵卫 张毅 周成龙 周京镇			
IPC分类号	A61B5/0402 A61B5/00			
CPC分类号	A61B5/04017 A61B5/0402 A61B5/7203 A61B5/7225 A61B5/725			
代理人(译)	韩凤			
外部链接	Espacenet SIPO			

摘要(译)

本发明提供了一种心电数据图形化处理方法,其使得心电采集设备所获得的数据具备准确性、直观性和抗干扰性。其在智能设备端通过用户注册登录模块使得用户和微型心电仪主机之间形成一对一绑定关系,登录之后对心电仪所获得心电数据进行心电实时数据波形图展示,心电实时数据波形图展示根据实时心电图波形进行QRS检波,所述滤波模式包括陷波滤波、带通滤波,进而展示出直观、准确、抗干扰性强的心电波形图。

