



Europäisches  
Patentamt  
European  
Patent Office  
Office européen  
des brevets



(11)

EP 1 620 525 B1

(12)

## EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention  
of the grant of the patent:  
**28.09.2011 Bulletin 2011/39**

(51) Int Cl.:  
**C09K 11/06 (2006.01)** **H05B 33/14 (2006.01)**  
**H05B 33/22 (2006.01)** **C07D 471/22 (2006.01)**  
**C07F 15/00 (2006.01)**

(21) Application number: **04731727.6**

(86) International application number:  
**PCT/JP2004/006498**

(22) Date of filing: **07.05.2004**

(87) International publication number:  
**WO 2004/099339 (18.11.2004 Gazette 2004/47)**

### (54) ORGANIC ELECTROLUMINESCENT DEVICE AND PLATINUM COMPOUND

ORGANISCHE ELEKTROLUMINESZENZVORRICHTUNG SOWIE PLATINVERBINDUNG

DISPOSITIF ELECTROLUMINESCENT ORGANIQUE ET COMPOSE DE PLATINE

(84) Designated Contracting States:  
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR  
HU IE IT LI LU MC NL PL PT RO SE SI SK TR**

• **ISE, Toshihiro,**  
c/o Fuji Photo Film Co. Ltd  
Minami-ashigara-shi,  
Kanagawa 250-0193 (JP)

(30) Priority: **09.05.2003 JP 2003132257  
25.03.2004 JP 2004088575**

(74) Representative: **HOFFMANN EITLE**  
Patent- und Rechtsanwälte  
Arabellastraße 4  
81925 München (DE)

(43) Date of publication of application:  
**01.02.2006 Bulletin 2006/05**

(56) References cited:  
**EP-A2- 0 278 757** **WO-A2-99/20081**  
**JP-A- 9 013 024** **JP-A- 2002 280 180**  
**JP-A- 2003 073 355** **JP-A- 2003 142 271**  
**US-A1- 2002 115 566**

(73) Proprietor: **FUJIFILM Corporation**  
Minato-ku  
Tokyo (JP)

• **BOSSA M, ET AL:** 'On the electronic states of the  
extended porphyrin family' JOURNAL OF  
MOLECULAR STRUCTURE (THEOCHEM) vol.  
342, 1995, pages 73 - 86, XP002980594  
• **KOBAYASHI S, ET AL:** 'Shape-persistent cycline-  
type azamacrocycles: synthesis, unusual light-  
emitting characteristics, and specific recognition  
of the Sb(V) ion' TETRAHEDRON LETTERS vol.  
44, February 2003, pages 1469 - 1472,  
XP004405246

(72) Inventors:  
• **IGARASHI, Tatsuya,**  
c/o Fuji Photo Film Co. Ltd  
Minami-ashigara-shi,  
Kanagawa 250-0193 (JP)  
• **WATANABE, Kousuke,**  
c/o Fuji Photo Film Co. Ltd  
Minami-ashigara-shi,  
Kanagawa 250-0193 (JP)  
• **ICHIJIMA, Seiji,**  
c/o Fuji Photo Film Co. Ltd  
Minami-ashigara-shi,  
Kanagawa 250-0193 (JP)

EP 1 620 525 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

**Description****TECHNICAL FIELD**

5 [0001] The present invention relates to a luminescent device, particularly an organic electroluminescent device (hereinafter sometimes referred to as an EL device), and to a platinum compound that is useful in the luminescent device.

**BACKGROUND ART**

10 [0002] Recently, a variety of types of display devices are actively researched and developed. Among these, much attention is focused on organic electroluminescent (EL) devices. This is because organic EL devices are promising display devices capable of emitting light of high luminance under low applied voltage. An important characteristic of organic EL devices is life (durability), and as such, studies have been made toward further prolonging the life of organic EL devices. As a means to prolong life, luminescent devices of a type comprising a hole-injection layer containing CuPc  
15 (copper phthalocyanine) are known (as described, for example, in JP-A-57-51781 ("JP-A" means unexamined published Japanese patent application) and Applied Physics Letters, 15, 69, 1996). However, such luminescent devices are still low in quantum efficiency. Accordingly, there is a demand for further improved devices.

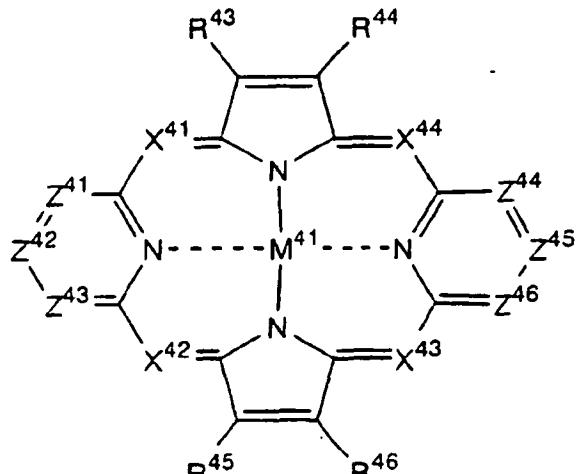
20 [0003] On the other hand, for the development of organic EL devices in recent years, various studies have aimed at improving the external quantum efficiency of the devices. In particular, observation is focused on luminescent devices containing a phosphorescent material, such as tris-phenylpyridine iridium complexes (see WO 00/070655) and tetradeinate platinum complexes (for example, octaethylporphyrin platinum complexes) (see U.S. Patent No. 6,303,238 B1 and No. 6,653,564 B1), because high-external quantum efficiency is attained with these devices. However, these phosphorescent materials and devices containing the phosphorescent material have needed life prolongation. In addition, conventional tetradeinate platinum complexes (see U.S. Patent No. 6,303,238 B1 and No. 6,653,564 B1) have the problem  
25 that light emission is restricted to the color ranging from orange to red, and therefore it is difficult to obtain light emission in the short wavelength ranging from blue to green that is necessary for use in full color displays and multicolor displays.

30 [0004] WO 99/20081 A2 describes an organic light emitting device comprising a charge carrier layer comprising a compound having molecules with at least one electron transporting moiety which is a 2-methyl-8-quinolinolato ligand coordinated with a metal selected from Al, Ga, and In and at least one hole transporting moiety.

35 [0005] EP 0 278 757 A2 relates to an electroluminescent device comprising in a sequence an anode, an organic hole transporting zone and an organic electron transporting zone and a cathode, wherein the cathode comprises a layer consisting essentially of a plurality of metals other than alkali metals and at least one of these metals has a work function of less than 4 eV.

[0006] JP 9 013024 A describes an electroluminescent element which is obtained by sandwiching an organic luminescent layer containing a tetraazaporphyrin compound as an organic luminescent material.

**DISCLOSURE OF THE INVENTION**

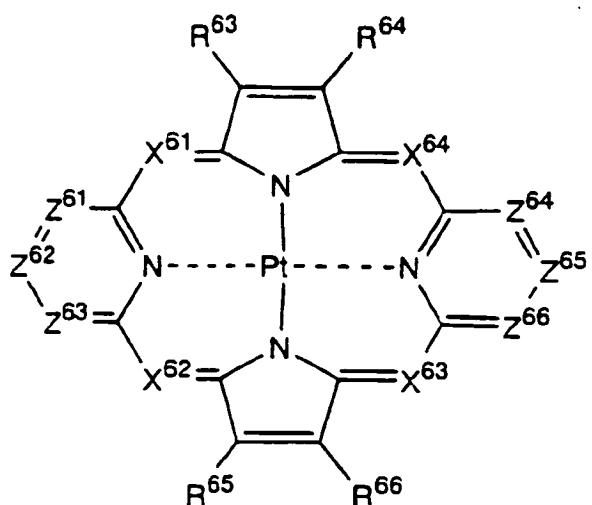

40 [0007] According to the present invention, there are provided the following means:

45 (1) An organic electroluminescent device, comprising a pair of electrodes, and at least one organic layer including a luminescent layer between the electrodes, wherein said organic layer comprises at least one compound represented by formula (4):

50

55

## Formula (4)




wherein, in formula (4), R<sup>43</sup>, R<sup>44</sup>, R<sup>45</sup> and R<sup>46</sup> each represent an alkyl group, an aryl group, or a group that forms a ring structure when R<sup>43</sup> and R<sup>44</sup> or R<sup>45</sup> and R<sup>46</sup> bond to each other; X<sup>41</sup>, X<sup>42</sup>, X<sup>43</sup> and X<sup>44</sup> each represent a nitrogen atom; Z<sup>41</sup>, Z<sup>42</sup>, Z<sup>43</sup>, Z<sup>44</sup>, Z<sup>45</sup> and Z<sup>46</sup> each represent a substituted or unsubstituted carbon atom; M<sup>41</sup> represents a copper ion or a platinum ion.

25 (2) The organic electroluminescent device as described in item (1), wherein the organic layer is at least one of a luminescent layer and a positive hole-injection layer.

(3) A compound represented by formula (6) :

## Formula (6)



55 wherein, in formula (6), R<sup>63</sup>, R<sup>64</sup>, R<sup>65</sup> and R<sup>66</sup> each represent an alkyl group, an aryl group, or a group that forms a ring structure when R<sup>63</sup> and R<sup>64</sup> or R<sup>65</sup> and R<sup>66</sup> bond to each other; X<sup>61</sup>, X<sup>62</sup>, X<sup>63</sup> and X<sup>64</sup> each represent a nitrogen atom; Z<sup>61</sup>, Z<sup>62</sup>, Z<sup>63</sup>, Z<sup>64</sup>, Z<sup>65</sup> and Z<sup>66</sup> each represent a substituted or unsubstituted carbon atom.

(4) The organic electroluminescent device as described in any one of the items (1) to (2), wherein the compound represented by formula (4) emits a phosphorescence.

(5) The organic electroluminescent device as described in any one of the items (1) to (2) and (4), wherein the

luminescent (light-emitting) layer contains at least one host material, and at least one of the compounds represented by formula (4).

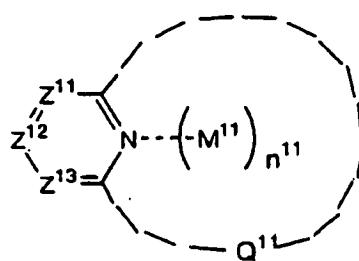
(6) The organic electroluminescent device as described in the item (5), wherein the host material in the light-emitting layer is a complex.

5 (7) The organic electroluminescent device as described in the item (5) or (6), wherein the light-emitting layer contains at least two host materials.

**[0008]** Other and further features and advantages of the invention will appear more fully from the following description.

10 **BEST MODE FOR CARRYING OUT THE INVENTION**

**[0009]** The present invention will be described in detail below.


**[0010]** First, the reference compound represented by formula (1) will be described.

15

**Formula (1)**

20

25



30

**[0011]** Q¹¹ represents a group of atoms that form a nitrogen-containing hetero ring, together with two carbon atoms bonding to the Q¹¹ and a nitrogen atom directly bonding to the carbon atoms. The number of ring member of the nitrogen-containing hetero ring formed by Q¹¹ is 16.

**[0012]** Z¹¹, Z¹² and Z¹³ each represent a substituted or unsubstituted carbon atom. Examples of the substituent on the carbon atom include an alkyl group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 10 carbon atoms, e.g., methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 10 carbon atoms, e.g., vinyl, allyl, 2-but enyl, 3-pentenyl), an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 10 carbon atoms, e.g., propargyl, 3-pentynyl), an aryl group (preferably having 6 to 30 carbon atoms, more preferably having 6 to 20 carbon atoms, and particularly preferably having 6 to 12 carbon atoms, e.g., phenyl, p-methylphenyl, naphthyl, anthranyl), an amino group (preferably having 0 to 30 carbon atoms, more preferably having 0 to 20 carbon atoms, and particularly preferably having 0 to 10 carbon atoms, e.g., amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino), an alkoxy group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 10 carbon atoms, e.g., methoxy, ethoxy, butoxy, 2-ethylhexyloxy), an aryloxy group (preferably having 6 to 30 carbon atoms, more preferably having 6 to 20 carbon atoms, and particularly preferably having 6 to 12 carbon atoms, e.g., phenoxy, 1-naphthoxy, 2-naphthoxy), a hetero ring oxy group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy), an acyl group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., acetyl, benzoyl, formyl, pivaloyl), an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 12 carbon atoms, e.g., methoxycarbonyl, ethoxycarbonyl), an aryloxycarbonyl group (preferably having 7 to 30 carbon atoms, more preferably having 7 to 20 carbon atoms, and particularly preferably having 7 to 12 carbon atoms, e.g., phenoxy carbonyl), an acyloxy group (preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 10 carbon atoms, e.g., acetoxy, benzoyloxy), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 10 carbon atoms, e.g., acetylamino, benzoylamino), an alkoxycarbonylamino group

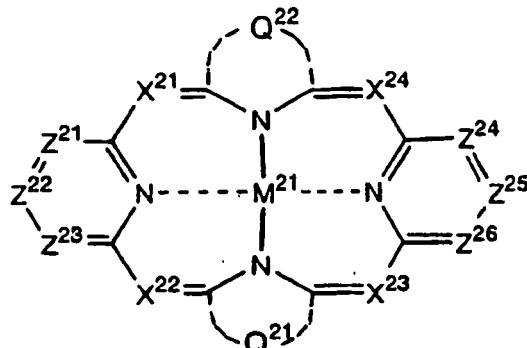
(preferably having 2 to 30 carbon atoms, more preferably having 2 to 20 carbon atoms, and particularly preferably having 2 to 12 carbon atoms, e.g., methoxycarbonylamino), an aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably having 7 to 20 carbon atoms, and particularly preferably having 7 to 12 carbon atoms, e.g., phenoxyoxycarbonylamino), a sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms and particularly preferably having 1 to 12 carbon atoms, e.g., methanesulfonylamino, benzenesulfonylamino), a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably having 0 to 20 carbon atoms, and particularly preferably having 0 to 12 carbon atoms, e.g., sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl), a carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl), an alkyl thio group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., methylthio, ethylthio), an aryl thio group (preferably having 6 to 30 carbon atoms, more preferably having 6 to 20 carbon atoms, and particularly preferably having 6 to 12 carbon atoms, e.g., phenylthio), a hetero ring thio group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., pyridyl thio, 2-benzimidazolyl thio, 2-benzoxazolyl thio, 2-benzthiazolyl thio), a sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., mesyl, tosyl), a sulfinyl group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., methanesulfinyl, benzenesulfinyl), a ureido group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., ureido, methylureido, phenylureido), a phosphoric acid amido group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, and particularly preferably having 1 to 12 carbon atoms, e.g., diethyl phosphoamido, phenyl phosphoamido), a hydroxyl group, a mercapto group, a halogen atom (e.g., fluorine, chlorine, bromine, iodine), a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 12 carbon atoms, and containing a hetero atom such as nitrogen, oxygen and sulfur, preferably being a hetero aryl group, specifically for example, imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl), a silyl group (preferably having 3 to 40 carbon atoms, more preferably having 3 to 30 carbon atoms, and particularly preferably having 3 to 24 carbon atoms, e.g., trimethylsilyl, triphenylsilyl), and a silyloxy group (preferably having 3 to 40 carbon atoms, more preferably having 3 to 30 carbon atoms, and particularly preferably having 3 to 24 carbon atoms, e.g., trimethylsilyloxy, triphenylsilyloxy). These substituents may be further substituted by, for example, aforementioned substituents on the carbon atom.

**[0013]**  $M^{11}$  represents a metal which is a copper ion or a platinum ion, each of which may further have a ligand(s),  $M^{11}$  is preferably a metal ion that may further have a ligand(s), and more preferably a metal ion having no additional ligand.  $n^{11}$  is 1,  $M^{11}$  bonds to an atom(s) being contained in  $Q^{11}$ .

**[0014]** The aforementioned (additional) ligand that may be further opposed by  $M^{11}$ , is not particularly restricted, but it is preferably a monodentate or bidentate ligand, and more preferably a bidentate ligand. The coordinating atom is not particularly restricted, but it is preferably oxygen, sulfur, nitrogen, carbon and phosphorus atoms, more preferably oxygen, nitrogen and carbon atoms, and furthermore preferably oxygen and nitrogen atoms.

**[0015]**  $n^{11}$  is 1.

**[0016]** The compounds represented by formula (1) are those represented by formula (4) or their tautomers.


**[0017]** Next, the reference compound represented by formula (2) will be described.

## Formula (2)

5

10

15



[0018]  $Z^{21}$ ,  $Z^{22}$ ,  $Z^{23}$ ,  $Z^{24}$ ,  $Z^{25}$ ,  $Z^{26}$  and  $M^{21}$  have the same meanings as those of the aforementioned  $Z^{11}$ ,  $Z^{12}$ ,  $Z^{13}$ ,  $Z^{11}$ ,  $Z^{12}$ ,  $Z^{13}$  and  $M^{11}$ , respectively, with the same preferable ranges.

[0019]  $Q^{21}$  and  $Q^{22}$  each represent a group for forming a nitrogen-containing hetero ring. The nitrogen-containing hetero rings formed by  $Q^{21}$  or  $Q^{22}$  are a pyrrole ring, a condensed ring containing at least one of these rings (for example, benzopyrrole), and a tautomer thereof (for example, as described below, in formula (4), the nitrogen-containing 5-membered rings having  $R$ ,  $R$ ,  $R^{45}$  and  $R^{46}$  are defined to be a tautomer of pyrrole), more preferably a pyrrole ring and a condensed ring containing a pyrrole ring (for example, benzopyrrole).

[0020]  $X^{21}$ ,  $X^{22}$ ,  $X^{23}$  and  $X^{24}$  each represent a nitrogen atom. preferably an unsubstituted nitrogen atom.

[0021] Next, the compound represented by formula (4) will be described.

[0022]  $Z^{41}$ ,  $Z^{42}$ ,  $Z^{43}$ ,  $Z^{44}$ ,  $Z^{45}$ ,  $Z^{46}$ ,  $X^{41}$ ,  $X^{42}$ ,  $X^{43}$ ,  $X^{44}$  and  $M^{41}$  have the same meanings as those of the aforementioned  $Z^{21}$ ,  $Z^{22}$ ,  $Z^{23}$ ,  $Z^{24}$ ,  $Z^{25}$ ,  $Z^{26}$ ,  $Z^{21}$ ,  $Z^{22}$ ,  $Z^{23}$ ,  $Z^{24}$ , and  $M^{21}$  in formula (2), respectively, with the same preferable ranges.

[0023]  $R^{43}$ ,  $R^{44}$ ,  $R^{45}$  and  $R^{46}$  each represent a substituent which are mentioned groups that are exemplified as the substituent on the carbon atom with respect to  $Z^{11}$  or  $Z^{12}$  in the aforementioned formula (1).

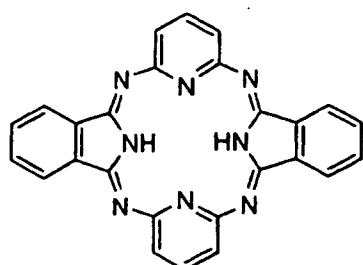
[0024]  $R^{43}$ ,  $R^{44}$ ,  $R^{45}$  and  $R^{46}$  each are an alkyl group or an aryl group that are exemplified as the substituent on  $Z^{11}$  or  $Z^{12}$  in the aforementioned formula (1), or a group that forms a ring structure (e.g., a benzene-condensed ring, a pyridine-condensed ring) when  $R^{43}$  and  $R^{44}$  or  $R^{45}$  and  $R^{46}$  bond to each other; more preferably an alkyl group, an aryl group, or a group that forms a ring structure (e.g., a benzene-condensed ring, a pyridine-condensed ring) when  $R^{43}$  and  $R^{44}$  or  $R^{45}$  and  $R^{46}$  bond to each other; and furthermore preferably a group that forms a ring structure (e.g., a benzene-condensed ring, a pyridine-condensed ring) when  $R^{43}$  and  $R^{44}$  or  $R^{45}$  and  $R^{46}$  bond to each other.

[0025] Next, the compound represented by formula (6) will be described.

[0026]  $R^{63}$ ,  $R^{64}$ ,  $R^{65}$ ,  $R^{65}$ ,  $R^{66}$ ,  $Z^{62}$ ,  $Z^{64}$ ,  $Z^{65}$ ,  $Z^{66}$ ,  $X^{61}$ ,  $X^{62}$ ,  $X^{63}$ , and  $X^{64}$  have the same meanings as those of the aforementioned  $R^{43}$ ,  $R^{44}$ ,  $R^{45}$ ,  $R^{46}$ ,  $Z^{41}$ ,  $Z^{42}$ ,  $Z^{43}$ ,  $Z^{44}$ ,  $Z^{45}$ ,  $Z^{46}$ ,  $X^{41}$ ,  $X^{42}$ ,  $X^{43}$ , and  $X^{44}$  in formula (4), respectively, with the same preferable ranges.

[0027] The compound of the present invention may be a low molecular compound, or may be an oligomer compound or a polymer compound having a weight-average molecular weight calculated in terms of polystyrene preferably in the range of 1,000 to 5,000,000, more preferably in the range of 2,000 to 1,000,000, and furthermore preferably in the range of 3,000 to 100,000. With respect to the polymer compound, the structure represented, for example, by formula (1) may be contained in a main chain of the polymer, or in a side chain of the polymer. Further, the polymer compound may be a homopolymer or a copolymer. The compound of the present invention is preferably a low molecular compound.

[0028] Specific examples of the compound of the present invention are shown below, but the present invention is not limited to these compounds.


50

55

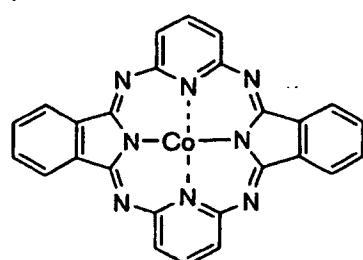
Ref.

5

Compound (1)



10

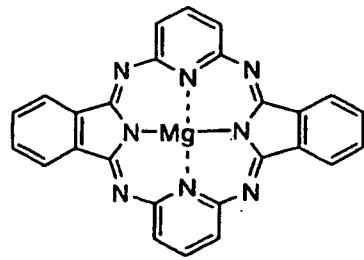

15

Ref.

20

25

Compound (2)



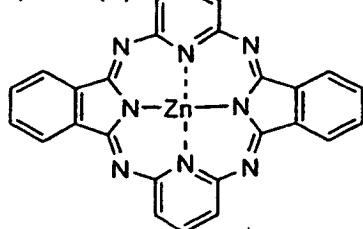

30

35

Ref.

Compound (3)

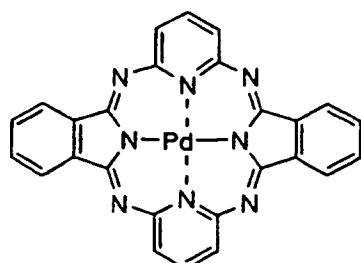



40

45

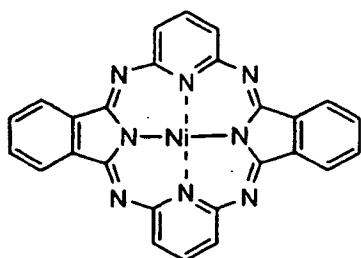
50

Ref.

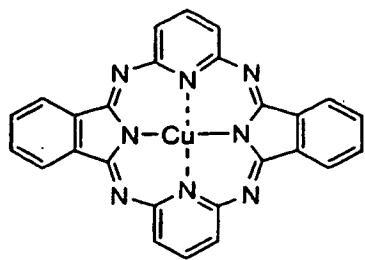

Compound (4)



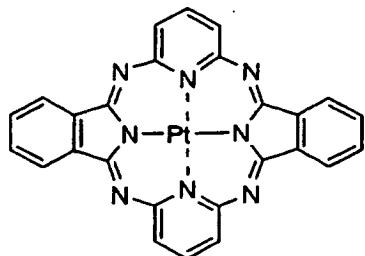
55


Ref.

Compound (5)



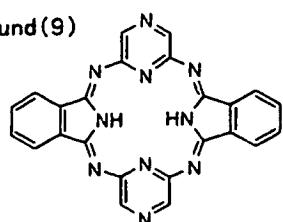

Ref.


Compound (6)



Compound (7)

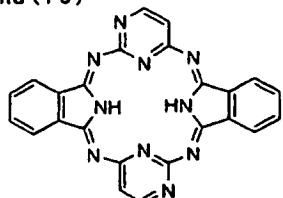



Compound (8)



5

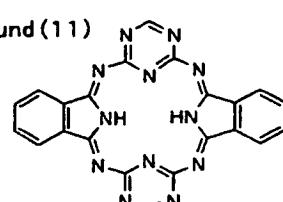
Ref.


Compound (9)



10

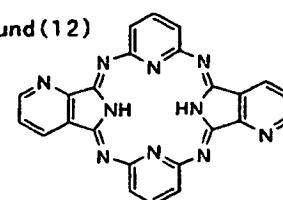
Ref.


Compound (10)



15

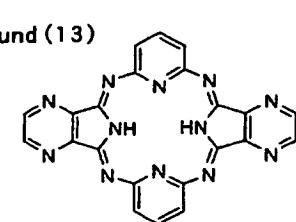
Ref.


Compound (11)



20

Ref.

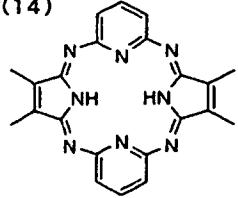

Compound (12)



25

Ref.

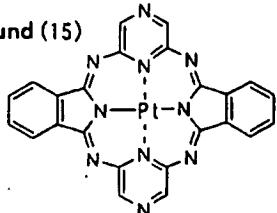
Compound (13)




40

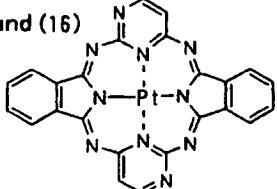
45

Ref.


Compound (14)

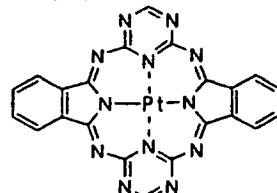


50

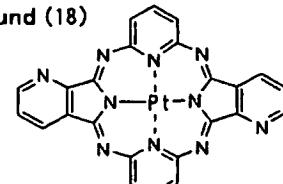

Ref.

Compound (15)

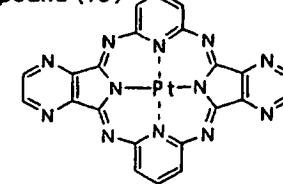



Ref.

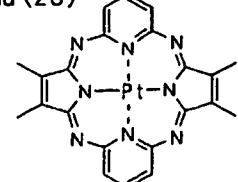
Compound (16)




Ref.


Compound (17)

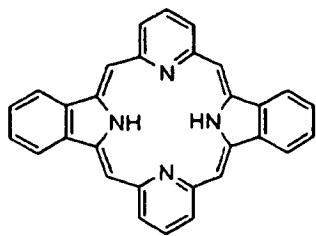



Compound (18)



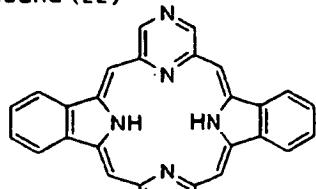
Compound (19)




Compound (20)

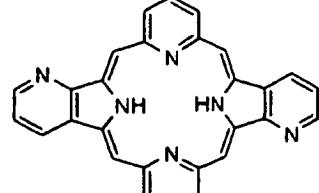


55


5

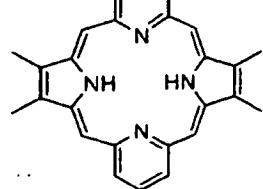
Ref.  
Compound (21)




10

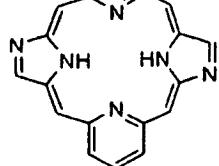
Ref.  
Compound (22)




15

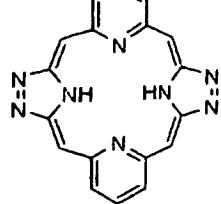
Ref.  
Compound (23)




20

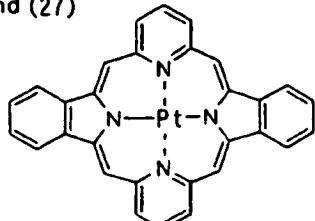
Ref.  
Compound (24)




25

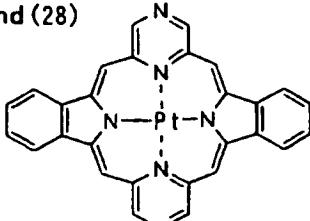
Ref.  
Compound (25)




30

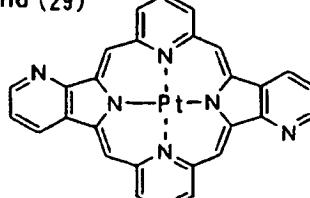
Ref.  
Compound (26)




35

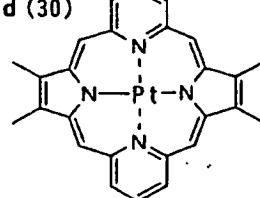
Ref.  
Compound (27)




40

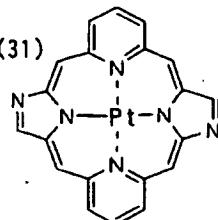
Ref.  
Compound (28)




45

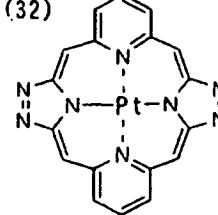
Ref.  
Compound (29)



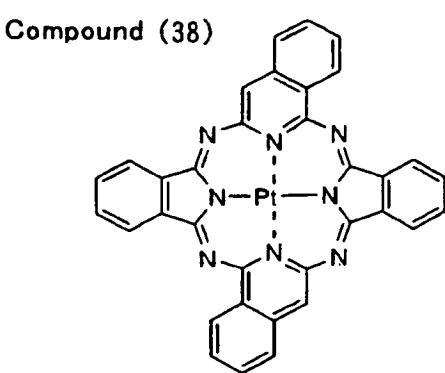
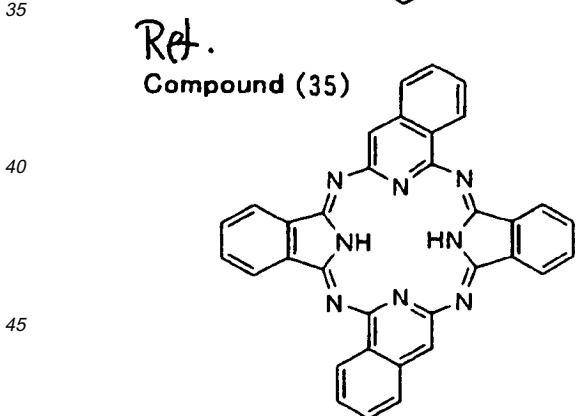
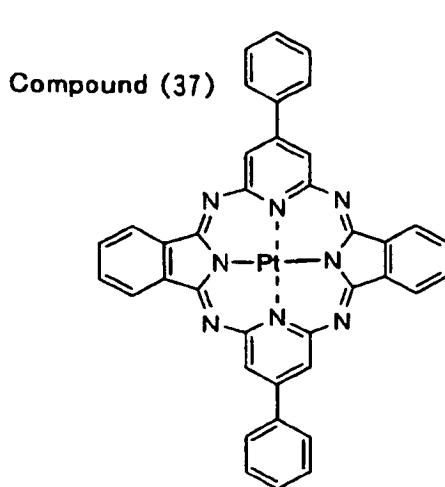
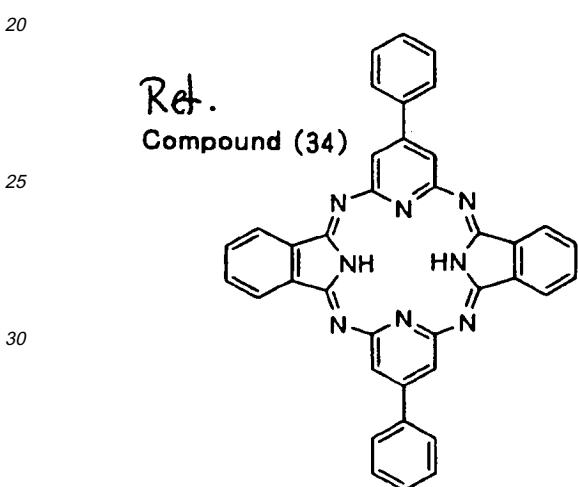
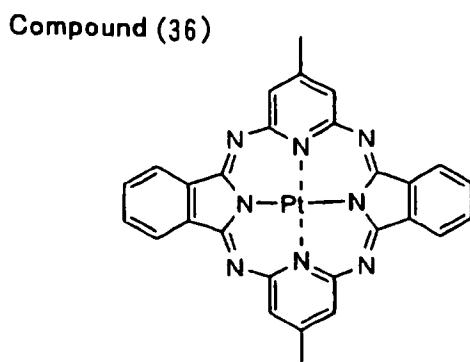
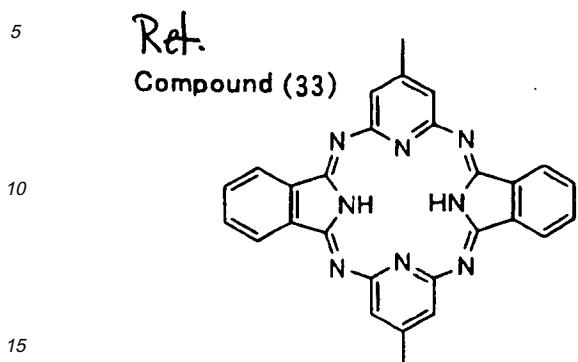

50

Ref.  
Compound (30)




55

Ref.  
Compound (31)


60

Ref.  
Compound (32)



56



[0029] The compounds of the present invention that are represented by formula (4) can be synthesized according to, for example, the method described in *Journal of Chemical Society*, 5008 (1952), or synthesis methods described below.

[0030] The compounds of the present invention that are represented by formula (4) ( $n^{11}=1$ ) can be synthesized according to various methods. For example, the compounds can be obtained by reacting a ligand or its dissociated product with a compound containing  $M^{11}$ , in the presence of a solvent (e.g., a halogen-series solvent, an alcohol-series solvent, an ether-series solvent, an ester-series solvent, a ketone-series solvent, a nitrile-series solvent, an amide-series solvent, a sulfone-series solvent, a sulfoxide-series solvent and water), or in the absence of a solvent, in the presence

of a base (various inorganic or organic bases, such as sodium methoxide, potassium t-butoxide, triethylamine and potassium carbonate), or in the absence of a base, at room temperature or below, or alternatively by heating (in addition to an ordinary heating, a method of heating by means of microwave is also effective).

**[0031]** A reaction time that is applied in synthesizing the compound of the present invention that is represented by formula (4) ( $n^{11}=1$ ) from a compound containing  $M^{11}$  varies depending upon reaction activity, and there is no particular limitation as to the reaction time, but preferably the reaction time is in the range of from 1 minute to 5 days, more preferably in the range of from 5 minutes to 3 days, and furthermore preferably in the range of from 10 minutes to 1 day.

**[0032]** A reaction temperature that is applied in synthesizing the compound of the present invention that is represented by formula (4) ( $n^{11}=1$ ) from a compound containing  $M^{11}$  varies depending upon reaction activity, and there is no particular limitation as to the reaction temperature, but the reaction temperature is preferably in the range of from 0 °C to 300 °C, more preferably in the range of from 5 °C to 250 °C, and furthermore preferably in the range of from 10 °C to 200 °C.

**[0033]** The compound of the present invention that is represented by formula (4) ( $n^{11}=1$ ) can be synthesized by adding a ligand that has a partial structure of an objective complex (for example, Ref Compound (1) in synthesis of Compound (8)) preferably in an equivalent amount of from 0.1 to 10, more preferably in an equivalent amount of from 0.3 to 6, furthermore preferably in an equivalent amount of from 0.5 to 4, to a metal compound respectively. As the aforementioned metal compound, there are illustrated a metal halide (e.g., platinum chloride), a metal acetate, an acetylacetato-metal, and hydrates of these compounds.

**[0034]** Next, luminescent devices containing a compound of the present invention are explained below.

**[0035]** The luminescent devices of the present invention can employ ordinary luminescent systems, driving methods and using forms, provided that the device uses the compound of the present invention. The compound represented, for example, by formula (4) is preferably used as a luminescent material, or a hole injection material/hole-transporting material. The luminescent material to be used may be ultraviolet emission or infrared emission, or fluorescence emission or phosphorescence emission. As a typical luminescent device, there are organic EL (electroluminescence) devices.

**[0036]** Optical output efficiency of the luminescent device of the present invention can be improved according to various known methods. For example, the optical output efficiency can be improved by processing a surface shape of the substrate (for example, formation of fine uneven pattern), controlling refractive indices among a substrate, an ITO layer and an organic layer(s), or controlling thickness among a substrate, an ITO layer and an organic layer(s). Thereby external quantum efficiency can be improved.

**[0037]** The luminescent device of the present invention may be a so-called top emission system of the device that output light emission from the positive electrode side, as described in, for example, JP-A-2003-208109, JP-A-2003-248441, JP-A-2003-257651 and JP-A-2003-282261.

**[0038]** The substrate that can be used in the luminescent device of the present invention is not particularly restricted. Examples of the substrate include inorganic materials, such as zirconia-stabilized yttrium, and glass; polyesters, such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; and high molecular weight materials, such as polyethylene, polycarbonate, polyethersulfone, polyarylate, allyldiglycolcarbonate, polyimide, polycycloolefin, norbornene resin, poly(chlorotrifluoroethylene), polytetrafluoroethylene (Teflon (registered trade mark)), and polytetrafluoroethylene/polyethylene copolymers.

**[0039]** The organic electroluminescent device of the present invention may contain a blue-fluorescent compound. Alternatively, a blue luminescent device containing a blue fluorescent compound and the luminescent device of the present invention may be used together, to prepare a multicolor light-emitting device or a full color light-emitting device.

**[0040]** The host material for use in the luminescent device of the present invention may be of one kind, or of two or more kinds. As the host material, are preferable arylamine derivatives (for example, triphenylamine derivatives, benzidine derivatives), aromatic hydrocarbon compounds (for example, triphenylbenzene derivatives, triphenylene derivatives, phenanthrene derivatives, naphthalene derivatives, tetraphenylene derivatives), aromatic nitrogen-containing heterocyclic compounds (for example, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, pyrazole derivatives, imidazole derivatives, oxazole derivatives, pyrrole derivatives), and metal complexes (for example, zinc complexes, aluminum complexes, gallium complexes).

**[0041]** The electroluminescent device of the present invention preferably has, between a negative electrode and a luminescent layer, a layer containing a compound having ionization potential of 5.9 eV or more (more preferably 6.0 eV or more), and more preferably has an electron-transporting layer having ionization potential of 5.9 eV or more.

**[0042]** A method of forming an organic layer of the luminescent device containing the compound of the present invention is not particularly limited. As the method, various methods, such as a resistance heating-utilizing vapor deposition method, an electron-beam method, a sputtering method, a molecular lamination method, a coating method (e.g., a splay coating method, dip coating method, dipping method, roll coating method, gravure coating method, reverse coating method, roll brushing method, air knife coating method, curtain coating method, spin coating method, flow coating method, bar coating method, micro gravure coating method, air doctor coating method, blade coating method, squeeze coating method, transfer roll coating method, kiss coating method, cast coating method, extrusion coating method, wire bar coating method and screen coating method), an inkjet method, a printing method, and a transfer method, can be adopted. From

the viewpoints of characteristics and production, a resistance heating-utilized vapor deposition method, a coating method and a transfer method are preferable. A layer of the compound of the present invention may be formed on a substrate, according to any one of the aforementioned forming methods. The layer has no particular limitation as to its thickness, but the layer thickness is preferably 10 nm or more, and more preferably in the range of from 50 nm to 5  $\mu$ m.

5 [0043] The luminescent device of the present invention is a device having a luminescent layer or at least two thin film layers of organic compounds including a luminescent layer formed between a pair of electrodes, i.e., a positive electrode (anode) and a negative electrode (cathode). Examples of the thin layer(s) that the luminescent device may have in addition to the luminescent layer, include a hole injection layer, a hole-transporting layer, an electron injection layer, an electron-transporting layer and a protective layer. Further, these layers each may have other functions. For forming each 10 layer, various kinds of materials may be used.

10 [0044] The positive electrode is to supply positive holes to a positive hole-injecting layer, a positive hole-transporting layer and a luminescent layer, and metals, alloys, metal oxides, electrically conductive compounds, or mixtures of these can be used therefor, materials having a work function of 4 eV or more are preferably used. Specific examples of the 15 materials include electrically conductive metal oxides, such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO); metals, such as gold, silver, chromium, and nickel; mixtures or laminations of these metals with electrically conductive metal oxides; inorganic electrically conductive substances, such as copper iodide and copper sulfide; organic electrically conductive substances, such as polyaniline, polythiophene, and polypyrrole; and laminations of these 20 materials with ITO. Electrically conductive metal oxides are preferably used, and ITO is particularly preferably used in view of producibility, high conductivity and transparency. The film thickness of the positive electrode can be selected arbitrarily according to materials to be used, but is generally preferably from 10 nm to 5  $\mu$ m, more preferably from 50 nm to 1  $\mu$ m, and still more preferably from 100 nm to 500 nm.

25 [0045] The positive electrode generally comprises a layer(s) formed on a soda-lime glass, non-alkali glass or transparent resin substrate. When a glass substrate is used, non-alkali glass is preferably used for lessening elution of ions from the glass. Further, when soda-lime glass is used, it is preferred to provide a barrier coat such as silica. The thickness of the substrate is not particularly limited so long as it can sufficiently stand mechanical strength. When glass is used, the thickness is generally 0.2 mm or more, preferably 0.7 mm or more.

30 [0046] Various processes are used in the manufacture of the positive electrode according to the materials to be used. In the case of using ITO, for example, a thin layer film(s) is formed by an electron beam process, a sputtering process, a resistance heating vapor deposition process, a chemical reaction process (e.g. a sol-gel process), or the process of 35 coating a dispersion of an indium tin oxide.

35 [0047] It is possible to reduce the driving voltage or increase the luminescent efficacy of the device or element, by the process such as washing of the positive electrode. In the case of using ITO, for example, UV-ozone processing or plasma treatment is effective.

40 [0048] The negative electrode is to supply electrons to an electron-injecting layer, an electron-transporting layer and a luminescent layer, and the negative electrode is selected taking into consideration the adhesion with the layer adjacent to the negative electrode, such as an electron-injecting layer, electron-transporting layer, or luminescent layer; ionization potential, and stability. As materials of the negative electrode, metals, alloys, metal halides, metal oxides, electrically 45 conductive compounds, or mixtures of these materials can be used. Specific examples include alkali metals (e.g., Li, Na, K) or their fluorides or oxides, alkaline earth metals (e.g., Mg, Ca) or their fluorides or oxides, gold, silver, lead, aluminum, sodium-potassium alloys or mixed metals thereof, lithium-aluminum alloys or mixed metals thereof, magnesium-silver alloys or mixed metals thereof, and rare earth metals, such as indium or ytterbium preferably materials having a work function of 4 eV or less, and more preferably aluminum, lithium-aluminum alloys or mixed metals thereof, and magnesium-silver alloys or mixed metals thereof. The negative electrode structure may be not only a single layer of the aforementioned compound or mixture thereof, but also a laminate comprised of the aforementioned compound or mixture thereof. For example, laminate structures of aluminum/lithium fluoride, or aluminum/lithium oxide are preferable. The film thickness of the negative electrode can be selected arbitrarily according to materials to be used, but is generally 50 preferably from 10 nm to 5  $\mu$ m, more preferably from 50 nm to 1  $\mu$ m, and still more preferably from 100 nm to 1  $\mu$ m.

55 [0049] Processes such as an electron beam process, a sputtering process, a resistance heating vapor deposition process, a coating process, and a transfer method are used in the manufacture of the negative electrode, and a single metal can be vapor-deposited or two or more components can be vapor-deposited at the same time. Further, a plurality of metals can be vapor-deposited at the same time to form an alloy electrode, alternatively a previously prepared alloy can be vapor-deposited.

[0050] It is preferred that the sheet resistance of the positive electrode and the negative electrode be low, preferably several hundreds  $\Omega/\square$  or less.

[0051] The material for a luminescent layer may be any of materials capable of forming a layer that can function so as to accept both injection of holes from the positive electrode, the hole injection layer or the hole-transporting layer and injection of electrons from the negative electrode, the electron injection layer or the electron-transporting layer when electric field is applied thereto, or to let the charges injected therein to transfer, or to enable the emission of light by

providing a cite for recombining the holes and the electrons. Besides the compound of the present invention, examples of the material include various metal complexes typically exemplified by metal complex or rare earth complex of benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, perylene derivatives, perinone derivatives, oxadiazole derivatives, aldazine derivatives, pyrardidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, aromatic dimethylidyne compounds, and 8-quinolinol derivatives; polymeric compounds, such as polythiophene, polyphenylene, and polyphenylenevinylene; organic silanes; transition metal complexes (e.g., iridium trisphenylpyridine and platinum porphyrin, and derivatives thereof). The film thickness of the luminescent layer is not particularly restricted, but it is generally preferably from 1 nm to 5  $\mu$ m, more preferably from 5 nm to 1  $\mu$ m, and still more preferably from 10 nm to 500 nm.

**[0052]** Although there is no particular limitation on methods for forming the luminescent (light emitting) layers, methods such as resistance heating vapor deposition, electron beam processing, sputtering, molecular lamination, coating, inkjet process, printing, LB processing, and transfer process can be used. Preferred are a resistance heating vapor deposition method and a coating method.

**[0053]** The luminescent layer may be formed of a single compound, or two or more kinds of compounds. Further, the luminescent layer may have a single layer structure, or a multiple-layer structure made of at least two layers. Each layer may emit light of a different luminescent color so that the luminescent layer can emit, for example, a white light. A single luminescent layer may emit a white light. When the luminescent layer is a plurality of layers, each layer may be formed of a single material, or at least two compounds or materials.

**[0054]** Materials of the positive hole-injecting layer and the positive hole-transporting layer are sufficient if they have any of the functions of injecting positive holes from the positive electrode, transporting positive holes, and blocking the electrons injected from the negative electrode. Specific examples of the materials include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidyne-series compounds, porphyrin-series compounds, polysilane-series compounds, poly(N-vinylcarbazole) derivatives, aniline-series copolymers, electrically conductive high molecular weight oligomers, such as thiophene oligomers and polythiophene; organic silane compounds, carbon film, and the compounds of the present invention. The film thickness of the hole-injection layer is not particularly limited, and in general, it is preferably from 1 nm to 5  $\mu$ m, more preferably from 1 nm to 100 nm, and further preferably from 1 nm to 10 nm. The film thickness of the hole-transporting layer is not particularly limited, and in general, it is preferably from 1 nm to 5  $\mu$ m, more preferably from 5 nm to 1  $\mu$ m, and further preferably from 10 nm to 500 nm. The hole-injecting layer or hole-transporting layer may have a single layer structure of one kind or two or more kinds of the above materials, or alternatively, a multilayer structure comprising plural layers having the same composition or different compositions.

**[0055]** Examples of a method of forming the hole-injecting layer and the hole-transporting layer include a vacuum deposition method, an LB method, the process of dissolving or dispersing the above-described hole-injecting/transporting material in a solvent and coating; an ink jet method, a printing method, and a transfer method. In the case of a coating process, a positive hole-injecting/transporting material can be dissolved or dispersed with a resin component. Examples of such resin components include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly(N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin and silicone resin.

**[0056]** Materials of the electron-injecting layer and the electron-transporting layer are sufficient if they have any of the functions of injecting electrons from the negative electrode, transporting electrons, and blocking (as a barrier off) the positive holes injected from the positive electrode. Specific examples of the materials include triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidene-methane derivatives, distyrylpyrazine derivatives, tetracarboxylic acid anhydrides of aromatic rings such as naphthalene and perylene, phthalocyanine derivatives, various metal complexes represented by metal complexes of 8-quinolinol derivatives, metallophthalocyanines and metal complexes having benzoxazole or benzothiazole ligands, organosilane compounds. The film thickness of the electron-injecting layer and the electron-transporting layer is not particularly restricted, but it is generally preferably from 1 nm to 5  $\mu$ m, more preferably from 5 nm to 1  $\mu$ m, and still more preferably from 10 nm to 500 nm. The electron-injecting layer and the electron-transporting layer may be single layer structure comprising one or two or more of the above materials, or may be multilayer structure comprising a plurality of layers of the same composition or different compositions.

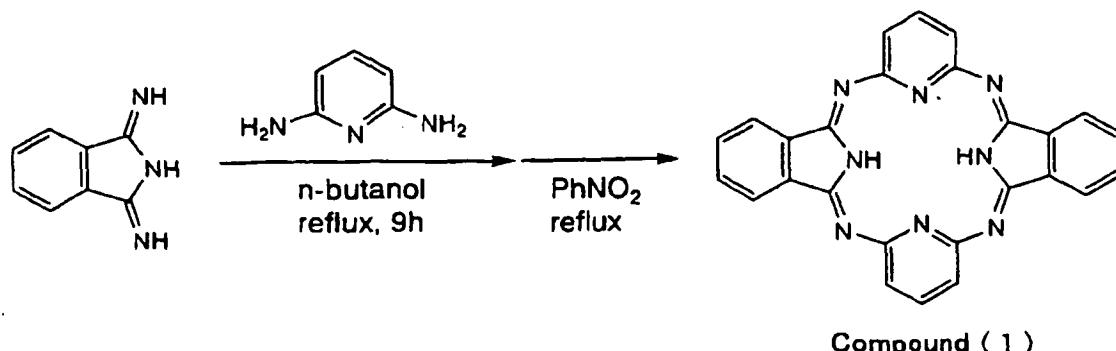
**[0057]** Examples of a method of forming the electron injecting layer and the electron transporting layer include a

vacuum deposition method, an LB method, the process of dissolving or dispersing the above-described electron-injecting/transporting material in a solvent and coating; an ink jet method, a printing method, and a transfer method. In the case of a coating process, an electron injecting/transporting material can be dissolved or dispersed with a resin component. As the resin components, for example, those exemplified in the positive hole-injecting and transporting layers can be applied.

**[0058]** Materials of the protective layer are sufficient if they have the function of preventing substances which accelerate deterioration of the device or element, such as water or oxygen, from entering the device or element. Specific examples of the materials include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti and Ni; metal oxides such as MgO, SiO, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, GeO, NiO, CaO, BaO, Fe<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>; metal fluorides such as MgF<sub>2</sub>, LiF, AlF<sub>3</sub> and CaF<sub>2</sub>; metal nitrides such as SiN<sub>x</sub> and SiO<sub>x</sub>N<sub>y</sub>; polyethylene, polypropylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymers of chlorotrifluoroethylene and dichlorodifluoroethylene, copolymers prepared by copolymerizing a monomer mixture of tetrafluoroethylene and at least one comonomer, fluorine-containing copolymers having cyclic structures on the main chain, water-absorbing substances having a water absorption rate of at least 1%, and moisture-proof substances having a water absorption rate of at most 0.1%.

**[0059]** The forming process of the protective layer is also not particularly restricted, and, for example, a vacuum deposition process, a sputtering process, a reactive sputtering process, an MBE (molecular beam epitaxy) process, a cluster ion beam process, an ion-plating process, a plasma polymerization process (a high frequency exciting ion-plating process), a plasma CVD process, a laser CVD process, a heat CVD process, a gas source CVD process, a coating process, a printing process, and a transfer process can be applied.

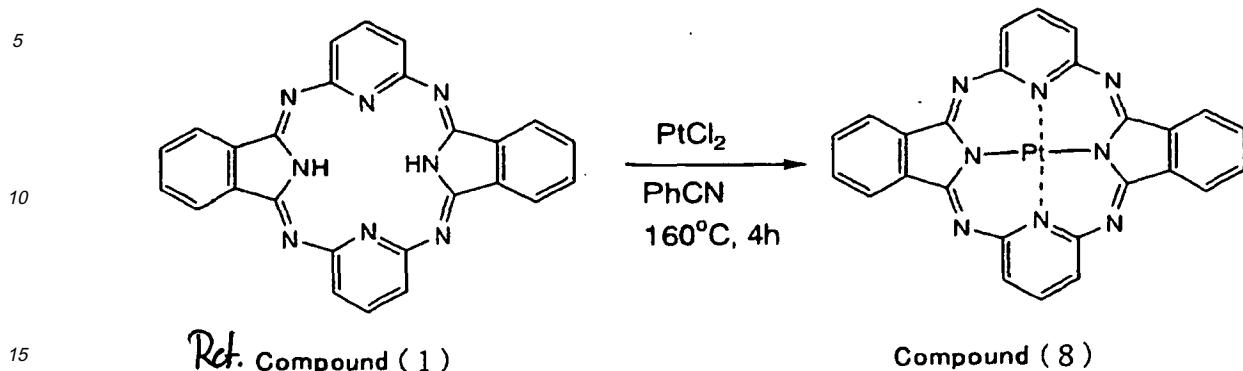
**[0060]** The luminescent device of the present invention is excellent in luminescent properties and long in life. Further, the novel platinum compound of the present invention is preferable, for example, for producing the luminescent device.


## EXAMPLES

**[0061]** The present invention will be explained in more detail with reference to the examples below, but the embodiments for carrying out the present invention should not be construed to be limited to these.

### Synthesis of Ref. compound (1)

**[0062]** Ref. Compound (1) was synthesized, according to the method described in Journal of Chemical Society, 5008 (1952). That is, 40 ml of n-butanol was added to 6 g of 1,3-diiminoindoline and 4.6 g of 2,6-diaminopyridine, followed by heating under reflux for 9 hours. After cooling to room temperature, the reaction mixture was filtered. The precipitate was washed with 40 ml of n-butanol and dispersed in 50 ml of nitrobenzene. After the dispersion was heated under reflux, recrystallization was conducted by cooling, to yield 7 g of Ref. Compound (1).


**[0063]** With respect to the thus-obtained compound, a peak of m/z=440 was detected in DP-EI-MS measurement.



### Synthesis of Compound (8)

**[0064]** To 0.1 g of Ref Compound (1) and 0.21 g of PtCl<sub>2</sub>, 10 ml of benzonitrile was added, followed by stirring, at an inner temperature of 160 °C under a nitrogen atmosphere, for 4 hours. After cooling to room temperature, the reaction mixture was filtered. The precipitate was washed with 20 ml of benzonitrile and 30 ml of methanol, to yield 0.05 g of Compound (8).

[0065] With respect to the thus-obtained compound, a peak of m/z=633 was detected in DP-EI-MS measurement.



#### Comparative Example 1

[0066] A cleaned ITO substrate was placed in a vapor deposition apparatus, and on the substrate, CuPc (copper phthalocyanine) was vapor-deposited, to form a film of 10 nm thickness, and then  $\alpha$ -NPD (4,4'-bis-[N-(1-naphthyl)-N-phenylamino]biphenyl) was vapor-deposited, to form a film of 40 nm thickness, and then Alq<sub>3</sub> (tris(8-hydroxyquinolinato)aluminum complex) was vapor-deposited, to form a film of 60 nm thickness, in this order. Then, a patterned mask (for adjusting each emission area to 4 mm x 5 mm) was set on the above-obtained organic thin layers, and further thereon, in the vacuum deposition apparatus, lithium fluoride was vapor-deposited, to form a film of 3 nm thickness, followed by vapor-deposition of a 400 nm-thick Al film. The thus-produced EL device was subjected to luminescence by applying, thereto, a DC constant voltage, by means of a source measure unit, Model 2400 (trade name), made by Toyo Technica Co., Ltd., and the luminance shown by the EL device was measured using a luminometer BM-8 (trade name), made by Topcon Co. As a result of the measurement, the light emission given by the EL device was found to be a green luminescence of 200 cd/m<sup>2</sup> with quantum efficiency of 1.1%. After the EL device was subjected to luminescence of 100 cd/m<sup>2</sup> for 10 hours, dark spots were observed with the naked eye.

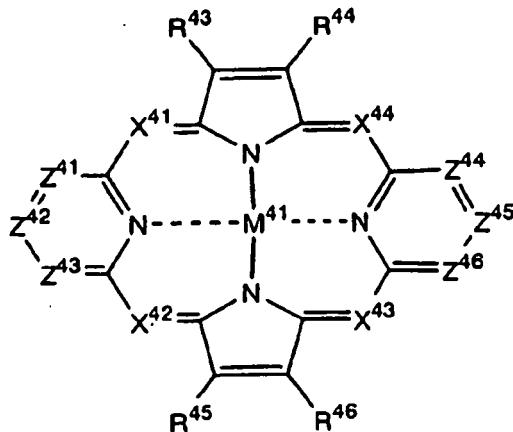
#### Example 1

[0067] A cleaned ITO substrate was placed in a vapor deposition apparatus, and on the substrate, Compound (8) of the present invention was vapor-deposited, to form a film of 5 nm thickness, and then  $\alpha$ -NPD (4,4'-bis-[N-(1-naphthyl)-N-phenylamino]biphenyl) was vapor-deposited, to form a film of 60 nm thickness, and then Alq<sub>3</sub> (tris(8-hydroxyquinolinato)aluminum complex) was vapor-deposited, to form a film of 40 nm thickness, in this order. Then, a patterned mask (for adjusting each emission area to 4 mm x 5 mm) was set on the above-obtained organic thin layers, and further thereon, in the vacuum deposition apparatus, lithium fluoride was vapor-deposited, to form a film of 3 nm thickness, followed by vapor-deposition of a 400 nm-thick Al film. The thus-produced EL device was subjected to luminescence by applying, thereto, a DC constant voltage, by means of a source measure unit, Model 2400, made by Toyo Technica Co., Ltd., and the luminance shown by the EL device was measured using a luminometer BM-8, made by Topcon Co. As a result of the measurement, it was found that the EL device gave a green luminescence of 200 cd/m<sup>2</sup> with quantum efficiency of 1.4%. After the EL device was subjected to luminescence of 100 cd/m<sup>2</sup> for 10 hours, no dark spots were observed with the naked eye.

[0068] Similarly, by employing other compounds of the present invention, luminescent devices giving high luminous efficiency and long life can also be produced. In addition, the compounds of the present invention enable to emit a blue to green phosphorescence, and therefore blue to green luminescent devices containing the compound of the present invention can be prepared.

#### INDUSTRIAL APPLICABILITY

[0069] The luminescent device of the present invention is able to give high luminous efficiency. The luminescent device of the present invention can be preferably used in such fields as display devices, displays, backlights, electrophotography, illuminating light sources, recording light sources, exposing light sources, reading light sources, signs, signboards, interiors, and optical communications. Further, the compounds of the present invention can be utilized for the electro-


luminescent devices, as well as medical usage, brightening agents, photographic materials, UV absorbing materials, laser dyes, recording media materials, inkjet pigments, color filter dyes and color conversion filters.

[0070] Having described our invention as related to the present embodiments, it is our intention that the invention not be limited by any of the details of the description, unless otherwise specified, but rather be construed broadly within its scope as set out in the accompanying claims.

## Claims

10 1. An organic electroluminescent device, comprising a pair of electrodes, and at least one organic layer including a luminescent layer between the electrodes, wherein said organic layer comprises at least one compound represented by formula (4):

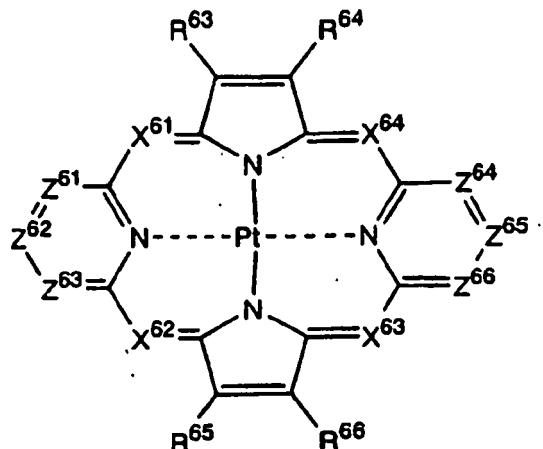
15 **Formula (4)**



wherein, in formula (4),

35  $R^{43}$ ,  $R^{44}$ ,  $R^{45}$  and  $R^{46}$  each represent an alkyl group, an aryl group, or a group that forms a ring structure when  $R^{43}$  and  $R^{44}$  or  $R^{45}$  and  $R^{46}$  bond to each other;  
 $X^{41}$ ,  $X^{42}$ ,  $X^{43}$  and  $X^{44}$  each represent a nitrogen atom;  
 $Z^{41}$ ,  $Z^{42}$ ,  $Z^{43}$ ,  $Z^{44}$ ,  $Z^{45}$  and  $Z^{46}$  each represent a substituted or unsubstituted carbon atom;  
 $M^{41}$  represents a copper ion or a platinum ion.

40 2. The organic electroluminescent device as claimed in claim 1, wherein the organic layer is at least one of a luminescent layer and a hole- injection layer.


3. A compound represented by formula (6):

45

50

55

## Formula (6)



wherein, in formula (6),

25  $R^{63}$ ,  $R^{64}$ ,  $R^{65}$  and  $R^{66}$  each represent an alkyl group, an aryl group, or a group that forms a ring structure when  $R^{63}$  and  $R^{64}$  or  $R^{65}$  and  $R^{66}$  bond to each other;  
 $X^{61}$ ,  $X^{62}$ ,  $X^{63}$  and  $X^{64}$  each represent a nitrogen atom;  
 $Z^{61}$ ,  $Z^{62}$ ,  $Z^{63}$ ,  $Z^{64}$ ,  $Z^{65}$  and  $Z^{66}$  each represent a substituted or unsubstituted carbon atom.

30 4. The organic electroluminescent device as claimed in claim 1 or 2, wherein the compound represented by formula (4) emits a phosphorescence.

5. The organic electroluminescent device as claimed in any one of claims 1 to 2 and 4, wherein the luminescent layer contains at least one host material, and at least one of the compounds represented by formula (4).

35 6. The organic electroluminescent device as claimed in claim 5, wherein the host material in the luminescent layer is a complex.

7. The organic electroluminescent device as claimed in claim 5 or 6, wherein the luminescent layer contains at least two host materials.

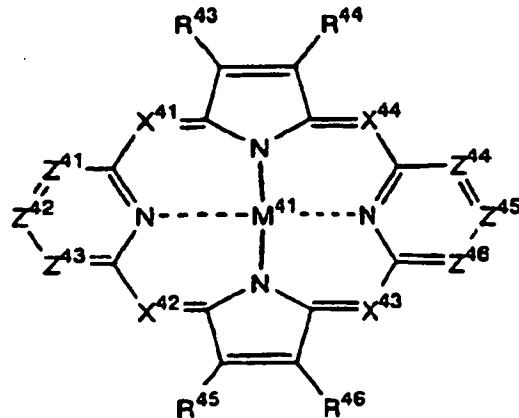
## 40 Patentansprüche

45 1. Organische Elektrolumineszenzvorrichtung, die ein Elektrodenpaar und mindestens eine organische Schicht umfasst, die eine Lumineszenzschicht zwischen den Elektroden einschließt, worin die organische Schicht mindestens eine Verbindung der Formel (4) umfasst:

## Formel (4)

5

10


15

20

25

30

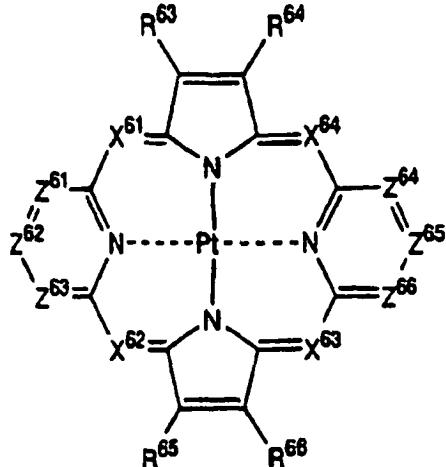
35



worin in Formel (4)

$R^{43}$ ,  $R^{44}$ ,  $R^{45}$  und  $R^{46}$  jeweils eine Alkylgruppe, eine Arylgruppe oder eine Gruppe ist, die eine Ringstruktur bildet, wenn  $R^{43}$  und  $R^{44}$  oder  $R^{45}$  und  $R^{46}$  miteinander verbunden sind;  
 $X^{41}$ ,  $X^{42}$ ,  $X^{43}$  und  $X^{44}$  jeweils ein Stickstoffatom ist;  
 $Z^{41}$ ,  $Z^{42}$ ,  $Z^{43}$ ,  $Z^{44}$ ,  $Z^{45}$  und  $Z^{46}$  jeweils ein substituiertes oder unsubstituiertes Kohlenstoffatom ist;  
 $M^{41}$  ein Kupferion oder ein Platinion ist.

2. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 1, worin die organische Schicht mindestens eine ist, die aus einer Lumineszenzschicht und einer Loch-Injektionsschicht ausgewählt ist.
3. Verbindung der Formel (6):


## Formel (6)

35

40

45

50



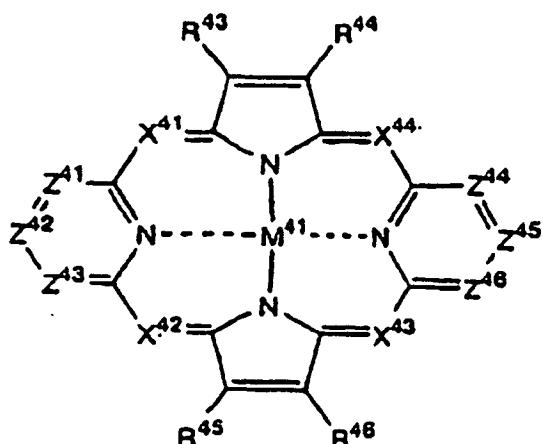
Worin in Formel (6)  $R^{63}$ ,  $R^{64}$ ,  $R^{65}$  und  $R^{66}$  jeweils eine Alkylgruppe, eine Arylgruppe oder eine Gruppe ist, die eine Ringstruktur bildet, wenn  $R^{63}$ ,  $R^{64}$  oder  $R^{65}$  und  $R^{66}$  miteinander verbunden sind;

$X^{61}$ ,  $X^{62}$ ,  $X^{63}$  und  $X^{64}$  jeweils ein Stickstoffatom ist;  
 $Z^{61}$ ,  $Z^{62}$ ,  $Z^{63}$ ,  $Z^{64}$ ,  $Z^{65}$  und  $Z^{66}$  jeweils ein substituiertes oder unsubstituiertes Kohlenstoffatom ist.

4. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 1 oder 2, worin die Verbindung der Formel (4) eine Phosphoreszenz ausstrahlt.

5. Organische Elektrolumineszenzvorrichtung gemäß gemäß mindestens einem der Ansprüche 1 bis 2 und 4, worin die Lumineszenzschicht mindestens ein Gastmaterial und mindestens die Verbindung der Formel (4) enthält.

6. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 5, worin das Gastmaterial in der Lumineszenzschicht ein Komplex ist.


10 7. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 5 oder 6, worin die Lumineszenzschicht mindestens zwei Gasmaterialien umfasst.

## Revendications

15 1. Dispositif électroluminescent organique comprenant une paire d'électrodes, et au moins une couche organique comprenant une couche luminescente entre les électrodes, dans lequel ladite couche organique comprend au moins un composé représenté par la formule (4) :

20

## Formule (4)



dans laquelle, dans la formule (4),

45  $R^{43}$ ,  $R^{44}$ ,  $R^{45}$  et  $R^{46}$  représentent chacun un groupe alkyle, un groupe aryle ou un groupe qui forme une structure cyclique lorsque  $R^{43}$  et  $R^{44}$  ou  $R^{45}$  et  $R^{46}$  sont liés l'un à l'autre ;  
 $X^{41}$ ,  $X^{42}$ ,  $X^{43}$  et  $X^{44}$  représentent chacun un atome d'azote ;  
 $Z^{41}$ ,  $Z^{42}$ ,  $Z^{43}$ ,  $Z^{44}$ ,  $Z^{45}$  et  $Z^{46}$  représentent chacun un atome de carbone substitué ou non substitué ;  
 $M^{41}$  représente un ion cuivre ou un ion platine.

50 2. Dispositif électroluminescent organique selon la revendication 1, dans lequel la couche organique est au moins une parmi une couche luminescente et une couche d'injection de trou.

3. Composé représenté par la formule (6) :

55

## Formule (6)

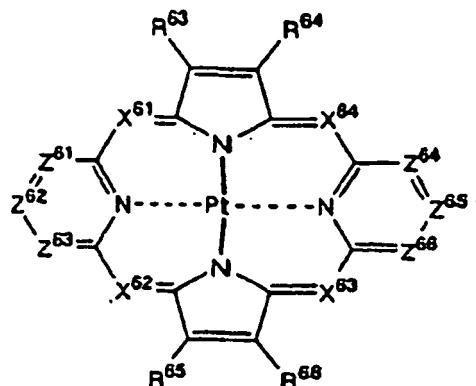
5

10

15

20

25


35

40

45

50

55



dans laquelle, dans la formule (6),

$R^{63}$ ,  $R^{64}$ ,  $R^{65}$  et  $R^{66}$  représentent chacun un groupe alkyle, un groupe aryle ou un groupe qui forme une structure cyclique lorsque  $R^{63}$  et  $R^{64}$  ou  $R^{65}$  et  $R^{66}$  sont liés l'un à l'autre ;  
 $X^{61}$ ,  $X^{62}$ ,  $X^{63}$  et  $X^{64}$  représentent chacun un atome d'azote ;  
 $Z^{61}$ ,  $Z^{62}$ ,  $Z^{63}$ ,  $Z^{64}$ ,  $Z^{65}$  et  $Z^{66}$  représentent chacun un atome de carbone substitué ou non substitué.

4. Dispositif électroluminescent organique selon la revendication 1 ou 2, dans lequel le composé représenté par la formule (4) émet une phosphorescence.
- 30 5. Dispositif électroluminescent organique selon l'une quelconque des revendications 1 à 2 et 4, dans lequel la couche luminescente contient au moins une matière-hôte, et au moins un des composés représentés par la formule (4).
6. Dispositif électroluminescent organique selon la revendication 5, dans lequel la matière-hôte dans la couche luminescente est un complexe.
- 35 7. Dispositif électroluminescent organique selon la revendication 5 ou 6, dans lequel la couche luminescente contient au moins deux matières-hôtes.

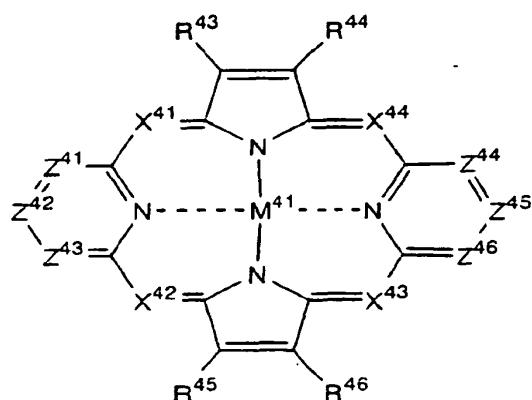
**REFERENCES CITED IN THE DESCRIPTION**

*This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.*

**Patent documents cited in the description**

- JP 57051781 A [0002]
- WO 00070655 A [0003]
- US 6303238 B1 [0003]
- US 6653564 B1 [0003]
- WO 9920081 A2 [0004]
- EP 0278757 A2 [0005]
- JP 9013024 A [0006]
- JP 2003208109 A [0037]
- JP 2003 A [0037]
- JP 248441 A [0037]
- JP 2003257651 A [0037]
- JP 2003282261 A [0037]

**Non-patent literature cited in the description**


- *Applied Physics Letters*, 1996, vol. 15, 69 [0002]
- *Journal of Chemical Society*, 1952, 5008 [0029]  
[0062]

|                |                                                                                                                                                                                                 |         |            |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| 专利名称(译)        | 有机电致发光器件和铂化合物                                                                                                                                                                                   |         |            |
| 公开(公告)号        | <a href="#">EP1620525B1</a>                                                                                                                                                                     | 公开(公告)日 | 2011-09-28 |
| 申请号            | EP2004731727                                                                                                                                                                                    | 申请日     | 2004-05-07 |
| [标]申请(专利权)人(译) | 富士摄影胶片公司                                                                                                                                                                                        |         |            |
| 申请(专利权)人(译)    | 富士胶片CO.LTD.                                                                                                                                                                                     |         |            |
| 当前申请(专利权)人(译)  | 富士胶片株式会社                                                                                                                                                                                        |         |            |
| [标]发明人         | IGARASHI TATSUYA C/O FUJI PHOTO FILM CO LTD<br>WATANABE KOHSUKE C/O FUJI PHOTO FILM CO LTD<br>ICHIJIMA SEIJI C/O FUJI PHOTO FILM CO LTD<br>ISE TOSHIHIRO C/O FUJI PHOTO FILM CO LTD             |         |            |
| 发明人            | IGARASHI, TATSUYA, C/O FUJI PHOTO FILM CO. LTD<br>WATANABE, KOHSUKE, C/O FUJI PHOTO FILM CO. LTD<br>ICHIJIMA, SEIJI, C/O FUJI PHOTO FILM CO. LTD<br>ISE, TOSHIHIRO, C/O FUJI PHOTO FILM CO. LTD |         |            |
| IPC分类号         | C09K11/06 H05B33/14 H05B33/22 C07D471/22 C07F15/00 C07D487/22 H01L51/00 H01L51/50                                                                                                               |         |            |
| CPC分类号         | H01L51/0087 C07D471/22 C07D487/22 C09K11/06 C09K2211/1029 C09K2211/185 H01L51/0078<br>H01L51/5012 H01L51/5016 H05B33/14 Y10S428/917                                                             |         |            |
| 优先权            | 2004088575 2004-03-25 JP<br>2003132257 2003-05-09 JP                                                                                                                                            |         |            |
| 其他公开文献         | <a href="#">EP1620525A1</a><br><a href="#">EP1620525A4</a>                                                                                                                                      |         |            |
| 外部链接           | <a href="#">Espacenet</a>                                                                                                                                                                       |         |            |

### 摘要(译)

一种有机电致发光器件，其具有一对电极，以及至少一个有机层，所述至少一个有机层在电极之间包括发光层，其中所述有机层包含至少一种式(1)的化合物：其中Q11是用于形成氮的原子-含杂环Z11至Z13各自独立地表示CR，其中R表示取代基，CH或N；n11为0或1；M11是金属或硼离子，可以进一步具有配体。式(6)的化合物：式中，R63~R66为氢原子或取代基。X61至X64和Z61至Z66各自为CR，其中R表示取代基，CH或N。

Formula (4)

