

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 2 017 813 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.01.2009 Bulletin 2009/04

(51) Int Cl.:
G09G 3/34 (2006.01)

(21) Application number: 08012742.6

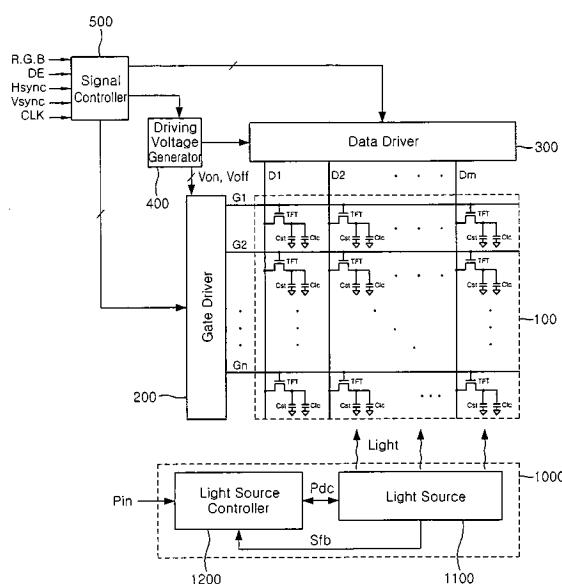
(22) Date of filing: 15.07.2008

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR**
Designated Extension States:
AL BA MK RS

(30) Priority: 20.07.2007 KR 20070072999

(71) Applicant: **Samsung Electronics Co., Ltd.**
Yeongtong-gu
Suwon-city, Gyeonggi-do 442-742 (KR)

(72) Inventors:


- Ye, Byoung-Dae
Yongin-si,
Gyeonggi-do (KR)
- Kim, Gi-Cherl
Giheung-gu,
Yongin-si,
Gyeonggi-do (KR)
- Kang, Eui-Jeong
Chungcheongnam-do (KR)

(74) Representative: **Dr. Weitzel & Partner**
Friedenstrasse 10
89522 Heidenheim (DE)

(54) Light-source module for display device and display device having the same

(57) A light-source module for a display device and a display device having the same, in which the light-source module includes a plurality of light-emitting units, a current difference controller, and a converter. The light-emitting units are connected in parallel between a driving power input terminal and a ground terminal to emit light by the driving power and to output respective feedback control signals. The current difference controller is configured to output a plurality of power control signals according to the respective feedback control signals. The converter is configured to change a current of the driving power provided to the light-emitting units according to the power control signals. The amounts of currents flowing through the light emitting units each having a plurality of light emitting diodes are measured and the levels of voltages applied to the light-emitting units are changed according to the measurement results. Accordingly, a current difference between the light emitting units can be reduced and the brightness uniformity of the light source can be improved.

FIG. 1

Description

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to Korean Patent Application No. 10-2007-0072999 filed on July 20, 2007 and all the benefits accruing therefrom under 35 U.S.C. §119, the contents of which are incorporated by reference in their entirety.

BACKGROUND

[0002] The present disclosure relates to a light-source module for a display device and a display device having the same and, more particularly, to a light-source module for a display device that can reduce a current difference between a plurality of light emitting diode ("LED") strings by detecting currents flowing through the LED strings.

[0003] A liquid crystal display ("LCD"), which is one kind of flat panel display, is a light receiving device that is not self-luminescent. Thus, the LCD displays images using light supplied from a separate light-source module, for example, a backlight assembly. The light-source module includes a light-source and a light source driver driving the light source. To achieve light weight and for compactness, the light-source module uses an LED string, which has a plurality of LEDs connected in series, as the light source. A plurality of LED strings are connected in parallel in order to fabricate a planar light source.

[0004] In the related art, a light-source module is configured to control the total current of the LED strings that are connected in parallel. Therefore, if any one of the LED strings malfunctions, the light uniformity of the light source is degraded. For example, assuming that the light-source module has three LED strings, there is a case where the amount of a current flowing through the first LED string decreases due to a malfunction of the first LED string. In this case, the amounts of currents flowing through the second and third LED strings increase, because the total current amount is constant. Thus, the brightness of the first LED string decreases and the brightness of the second and third LED strings increases, leading to the non-uniformity of the brightness of the light source. Moreover, the LEDs of the second and third LED strings with an increased current will degrade more rapidly than the LEDs of the first LED string with a reduced current.

SUMMARY

[0005] An exemplary embodiment of the present invention provides a light-source module for a display device and a display device having the same. The light source module includes LED strings each having a plurality of LEDs and controls a current flowing through the LED strings, thereby reducing a current difference between the LED strings and providing the brightness uniformity of the light source.

[0006] In accordance with an exemplary embodiment, a light-source module includes: a plurality of light emitting units connected in parallel between a driving power input terminal and a ground terminal to emit light using the driving power and to output respective feedback control signals; a current difference controller configured to output a plurality of power control signals according to the respective feedback control signals; and a converter configured to change a current of the driving power provided to the plurality of light emitting units according to the power control signals.

[0007] Each of the light emitting units may include: a control node configured to output the feedback control signal; an LED string including a plurality of LEDs and connected between the driving power input terminal and the control node; and a power detector connected between the control node and the ground terminal.

[0008] The current difference controller may output a plurality of power control signals having a first voltage level if the voltage levels of the feedback control signals are within a predetermined operating range, and may output a plurality of power control signals having a second voltage level if the voltage level of at least one of the feedback control signals is out of the predetermined operating range.

[0009] The current difference controller may output a first power control signal having the second voltage level if the voltage level of at least one of the feedback control signals is lower than the lower limit of the predetermined operating range, and may output a second power control signal having the second voltage level if the voltage level of at least one of the feedback control signals is higher than the upper limit of the predetermined operating range.

[0010] The converter may increase the voltage level of the driving power according to the first power control signal having the second voltage level, and may decrease the voltage level of the driving power according to the second power control signal having the second voltage level.

[0011] The predetermined operating range may have the upper and lower limits of the current amount of the driving power selected so as to maintain the brightness uniformity of the light emitting units.

[0012] The current difference controller may output the power control signals using at least one reference voltage and the feedback control signals.

[0013] The current difference controller may include: a first signal generator configured to generate a first power control signal using a first reference voltage and at least one of the feedback control signals; and a second signal generator configured to generate a second power control signal using a second reference voltage and at least one of the feedback control signals.

[0014] The first signal generator may include: a first node configured to receive a fixed power; a signal converter configured to change the voltage of the fixed power according to the voltage level of at least one of the feed-

back control signals; and a first signal output unit configured to output the first power control signal by comparing the voltage of the fixed power with the first reference voltage.

[0015] The voltage level of the first power control signal may be changed if the voltage of the fixed power is lower than the first reference voltage.

[0016] The signal converter may include a plurality of LEDs each having a cathode connected to the corresponding feedback control signal input terminal and an anode connected to the first node.

[0017] The first signal output unit may include: an amplifier having an inverting input terminal and a non-inverting input terminal to which the first reference voltage is applied; an input resistor connected between the inverting input terminal and the first node; a feedback resistor connected between the inverting input terminal and an output terminal of the amplifier; and an output resistor connected between the output terminal of the amplifier and the first power control signal output terminal.

[0018] The second signal generator may include: a conversion signal output unit configured to output a conversion signal according to the voltage level of at least one of the feedback control signals; and a second signal output unit configured to output the second power control signal by comparing the voltage of the conversion signal with the second reference voltage.

[0019] The voltage level of the second power control signal may be changed if the voltage of the conversion signal is higher than the second reference voltage.

[0020] The conversion signal output unit may include a plurality of LEDs each having an anode connected to the corresponding feedback control signal input terminal and a cathode connected to the conversion signal output terminal.

[0021] The second signal output unit may include: an amplifier having an inverting input terminal and a non-inverting input terminal to which the second reference voltage is applied; an input resistor connected between the inverting input terminal and the conversion signal output terminal; a feedback resistor connected between the inverting input terminal and an output terminal of the amplifier; and an output resistor connected between the output terminal of the amplifier and the second power control signal output terminal.

[0022] The converter may increase a current of the driving power according to the first power control signal, and may decrease the current of the driving power according to the second power control signal.

[0023] A plurality of the current difference controllers may be provided such that the current difference controllers receive the respective feedback control signals from the light emitting units.

[0024] In accordance with an exemplary embodiment, a method of driving a light-source module includes: providing driving power to a plurality of LED strings to emit light; detecting power provided to each of the LED strings; and changing the driving power according to the power

detection results.

[0025] Detecting the power may include detecting the voltage level of the power applied to each of the LED strings.

[0026] The method may further include, after detecting the power, comparing the detected voltage level of the power with at least one reference voltage to generate a plurality of power control signals.

[0027] Changing the driving power may include changing the current amount of the driving power according to the power control signal.

[0028] The method may further include, after detecting the power: generating first and second power control signals having a first voltage level if the voltage levels of the power detected from the LED strings are within a predetermined operating range; generating the first power control signal having a second voltage level if the voltage level of the power detected from at least one of the LED strings is lower than the lower limit of the predetermined

operating range; and generating the second power control signal having the second voltage level if the voltage level of the power detected from at least one of the LED strings is higher than the upper limit of the predetermined operating range.

[0029] Changing the driving power may provide a driving power identical to the previous driving power to the LED strings according to the first and second power control signals having the first voltage level, and may provide another driving power different in current amount from

the previous driving power to the LED strings according to the first and second power control signals having the second voltage level.

[0030] Changing the driving power may increase the voltage level of the driving power according to the first

power control signal having the second power level, and may decrease the voltage level of the driving power according to the second power control signal having the second power level.

[0031] In accordance with an exemplary embodiment,

a display device includes: a display panel; a controller configured to control an operation of the display panel; a plurality of light emitting units connected in parallel between a driving power input terminal and a ground terminal to emit light using the driving power and to output

respective feedback control signals; a current difference controller configured to output a plurality of power control signals according to the respective feedback control signals; and a converter configured to change a current of the driving power provided to the light emitting units according to the power control signals.

[0032] The current difference controller may output a plurality of power control signals having a first voltage level if the voltage levels of the feedback control signals are within a predetermined operating range, and may

output a plurality of power control signals having a second voltage level if the voltage level of at least one of the feedback control signals is out of the predetermined operating range.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Exemplary embodiments of the present invention will be understood in more detail from the following descriptions taken in conjunction with the accompanying drawings, in which:

[0034] FIG. 1 is a block diagram of a display device in accordance with an exemplary embodiment;

[0035] FIG. 2 is a block diagram of a light source module in accordance with the exemplary embodiment;

[0036] FIG. 3 is a circuit diagram of a current difference controller in accordance with the exemplary embodiment;

[0037] FIG. 4 is a circuit diagram of a power supply unit in accordance with the exemplary embodiment;

[0038] FIG. 5 is a circuit diagram of a converter in accordance with the exemplary embodiment; and

[0039] FIG. 6 is a circuit diagram of a current difference controller in accordance with an exemplary embodiment.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0040] Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those of ordinary skill in the art.

[0041] FIG. 1 is a block diagram of a display device in accordance with an exemplary embodiment of the present invention. FIG. 2 is a block diagram of a light source module used in the exemplary embodiment shown in FIG. 1. FIG. 3 is a circuit diagram of a current difference controller used in the exemplary embodiment shown in FIG. 2. FIG. 4 is a circuit diagram of a power supply unit in accordance with an exemplary embodiment. FIG. 5 is a circuit diagram of a converter used in the exemplary embodiment shown in FIG. 2. FIG. 6 is a circuit diagram of a current difference controller in accordance with an exemplary embodiment of the present invention.

[0042] Referring to FIGS. 1 to 5, a display device in accordance with an exemplary embodiment includes a display panel 100, a gate driver 200, a data driver 300, a driving voltage generator 400, a signal controller 500, and a light-source module 1000.

[0043] The display panel 100 is driven according to the operations of the gate driver 200 and the data driver 300, and displays an image using light from the light source module 1000. As illustrated in FIG. 1, the display panel 100 includes a plurality of gate lines G1 to Gn, a plurality of data lines D1 to Dm, and a plurality of unit pixels. The plurality of gate lines G1 to Gn extends in one direction, and the plurality of data lines D1 to Dm extends in another

direction intersecting the gate lines G1 through Gn. At least one end of each of the gate lines G1 to Gn is connected to the gate driver 200, and at least one end of each of the data lines D1 to Dm is connected to the data driver 300.

[0044] As illustrated in FIG. 1, each of the unit pixels includes a thin film transistor TFT, a storage capacitor Cst, and a liquid crystal capacitor Clc. The liquid crystal capacitor Clc includes a lower pixel electrode, an upper common electrode, with a liquid crystal interposed between the pixel electrode and the common electrode. Although not illustrated in FIG. 1, a color filter is disposed on the liquid crystal capacitor Clc. The pixel electrode and the common electrode may be divided into a plurality of domains. It will be readily understood by those of ordinary skill in the art that various modifications and changes can be made to the display panel 100. For example, a plurality of pixels may be provided in a unit pixel region. Also, the unit pixel region may be longer or shorter in the longitudinal direction than in the lateral direction. Also, the unit pixel region may have various shapes, as well as a generally square shape.

[0045] Controllers providing signals for driving the display panel 100 are disposed outside the display panel 100. The controllers include the gate driver 200, the data driver 300, the driving voltage generator 400, and the signal controller 500.

[0046] In normal operation, the signal controller 500 receives an input image signal and an input control signal from an external graphic controller (not illustrated). The input image signal includes pixel data R, G, and B. The input control signal is used to control the display of an image display signal. The input control signal includes a vertical sync signal Vsync, a horizontal sync signal Hsync, a main clock CLK, and a data enable signal DE. The signal controller 500 processes pixel data according to the operating conditions of the display panel 100. By doing so, the pixel data are rearranged according to the pixel arrangement of the display panel 100. Also, the signal controller 500 generates gate control signals and data control signals and transfers the gate control signals and the data control signals respectively to the gate driver 200 and the data driver 300. The gate control signals include an output enable signal indicating the start of the output of a gate turn-on voltage Von, a gate clock signal, and a vertical sync start signal. The data control signal includes a data clock signal, an inverting signal inverting the polarity of a gradation voltage with respect to a common voltage, a load signal for applying a data voltage on the corresponding data line, and a sync start signal indicating the start of transfer of pixel data.

[0047] The driving voltage generator 400 generates a variety of driving voltages for the display device using external power received from an external power supply (not shown). The driving voltage generator 400 generates a reference voltage, a gate turn-on voltage Von, a gate turn-off voltage Voff, and a common voltage. According to the control signal from the signal controller

500, the driving voltage generator 400 applies the gate turn-on voltage V_{on} and the gate turn-off voltage V_{off} to the gate driver 200 and applies the reference voltage to the data driver 300. The reference voltage is used to generate a gradation voltage for driving the liquid crystal in the display panel 100.

[0048] The gate driver 200 is connected to the plurality of gate lines G_1 to G_n . According to a control signal from the signal controller 500, the gate driver 200 provides the gate turn-on voltage V_{on} of the driving voltage generator 400 to the gate lines G_1 to G_n sequentially. In this way, operation of each thin film transistor TFT can be controlled.

[0049] The data driver 300 is connected to the plurality of data lines D_1 to D_m . The data driver 300 generates a gradation voltage using a control signal from the signal controller 500 and a reference voltage $GVDD$ from the driving voltage generator 400. Also, the data driver 300 applies a corresponding gradation voltage to each of the data lines D_1 to D_m . That is, the data driver 300 converts input digital pixel data into an analog data signal, that is, a gradation voltage, and outputs the resulting signal.

[0050] The signal controller 500, the driving voltage generator 400, the data driver 300, and the gate driver 200 are fabricated in integrated circuit (IC) chips and are mounted on a printed circuit board (PCB) (not shown). The PCB is electrically connected through a flexible printed circuit board (FPCB) (not shown) to the display panel 100. The display panel 100 includes an upper substrate and a lower substrate that are not shown in FIG. 1. The substrates may be glass substrates or transparent plastic substrates. The gate driver 200 and the data driver 300 may be mounted on the transparent substrate of the display panel 100. Also, the gate driver 200 may be formed in a process stage on the lower substrate of the display panel 100. That is, the gate driver 200 may be formed simultaneously with the formation of the thin film transistors TFT on the lower substrate.

[0051] As illustrated in FIG. 1, the light-source module 1000 includes a light source 1100 and a light-source controller 1200. The light source 1100 provides light to the display panel 100, and the light-source controller 1200 controls an operation of the light source 1100. The light source 1100 provides a feedback control signal S_{fb} fed back to the light source controller 1200. The operation of the light-source controller 1200 is controlled according to the feedback control signal S_{fb} .

[0052] The light source 1100 includes a plurality of light emitting units 1110 shown in FIG. 2. The plurality of light emitting units 1110 are connected in parallel between an input terminal Q_{in} and a ground terminal. Referring to FIG. 2, the light source 1100 includes three light emitting units 1110 that are connected in parallel. The number of light emitting units 1110 in a light source is not limited thereto, however, and may be variable.

[0053] Each of the light emitting units 1110 includes an LED string 1111 and a power detector 1112 that are connected in series.

[0054] As illustrated in FIG. 2, the LED string 1111 includes a plurality of LEDs connected in series. Alternatively, the LEDs of the LED string may be connected in parallel and/or antiparallel. The number of LEDs in each of the LED strings 1111 in the light emitting units 1110 may be the same. Although not illustrated, the light emitting unit 1110 may include a substrate where a plurality of LEDs are mounted, and a power supply terminal supplying the power for the LEDs. The substrate may be formed in a bar shape or in a plate shape. When the substrate is formed in a bar shape, the LEDs are arranged in a line configuration. When the substrate is formed in a plate shape, the LEDs are arranged in a matrix configuration. Each of the light emitting units 1110 emits light as a separate channel.

[0055] The plurality of light emitting units 1110 have control nodes Q_{c1} , Q_{c2} , and Q_{c3} , respectively. That is, in this exemplary embodiment, the light source 1100 has three light emitting units 1110. Accordingly, the light source 1100 has three control nodes Q_{c1} , Q_{c2} , and Q_{c3} .

[0056] The LED string 1111 is connected between the input terminal Q_{in} and the control nodes Q_{c1} , Q_{c2} , and Q_{c3} . The power detectors 1112 are connected between the ground terminal and the control nodes Q_{c1} , Q_{c2} , and Q_{c3} . The LED string 1111 emits light according to the DC power applied through the input terminal Q_{in} . The power detector 1112 detects the amount of a current flowing through the LED string 1111, and each LED string 1111 includes its own power detector 1112. As illustrated in FIG. 3, the power detector 1112 includes a resistor. Using a voltage applied across the resistor, the power detector 1112 detects the amount of current flowing through the LED string 1111. The resistance of the resistors of the power detectors 1112 in the light emitting units 1110 may be the same. According to the detected current amount, that is, the voltage applied across the resistor, the light emitting units 1110 generate feedback control signals S_{fb-1} , S_{fb-2} and S_{fb-3} , respectively, as shown in FIG. 3. The feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} have the same power level as the control nodes Q_{c1} , Q_{c2} , and Q_{c3} , respectively.

[0057] The light source controller 1200 operates according to external DC power P_{in} and the feedback control signal S_{fb-1} , S_{fb-2} , and S_{fb-3} to provide driving power P_{dc} to the light source 1100.

[0058] As illustrated in FIG. 2, the light source controller 1200 includes a current difference controller 1220 and a converter 1210. The current difference controller 1220 receives the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} and outputs a plurality of power control signals S_{min-p} and S_{max-p} . The converter 1210 outputs the driving power P_{dc} according to the external power P_{in} and the power control signals S_{min-p} and S_{max-p} .

[0059] The current difference controller 1220 outputs the plurality of power control signals S_{min-p} and S_{max-p} according to the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} , that is, the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} in the plurality of light emitting units 1110.

The plurality of power control signals include a first power control signal S_{min-p} and a second power control signal S_{max-p} . The level of the first power control signal S_{min-p} is changed if the voltages of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} that is, the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} , are lower than a first reference voltage V_{ref1} . Likewise, the level of the second power control signal S_{max-p} is changed if the voltages of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} that is, the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} , are lower than a second reference voltage V_{ref2} .

[0060] As illustrated in FIG. 3, the current difference controller 1220 includes a first signal generator 1221 and a second signal generator 1222. The first signal generator 1221 generates the first power control signal S_{min-p} according to the first reference voltage V_{ref1} and the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} . Similarly, the second signal generator 1222 generates the second power control signal S_{max-p} according to the second reference voltage V_{ref2} and the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} .

[0061] If the voltage levels of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} are lower than the lower limit of a predetermined operating range, the current difference controller 1220 outputs the first power control signal S_{min-p} using the first signal generator 1221. On the other hand, if the voltage levels of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} are higher than the upper limit of the predetermined operating range, the current difference controller 1220 outputs the second power control signal S_{max-p} using the second signal generator 1222. In an example, it is assumed that the predetermined operating range is from 0.3 V to 0.6 V. If the voltage levels of the feedback control signals, S_{fb-1} , S_{fb-2} , and S_{fb-3} are lower than 0.3 V, the current difference controller 1220 provides the first power control signal S_{min-p} to the converter 1210. According to the first power control signal S_{min-p} , the converter 1210 increases the voltage level of the driving power. On the other hand, if the voltage level of the feedback control signal S_{fb-1} to S_{fb-3} is higher than 0.6 V, the current difference controller 1220 provides the second power control signal S_{max-p} to the converter 1210. According to the second power control signal S_{max-p} , the converter 1210 decreases the voltage level of the driving power. The predetermined operating range may be selected to be any range within the voltage range of the driving power supplied to drive the light source 1100. The brightness uniformity of the light source 1100 increases as the width of the predetermined operating range decreases.

[0062] The construction and operation of the current difference controller 1220 will be described in more detail with reference to FIG. 3.

[0063] The first signal generator 1221 includes a first node Q_1 , a power supply unit 1221-1, a signal converter 1221-2, and a first signal output unit 1221-3. The power supply unit 1221-1 supplies a fixed power P_{px} to the first node Q_1 . The signal converter 1221-2 changes the power

level of the first node Q_1 according to a state of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} . The first signal output unit 1221-3 compares the power level of the first node Q_1 with the first reference voltage V_{ref1} to generate the first power control signal S_{min-p} .

[0064] If the voltage level of at least one of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} is lower than the lower limit of the predetermined operating range, the signal converter 1221-2 changes the voltage level of the fixed power P_{px} supplied to the first node Q_1 . The signal converter 1221-2 includes a plurality of diodes D_1 , D_2 , and D_3 . Each diode $D_1/D_2/D_3$ has a cathode connected respectively to the feedback control signals $S_{fb-1}/S_{fb-2}/S_{fb-3}$ and an anode connected to the first node Q_1 .

[0065] If the voltage of at least one of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} is lower than the voltage of the first node Q_1 , the signal converter 1221-2 forms a current path between the first node Q_1 and at least one of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} , thereby changing the voltage level of the first node Q_1 .

[0066] The current path is formed when the voltage of the first node Q_1 subtracted by at least one signal voltage of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} is larger than the threshold voltage of the diodes D_1 , D_2 , and D_3 . Thus, it is preferable that the voltage level of the fixed power P_{px} from the power supply unit 1221-1 is the sum of the threshold voltage of the diodes D_1 , D_2 , and D_3 and the voltage level corresponding to the lower limit of the predetermined operating range. For example, if the predetermined operating range is from 0.3 V to 0.6 V and if the threshold voltage of the diodes D_1 , D_2 , and D_3 is 0.7 V, it is preferable that the voltage level of the fixed power P_{px} is 1 V. In this exemplary embodiment, the current path is formed when the voltage of at least one of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} is 0.2 V.

[0067] The signal converter 1221-2 may be constructed using any circuit that increases the voltage level of the first node Q_1 according to the voltage levels of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} .

[0068] The power supply unit 1221-1 supplies the fixed power P_{px} with a predetermined voltage level independently of external influences. For example, as illustrated in FIG. 4, the power supply unit 1221-1 includes a first resistor R_1 , a tenth diode D_{10} , a second resistor R_2 , a third resistor R_3 , a transistor TR_1 , a fourth resistor R_4 , and a fifth resistor R_5 . The first resistor R_1 is connected between an external power V_{cc} and an output terminal of the fixed power P_{px} . The tenth diode D_{10} and the second resistor R_2 are connected in series between the output terminal of the fixed power P_{px} and a tenth node Q_{10} . The third resistor R_3 is connected to the external power V_{cc} . The transistor TR_1 has a gate connected to the tenth node Q_{10} , and a source connected to the third resistor R_3 . The fourth resistor R_4 is connected to a ground terminal and a drain of the transistor TR_1 . The fifth resistor R_5 is connected between the tenth node Q_{10} and a ground terminal. The voltage of the fixed power

P_{px} may be determined depending on the threshold voltage of the diodes D1, D2, and D3 of the signal converter 1221-2 shown in FIG. 3.

[0069] The first signal output unit 1221-3 compares the voltage of the first node Q1, for example, the voltage of the fixed power P_{px} with the first reference voltage V_{ref1} to generate the first power control signal S_{min-p}. The first signal output unit 1221-3 includes an amplifier OP1, a tenth resistor R10, an eleventh resistor R11, and a twelfth resistor R12. The amplifier OP1 has an inverting input terminal (-) and a non-inverting input terminal (+) receiving the first reference voltage V_{ref1}. The tenth resistor R10 is connected between the first node Q1 and the inverting input terminal (-). The eleventh resistor R11 is connected to the inverting input terminal (-) and an output terminal of the amplifier OP1. The twelfth resistor R12 is connected between the output terminal of the amplifier OP1 and an output terminal of the first power control signal S_{min-p}.

[0070] The first signal output unit 1221-3 generates the first power control signal S_{min-p} that has various voltage levels depending on the difference between the first reference voltage V_{ref1} and the voltage of the first node Q1. The first reference voltage V_{ref1} is constant, whereas the voltage of the first node Q1 changes according to the voltages of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3}, as described above. Thus, if the first node Q1 maintains the voltage of the fixed power P_{px}, the first signal output unit 1221-3 outputs the first power control signal S_{min-p} with a first voltage level. On the other hand, if the first node Q1 fails to maintain the voltage of the fixed power P_{px}, the first signal output unit 1221-3 outputs the first power control signal S_{min-p} with a second voltage level. The first power control signal S_{min-p} with the first or second voltage level is provided to the converter 1210 shown in FIG. 2. If the first power control signal S_{min-p} with the first voltage level is provided to the converter 1210, the converter 1210 performs a normal operation. On the other hand, if the first power control signal S_{min-p} with the second voltage level is provided to the converter 1210, the converter 1210 increases the level of the driving power and provides the resulting increased power to the light source 1100 as driving power P_{dc} as shown in FIG. 2. In this exemplary embodiment, it is preferable that the fixed power P_{px} and the first reference voltage V_{ref1} have the same voltage level.

[0071] The second signal generator 1222 includes a conversion signal output unit 1222-1 and a second signal output unit 1222-2. The conversion signal output unit 1222-1 outputs a conversion signal S_{cc} according to a state of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3}. The second signal output unit 1222-2 compares the conversion signal S_{cc} with the second reference voltage V_{ref2} in an amplifier OP10 to generate the second power control signal S_{max-p}.

[0072] The conversion signal output unit 1222-1 outputs the conversion signal S_{cc} when the voltage level of at least one of the feedback control signals S_{fb-1}, S_{fb-2},

and S_{fb-3} is higher than the upper limit of the predetermined operating range. The conversion signal output unit 1222-1 includes a plurality of diodes D4, D5, and D6. Each diode D4/D5/D6 has an anode respectively connected to the feedback control signal S_{fb-1}/S_{fb-2}/S_{fb-3} and a cathode connected to an output terminal of the conversion signal output unit 1222-1. Thus, when the voltage of at least one of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3} is higher than the threshold voltage of the diodes D4, D5, and D6, the conversion signal output unit 1222-1 outputs the feedback control signal S_{fb-1}, S_{fb-2}, and S_{fb-3} as the conversion signal S_{cc}. On the other hand, if the voltage of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3} is lower than the threshold voltage of the diodes D4, D5, and D6, the conversion signal output unit 1222-1 does not output the conversion signal S_{cc}.

[0073] Accordingly, the threshold voltage may be adjusted to generate the conversion signal S_{cc} when the voltage of at least one of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3} is higher than the upper limit of the predetermined operating range. In an example it is assumed that the predetermined operating range is from 0.3 V to 0.7 V and that the threshold voltage of the diodes D4, D5, and D6 is 0.7 V. In this exemplary embodiment, when a voltage of 0.9 V is applied as the voltage of at least one of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3}, the diodes D4, D5, and D6 supplied with the 0.9-V feedback control signal outputs the conversion signal S_{cc} with a voltage level of about 0.9 V.

[0074] The second signal output unit 1222-2 compares the conversion signal S_{cc} with the second reference voltage V_{ref2} to generate the second power control signal S_{max-p}.

[0075] The second signal output unit 1222-2 includes the amplifier OP10, a 20th resistor R20, a 21st resistor R21, and a 22nd resistor R22. The amplifier OP10 has an inverting input terminal (-) and a non-inverting input terminal (+) receiving the second reference voltage V_{ref2}. The 20th resistor R20 is connected between the inverting input terminal (-) and an input terminal of the conversion signal S_{cc}. The 21st resistor R21 is connected to the inverting input terminal (-) and an output terminal of the amplifier OP10. The 22nd resistor R22 is connected between the output terminal of the amplifier OP10 and an output terminal of the second power control signal S_{max-p}.

[0076] The second signal output unit 1222-2 generates the second power control signal S_{max-p} that has various voltage levels depending on the difference between the second reference voltage V_{ref2} and the voltage of the conversion signal S_{cc}. The second reference voltage V_{ref2} is constant, whereas the voltage of the conversion signal S_{cc} changes according to the voltages of the feedback control signals S_{fb-1}, S_{fb-2}, and S_{fb-3} as described above. Thus, when the voltage of the conversion signal S_{cc} is lower than the second reference voltage V_{ref2}, the second signal output unit 1222-2 outputs the second

power control signal S_{max-p} with a first voltage level. Of course, if the voltage of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} is lower than the threshold voltage of the diodes D_4 , D_5 , and D_6 , the conversion signal S_{cc} is not output. On the other hand, when the voltage of the conversion signal S_{cc} is higher than the second reference voltage V_{ref2} , the second signal output unit 1222-2 outputs the second power control signal S_{max-p} with a second voltage level.

[0077] The second power control signal S_{max-p} with the first or second voltage level is provided to the converter 1210 shown in FIG. 2. If the second power control signal S_{max-p} with the first voltage level is provided to the converter 1210, the converter 1210 performs a normal operation. On the other hand, if the second power control signal S_{max-p} with the second voltage level is provided to the converter 1210, the converter 1210 decreases the level of the driving power and provides the resulting power to the light source 1100 shown in FIG. 2 as driving power P_{dc} .

[0078] As described above, the current difference controller 1220 outputs the first power control signal S_{min-p} with the second voltage level when the voltage of the control node of each light emitting unit, that is, the voltage of at least one of the feedback control signals S_{fb-1} , S_{fb-2} , and S_{fb-3} , is lower than the predetermined operating range. Meanwhile, the current difference controller 1220 outputs the second power control signal S_{max-p} with the second voltage level when the voltage of the control node of each light emitting unit is higher than the predetermined operating range.

[0079] The converter 1210 converts the external DC power P_{in} into the driving power P_{dc} . The voltage level of the driving power P_{dc} changes according to the first and second power control signals S_{min-p} and S_{max-p} . That is, as described above, the converter 1210 provides new driving power P_{dc} , which has a higher voltage level than the previous driving power P_{dc} , when the first power control signal S_{min-p} of the second voltage level is provided. Also, the converter 1210 provides new driving power P_{dc} , which has a lower voltage level than the previous driving power P_{dc} , when the second power control signal S_{max-p} of the second voltage level is provided.

[0080] In this exemplary embodiment, a DC-DC converter is used as the converter 1210. That is, the converter 1210 increases the voltage of the external DC power P_{in} and outputs the resulting power as the driving power P_{dc} . As illustrated in FIG. 5, the converter 1210 includes a pulse signal generator 1211, an inductor L_1 , a tenth transistor TR_{10} , a rectifying diode D_{100} , and a capacitor C_1 . The pulse signal generator 1211 generates a pulse signal P_s according to the first and second power control signals S_{min-p} and S_{max-p} . The inductor L_1 is connected between a node Q_{100} and an input terminal of the external DC power P_{in} . The tenth transistor TR_{10} is connected between the node Q_{100} and the ground terminal and operates according to the pulse signal P_s . The rectifying diode D_{100} is connected between the node

Q_{100} and an output terminal of the driving power P_{dc} . The capacitor C_1 is connected between the ground terminal and the output terminal of the driving power P_{dc} . Of course, in an exemplary embodiment, the converter 5 1210 may also control the driving power P_{dc} using a current fed back from the light source 1100.

[0081] The pulse signal generator 1211 generates a square-wave pulse signal P_s . In this exemplary embodiment, the pulse signal generator 1211 is provided with 10 a separate power voltage (not shown) and an external control signal (not shown). The pulse signal generator 1211 adjusts a duty ratio of the square-wave pulse signal P_s so that the converter 1210 outputs a constant DC voltage, that is, the driving power P_{dc} . The pulse signal generator 1211 adjusts the duty ratio of the square-wave pulse signal P_s according to the first and second power control signals S_{min-p} and S_{max-p} . When the tenth transistor TR_{10} is turned on by the pulse signal P_s , a current path is formed between the input DC power and the 15 ground terminal. Accordingly, the amount of current flowing through the inductor L_1 increases with time. The input power P_{in} flows into the inductor L_1 and, thus, energy is stored in the inductor L_1 . Thereafter, when the tenth transistor TR_{10} is turned off by the pulse signal P_s , the current 20 path between the input DC power and the ground terminal is interrupted and the current flowing through the inductor L_1 is interrupted. Accordingly, a high voltage is generated in the inductor L_1 due to a high-energy counter electromotive force. The generated high voltage turns on the 25 rectifying diode D_{100} and allows a current, which is stored as a magnetic field in the inductor L_1 , to flow through the rectifying diode D_{100} , thereby charging the capacitor C_1 with an electric charge. The resulting voltage of the capacitor C_1 is used as the driving power P_{dc} 30 supplied to the light source 1100.

[0082] A description will now be given of an operation of the light-source module 1000 having the above-described construction.

[0083] According to the external power P_{in} and the first 40 and second control signals S_{min-p} and S_{max-p} , the converter 1210 provides the driving power P_{dc} to the light source 1100. The driving power P_{dc} is provided to the light emitting units 1110 that are connected in parallel between the input and output terminals of the light source 45 1100. Accordingly, the LED strings 1111 of the light emitting units 1110 emit light according to the driving power P_{dc} . Also, the control nodes Q_{c1} , Q_{c2} , and Q_{c3} of the light emitting units 1110 have a voltage of a predetermined level according to the power detector 1112.

[0084] The light-source controller 1200 changes the current level of the driving power P_{dc} so that the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} are within the predetermined operating range. If the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} are within the predetermined operating range, the converter 1210 provides the light source 1100 with the driving power P_{dc} having the first voltage level. When at least one of the voltages of the control nodes Q_{c1} , Q_{c2} , and Q_{c3} is lower than the

lower limit of the predetermined operating range, the converter 1210 uses the first signal generator 1221 to provide the light source 1100 with the driving power P_{dc} that has a voltage level higher than the first voltage level. When at least one of the voltages of the control nodes Qc_1 , Qc_2 , and Qc_3 is higher than the upper limit of the predetermined operating range, the converter 1210 uses the first signal generator 1221 to provide the light source 1100 with the driving power P_{dc} that has a voltage level lower than the first voltage level. Herein, the amount of current flowing through each of the light emitting units 1110 is different depending on the voltage range of the control nodes Qc_1 to Qc_3 . Therefore, the brightness uniformity of the light emitting units 1110 can be maintained by increasing or decreasing the amount of the driving power P_{dc} depending on the voltages of the control nodes Qc_1 , Qc_2 , and Qc_3 , as described above. That is, if at least one of the light emitting units is high in brightness, the overall brightness is increased to increase the average brightness; and if at least one of the light emitting units is low in brightness, the overall brightness is decreased to decrease the average brightness. Alternatively, if at least one of the light emitting units is high in brightness, the overall brightness is decreased to decrease the average brightness; and if at least one of the light emitting units is low in brightness, the overall brightness is increased to increase the average brightness.

[0085] It will be readily understood by those of ordinary skill in the art that various modifications and changes can be made to the light source module 1000 shown in FIG. 1. That is, as illustrated in FIG. 6, the light source module may include a plurality of current difference controllers that operate according to the voltage levels of the control nodes Qc_1 , Qc_2 , and Qc_3 of the respective light emitting units in order to adjust the brightness of each light emitting unit separately.

[0086] That is, as illustrated in FIG. 6, when the light source 1100 includes three light-emitting units 1110, the light source controller, 1200 in FIG. 2, includes three current difference controllers 1220a, 1220b, and 1220c. Each first/second/third current difference controller 1220a/1220b/1220c includes a first signal generator 1221a/1221b/1221c receiving the first reference voltage V_{ref1} and a second signal generator 1222a/1222b/1222c receiving the second reference voltage V_{ref2} . The first signal generator 1221a/1221b/1221c includes a power supply unit 1221a-1/1221b-1/1221c-1, a signal converter 1221a-2/1221b-2/1221c-2, and a first signal output unit 1221a-3/1221b-3/1221c-3. The second signal generator 1222a/1222b/1222c includes a conversion signal output unit 1222a-1/1222b-1/1222c-1 and a second signal output unit 1222a-2/1222b-2/1222c-2.

[0087] The first current difference controller 1220a is connected to the control node Qc_1 of the first light emitting unit 1110, that is, the first feedback control signal $Sfb-1$, to generate the first and second power control signals S_{min-p} and S_{max-p} . The second current difference controller 1220b is connected to the control node

Qc_2 of the second light emitting unit 1110 to generate the first and second power control signals S_{minb-p} and S_{maxb-p} . The third current difference controller 1220c is connected to the control node Qc_3 of the third light emitting unit 1110 to generate the first and second power control signals S_{minc-p} and S_{maxc-p} . The first power control signals S_{mina-p} , S_{minb-p} , and S_{minc-p} and the second power control signals S_{maxa-p} , S_{maxb-p} , and S_{maxc-p} are provided to the converter 1210, as shown in FIG. 2. The converter 1210 controls the level of the driving power according to the above-described power control signals. Alternatively, the light emitting units may be driven by three different converters 1210. That is, when the light source 1100 includes three light-emitting units 1110, three separate converters 1210 can provide the driving power respectively to the three light emitting units. In such an exemplary embodiment, the first and second power control signals S_{mina-p} and S_{maxa-p} are applied to the first converter to control the brightness of the first light emitting unit. The first and second power control signals S_{minb-p} and S_{maxb-p} are applied to the second converter to control the brightness of the second light emitting unit. The first and second power control signals S_{minc-p} and S_{maxc-p} are applied to the third converter to control the brightness of the third light emitting unit. In this way, the brightness of the light emitting units can be controlled separately.

[0088] As described above, the amounts of the currents flowing through the light emitting units each having a plurality of LEDs are measured, and the levels of voltages applied to the light emitting units are changed according to the measurement results. Accordingly, a current difference between the light emitting units can be reduced and the brightness uniformity of the light source can be improved. In addition, the amounts of the currents flowing through the light emitting units can be controlled separately.

[0089] Although the light-source module for a display device and the display device having the same have been described with reference to the exemplary embodiments, they are not limited thereto. Therefore, it will be readily understood by those of ordinary skill in the art that various modifications and changes can be made thereto without departing from the spirit and scope of the present invention, as defined by the appended claims.

Claims

50. 1. A light-source module comprising:

a plurality of light-emitting units connected in parallel between a driving power input terminal and a ground terminal to emit light by the driving power and to output a respective plurality of feedback control signals;
a current difference controller configured to output a plurality of power control signals according

to the plurality of feedback control signals; and a converter configured to change a current of the driving power provided to the plurality of light-emitting units according to the plurality of power control signals. 5

2. The light-source module of claim 1, wherein each of the plurality of light-emitting units comprises:

a control node configured to output the feedback control signal; 10
a light emitting diode (LED) string comprising a plurality of LEDs and connected between the driving power input terminal and the control node; and
a power detector connected between the control node and the ground terminal. 15

3. The light-source module of claim 1, wherein the current difference controller outputs the plurality of power control signals having a first voltage level when the voltage levels of the plurality of feedback control signals are within a predetermined operating range, and outputs the plurality of power control signals having a second voltage level when the voltage level of at least one of the plurality of feedback control signals is out of the predetermined operating range. 20

4. The light-source module of claim 3, wherein the current difference controller outputs a first power control signal having the second voltage level when the voltage level of at least one of the feedback control signals is lower than a lower limit of the predetermined operating range, and outputs a second power control signal having the second voltage level when the voltage level of at least one of the feedback control signals is higher than an upper limit of the predetermined operating range. 30

5. The light-source module of claim 4, wherein the converter increases a voltage level of the driving power according to the first power control signal having the second voltage level, and decreases the voltage level of the driving power according to the second power control signal having the second voltage level. 35

6. The light-source module of claim 1, wherein the current difference controller comprises:

a first signal generator configured to generate a first power control signal using a first reference voltage and at least one of the plurality of feedback control signals; and 40
a second signal generator configured to generate a second power control signal using a second reference voltage and at least one of the plurality of feedback control signals. 45

7. The light-source module of claim 6, wherein the first signal generator comprises:

a first node configured to receive a fixed power; a signal converter configured to change a voltage of the fixed power according to the voltage level of at least one of the plurality of feedback control signals; and
a first signal output unit configured to output the first power control signal by comparing the voltage of the fixed power with the first reference voltage. 50

8. The light-source module of claim 6, wherein a voltage level of the first power control signal is changed when a voltage of a fixed power is lower than the first reference voltage. 55

9. The light-source module of claim 7, wherein the signal converter comprises a plurality of diodes each having a cathode connected to a corresponding feedback control signal input terminal and an anode connected to the first node.

10. The light-source module of claim 7, wherein the first signal output unit comprises:

an amplifier having an inverting input terminal and a non-inverting input terminal to which the first reference voltage is applied; 60
an input resistor connected between the inverting input terminal and the first node; a feedback resistor connected between the inverting input terminal and an output terminal of the amplifier; and
an output resistor connected between the output terminal of the amplifier and the first power control signal output terminal.

11. The light-source module of claim 6, wherein the second signal generator comprises:

a conversion signal output unit configured to output a conversion signal according to a voltage level of at least one of the plurality of feedback control signals; and
a second signal output unit configured to output the second power control signal by comparing a voltage of the conversion signal with the second reference voltage. 65

12. The light-source module of claim 6, wherein a voltage level of the second power control signal is changed when a voltage of a conversion signal is higher than the second reference voltage. 70

13. The light-source module of claim 11, wherein the conversion signal output unit comprises a plurality

of diodes each having an anode connected to a corresponding feedback control signal input terminal and a cathode connected to a conversion signal output terminal.

5

14. The light-source module of claim 11, wherein the second signal output unit comprises:

an amplifier having an inverting input terminal and a non-inverting input terminal to which the second reference voltage is applied; 10
an input resistor connected between the inverting input terminal and a conversion signal output terminal;
a feedback resistor connected between the inverting input terminal and an output terminal of the amplifier; and
an output resistor connected between the output terminal of the amplifier and the second power control signal output terminal.

15

15. The light-source module of claim 6, wherein the converter increases a current of the driving power according to the first power control signal, and decreases the current of the driving power according to the second power control signal.

20

16. The light-source module of claim 1, wherein a plurality of the current difference controllers is provided such that the plurality of current difference controllers receive the respective feedback control signals from the light emitting units.

25

17. A method of driving a light-source module, comprising:

30

providing driving power to a plurality of light emitting diode (LED) strings to emit light;
detecting a power provided to each of the LED strings; and
changing the driving power according to the power detection results.

35

18. The method of claim 17, wherein detecting the power comprises detecting a voltage level of the power applied to each of the LED strings.

40

19. The method of claim 18, further comprising, after detecting the power, comparing the detected voltage level of the power with at least one reference voltage to generate a plurality of power control signals.

45

20. The method of claim 19, wherein changing the driving power comprises changing a present amount of the driving power according to the plurality of power control signals.

50

21. The method of claim 17, further comprising, after de-

tecting the power:

generating first and second power control signals having a first voltage level when the voltage levels of the power detected from the LED strings are within a predetermined operating range;

generating the first power control signal having a second voltage level when the voltage level of the power detected from at least one of the LED strings is lower than the lower limit of the predetermined operating range; and

generating the second power control signal having the second voltage level when the voltage level of the power detected from at least one of the LED strings is higher than the upper limit of the predetermined operating range.

22. The method of claim 21, wherein changing the driving power provides power identical to a previous driving power to the LED strings according to the first and second power control signals having the first voltage level, and provides another power different in amount from the previous driving power to the LED strings according to the first and second power control signals having the second voltage level.

23. The method of claim 22, wherein changing the driving power increases the voltage level of the driving power according to the first power control signal having the second power level, and decreases the voltage level of the driving power according to the second power control signal having the second power level.

24. A display device comprising:

a display panel;
a controller configured to control an operation of the display panel;
a plurality of light-emitting units connected in parallel between a driving power input terminal and a ground terminal to emit light by the driving power and to output a respective plurality of feedback control signals;
a current difference controller configured to output a plurality of power control signals according to the respective plurality of feedback control signals; and
a converter configured to change a current of the driving power provided to the light-emitting units according to the plurality of power control signals.

55

25. The display device of claim 24, wherein the current difference controller outputs a plurality of power control signals having a first voltage level when the voltage levels of the plurality of feedback control signals

are within a predetermined operating range, and outputs a plurality of power control signals having a second voltage level when the voltage level of at least one of the plurality of feedback control signals is out of the predetermined operating range. 5

10

15

20

25

30

35

40

45

50

55

FIG. 1

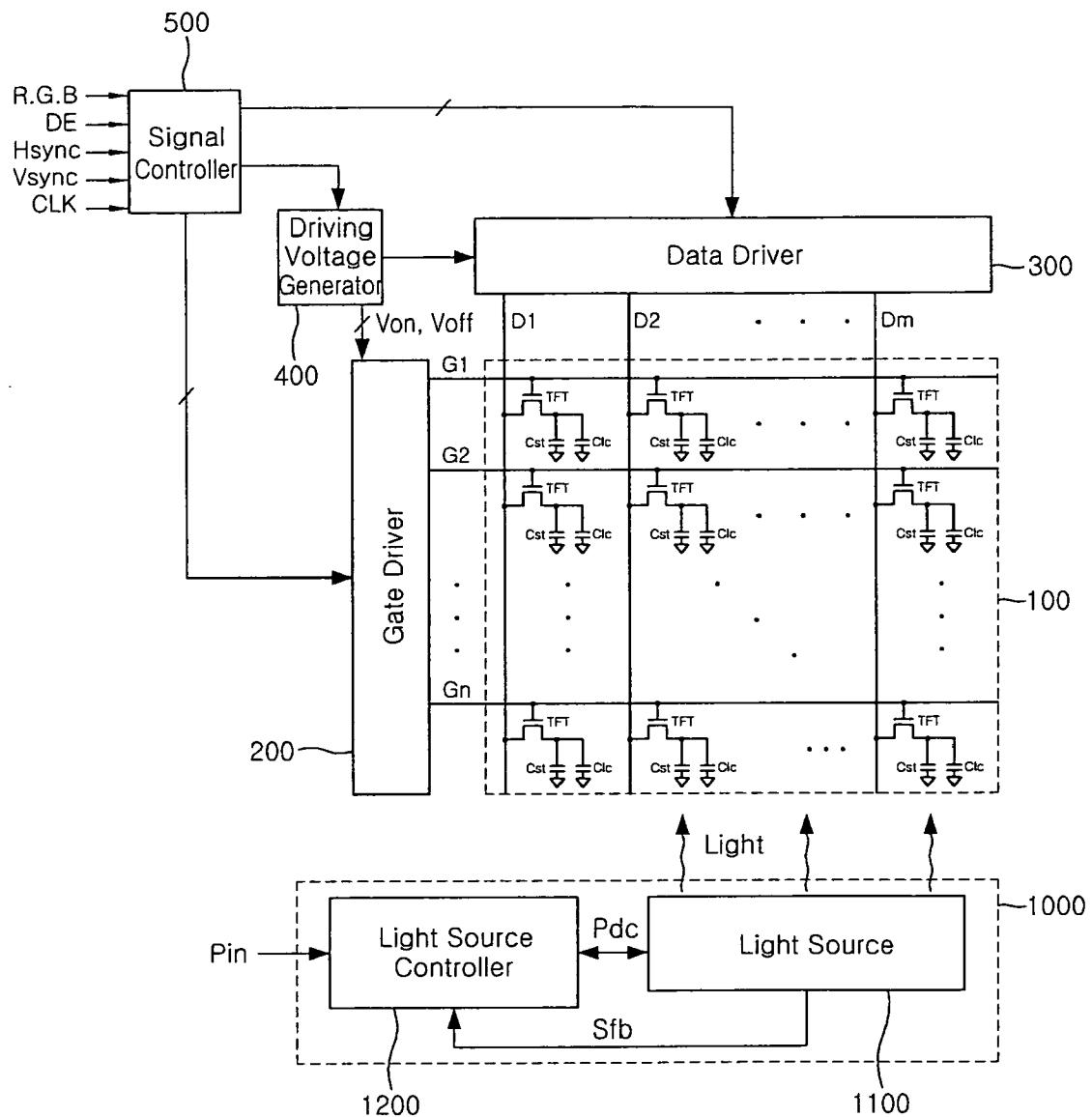


FIG. 2

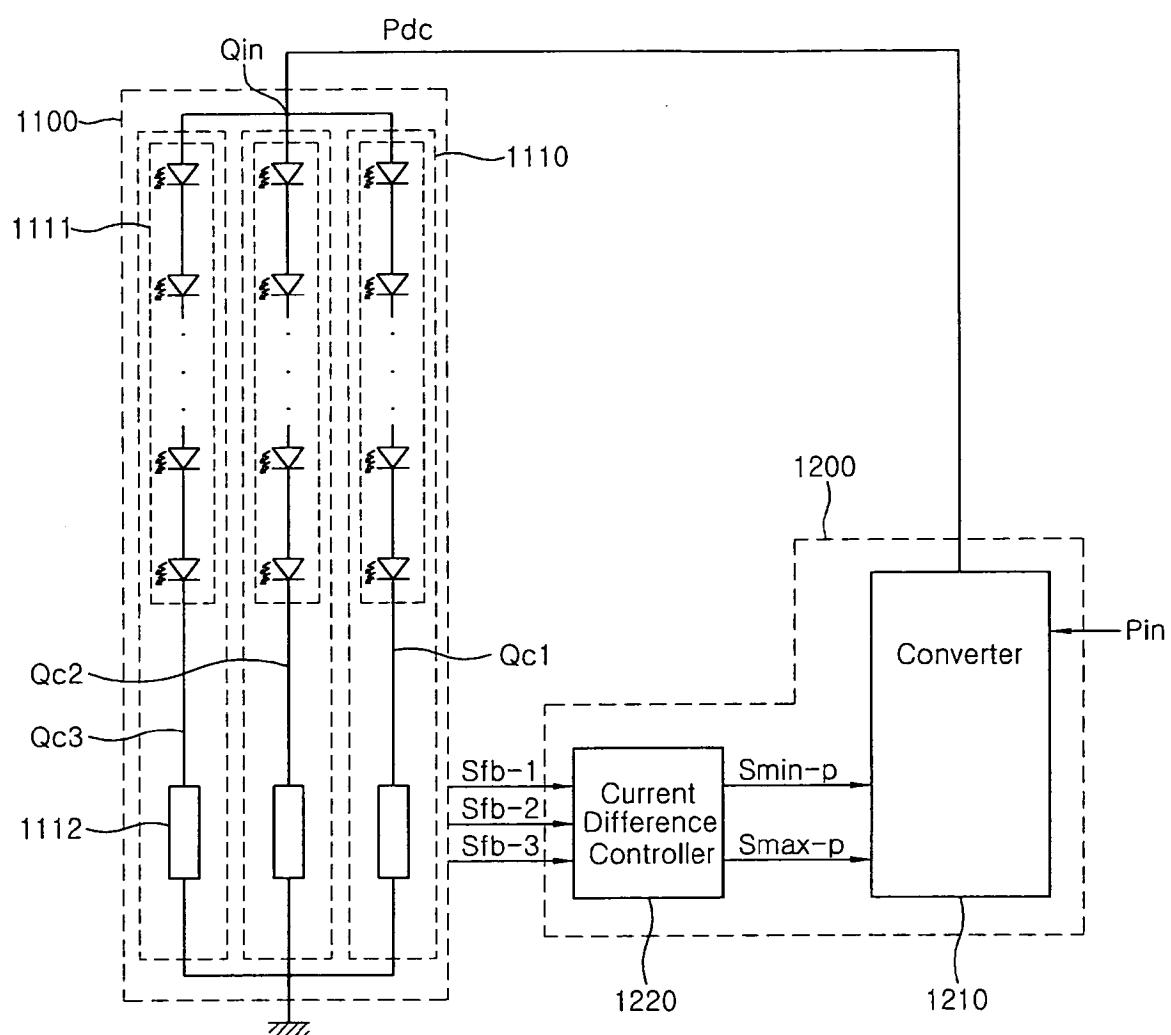


FIG. 3

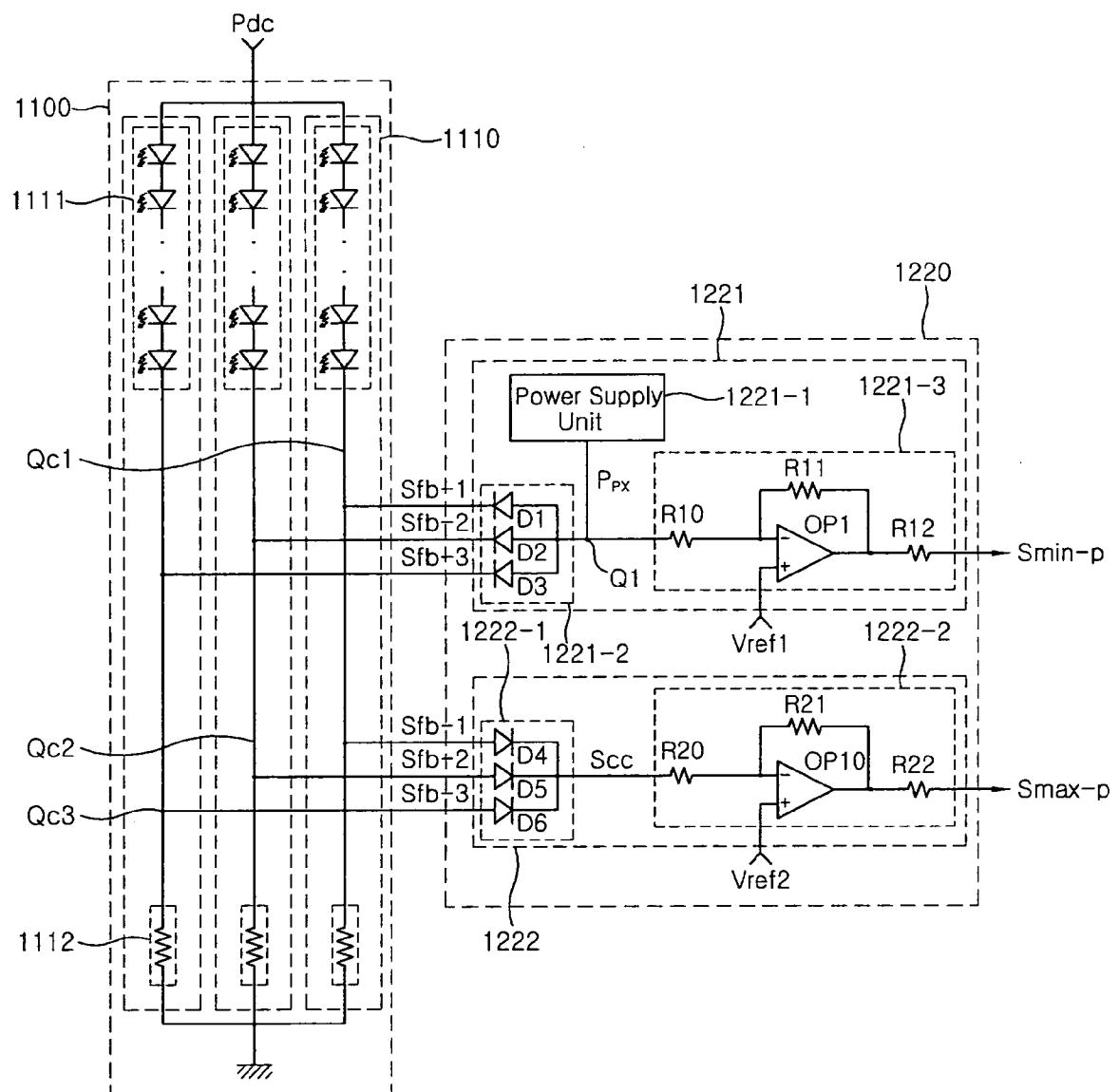


FIG. 4

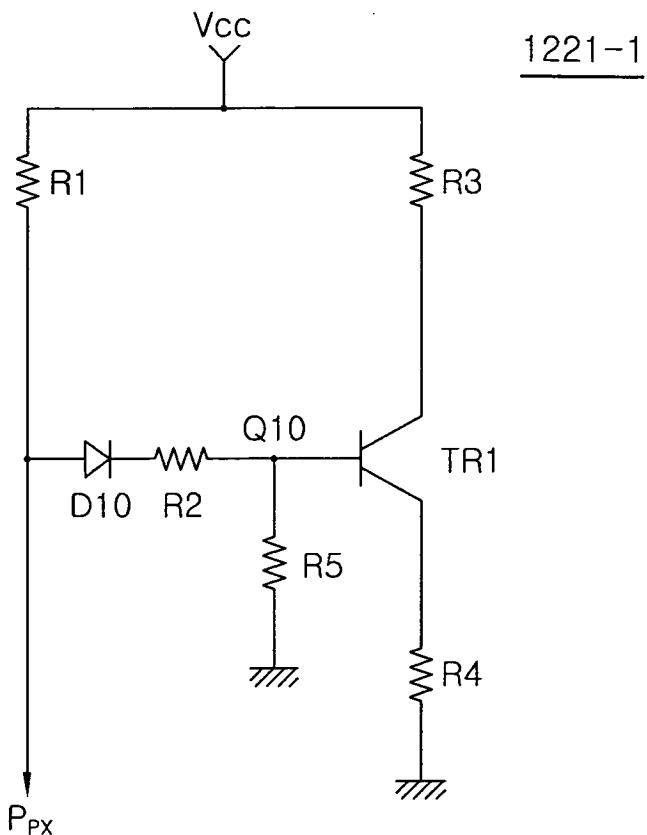


FIG. 5

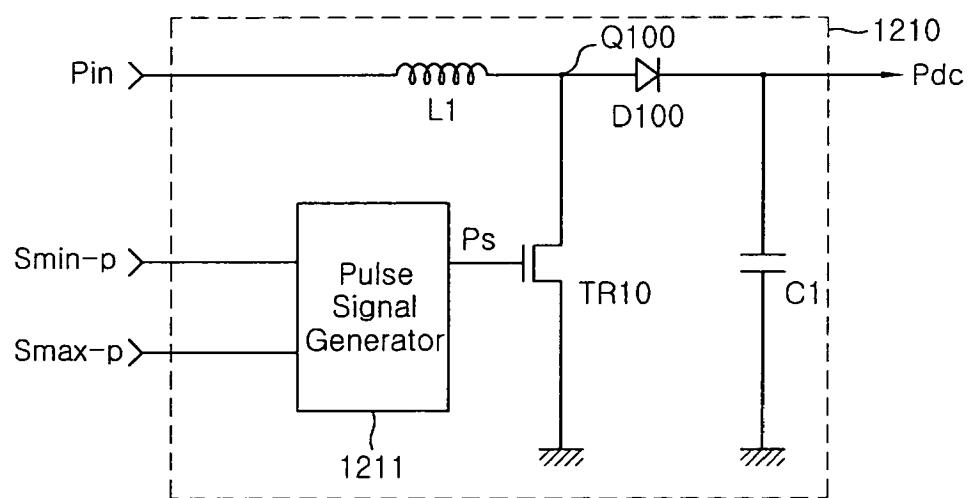
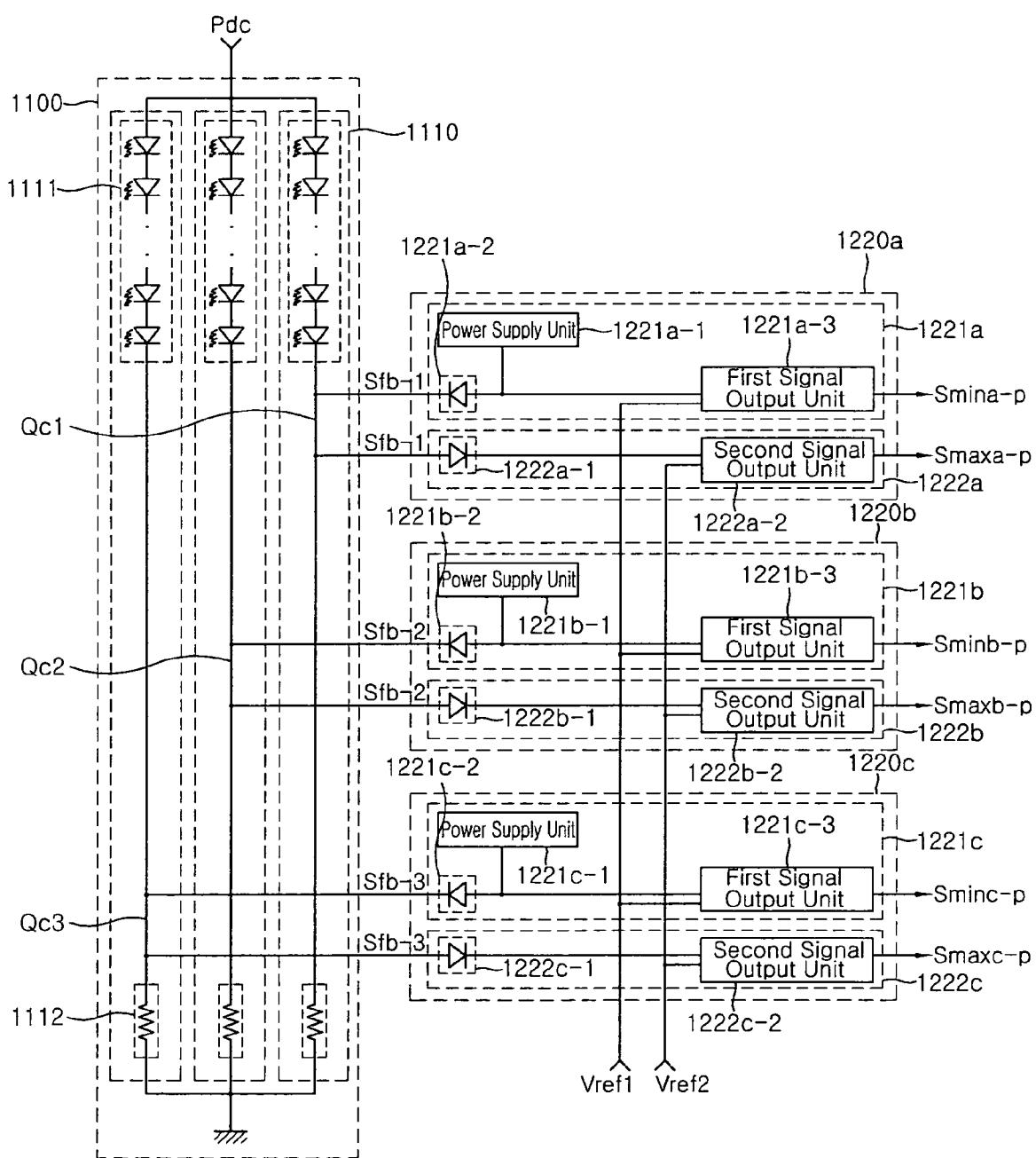
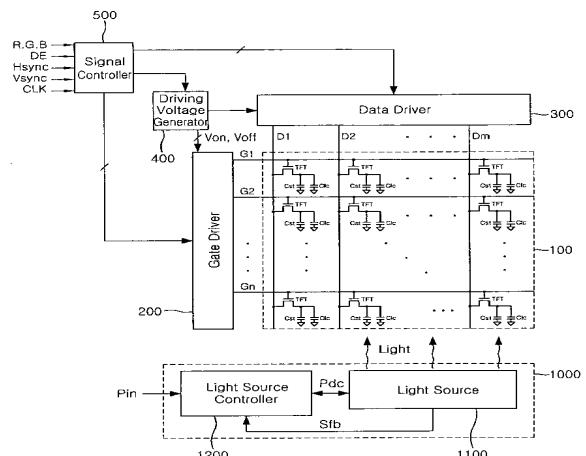



FIG. 6

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description


- JP 1020070072999 B [0001]

专利名称(译)	用于显示装置的光源模块和具有该光源模块的显示装置		
公开(公告)号	EP2017813A2	公开(公告)日	2009-01-21
申请号	EP2008012742	申请日	2008-07-15
[标]申请(专利权)人(译)	三星电子株式会社		
申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
当前申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
[标]发明人	YE BYOUNG DAE KIM GI CHERL KANG EUI JEONG		
发明人	YE, BYOUNG-DAE KIM, GI-CHERL KANG, EUI-JEONG		
IPC分类号	G09G3/34 G02F1/133 G09G3/20 G09G3/36 H01L33/00 H05B37/02		
CPC分类号	G09G3/34 G09G3/342 G09G3/3648 G09G2320/0233 G09G2320/0626 G09G2320/0693 H05B45/37 H05B45/46		
代理机构(译)	DR.威猛和合作伙伴		
优先权	1020070072999 2007-07-20 KR		
其他公开文献	EP2017813A3		
外部链接	Espacenet		

摘要(译)

一种用于显示装置的光源模块和具有该光源模块的显示装置，其中所述光源模块包括多个发光单元，电流差控制器和转换器。发光单元并联连接在驱动电源输入端子和接地端子之间，以通过驱动电源发光并输出相应的反馈控制信号。电流差控制器被配置为根据相应的反馈控制信号输出多个功率控制信号。转换器被配置为根据功率控制信号改变提供给发光单元的驱动功率的电流。测量流过各自具有多个发光二极管的发光单元的电流量，并根据测量结果改变施加到发光单元的电压电平。因此，可以减小发光单元之间的电流差异，并且可以提高光源的亮度均匀性。

FIG. 1

