

(11)

EP 1 968 039 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
10.09.2008 Bulletin 2008/37

(51) Int Cl.:
G09G 3/32 (2006.01)

(21) Application number: **08250708.8**

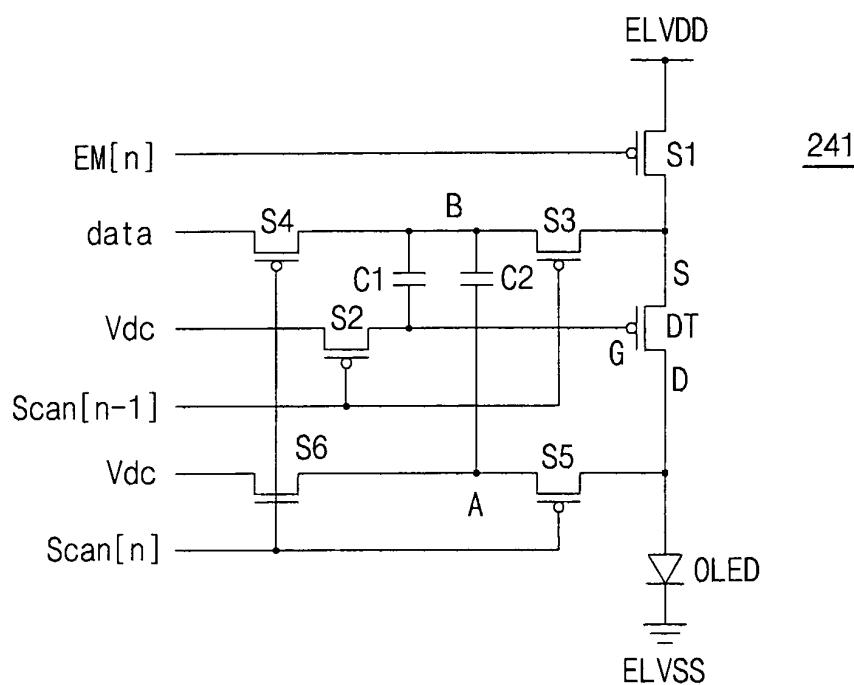
(22) Date of filing: **29.02.2008**

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR**
Designated Extension States:
AL BA MK RS

(30) Priority: **02.03.2007 KR 20070020802**

(71) Applicant: **Samsung SDI Co., Ltd.
Yongin-si, Gyeonggi-do (KR)**

(72) Inventor: **Kim, Yangwan
Seoul (KR)**


(74) Representative: **Mounteney, Simon James
Marks & Clerk
90 Long Acre
London
WC2E 9RA (GB)**

(54) Organic light emitting display

(57) An organic light emitting display, including a driving transistor electrically coupled to a first power line, a first switch electrically coupled to the driving transistor and an emission line, a second switch electrically coupled to the driving transistor and a previous scan line, a third switch electrically coupled to the first switch and a data line, a fourth switch electrically coupled to the data line

and the third switch, a fifth switch electrically coupled to the driving transistor and a scan line, a first capacitor electrically coupled to the second switch and the third switch, a second capacitor electrically coupled to the third switch and the fifth switch, and an organic light emitting diode electrically coupled to the driving transistor and a second power line.

FIG. 2

Description**BACKGROUND OF THE INVENTION**5 **1. Field of the Invention**

[0001] The present invention relates to an organic light emitting display. More particularly, the invention relates to an organic light emitting display that can suppress image sticking due to a decrease in efficiency of an organic light emitting diode and can compensate for a threshold voltage of a drive transistor.

10 **2. Description of the Related Art**

[0002] In general, an organic light emitting display is a display that emits light by electrically exciting a fluorescent or phosphorescent compound. The organic light emitting display may display an image by driving $N \times M$ organic light emitting diodes (OLEDs). Each OLED may include an anode electrode (indium tin oxide (ITO)), an organic thin-film layer, and a cathode electrode (metal). To improve light emission efficiency and a balance between electrons and holes, the organic thin-film layer may have a multi-layer structure including an emitting layer (EML), an electron transport layer (ETL) and a hole transport layer (HTL). The organic thin-film may include a separate electron injecting layer (EIL) and a hole injecting layer (HIL).

20 **[0003]** In general, the anode electrode is coupled to a first power supply to supply holes to the EML, and the cathode electrode is coupled with a second power supply to supply electrons to the EML. The second power supply has a lower voltage than the first power supply. Thus, relative to cathode electrode, the anode electrode has a positive (+) electric potential and, relative to the anode electrode, the cathode has a (-) electrode potential.

25 **[0004]** The HTL accelerates hole(s) supplied from the anode electrode and supplies the hole(s) to the EML. The ETL accelerates electron(s) supplied from the cathode electrode and supplies the electron(s) to the EML. As a result, at the EML, the electron(s) supplied from the ETL and the hole(s) supplied from the HTL may recombine with each other, thereby generating a predetermined amount of light. The EML may include organic material that may generate one of red light (R), green light (G) and blue light (B) when the electron(s) and hole(s) recombine therein.

30 **[0005]** In such OLEDs, because a voltage applied to the anode electrode is always higher than a voltage applied to the cathode electrode, negative (-) carriers are positioned on the anode electrode, and positive (+) carriers are positioned on the cathode electrode. If the negative (-) carriers positioned on the anode electrode and the positive (+) carriers positioned on the cathode electrode are maintained for a long time, movement of electron(s) and hole(s) can decrease. Thus, efficiency of the OLED(s) can decrease the more the OLED(s) is used. As a result, image sticking may occur and a life span of the OLED(s) can be shortened.

35 **SUMMARY OF THE INVENTION**

[0006] The invention sets out to provide an organic light emitting display that substantially overcomes one or more of the problems due to the limitations and disadvantages of the related art.

40 **[0007]** It is therefore an object of the invention to provide an organic light emitting display that may substantially and/or completely suppress an image sticking phenomenon and a reduction in a life time of the display as a result of degradation of organic light emitting diode(s) therein.

[0008] It is a further object of the invention to provide an organic light emitting display that can compensate for a threshold voltage of a driving transistor of pixel circuit(s) thereof.

45 **[0009]** At least one of the above and other features and advantages of the invention may be realized by providing an organic light emitting display, including a driving transistor electrically coupled to a first power line, a first switch electrically coupled to the driving transistor and an emission line, a second switch electrically coupled to the driving transistor and a previous scan line, a third switch electrically coupled to the first switch and a data line, a fourth switch electrically coupled to the data line and the third switch, a fifth switch electrically coupled to the driving transistor and a scan line, a first capacitor electrically coupled to the second switch and the third switch, a second capacitor electrically coupled to the third switch and the fifth switch, and an organic light emitting diode electrically coupled to the driving transistor and a second power line.

50 **[0010]** The driving transistor may include a control electrode electrically coupled to the second switch, a first electrode electrically coupled to the first switch and the third switch, and a second electrode electrically coupled to the fifth switch and the organic light emitting diode. The first switch may include a control electrode electrically coupled to the emission line, a first electrode electrically coupled to the first power line, and a second electrode electrically coupled to the driving transistor. The second switch includes a control electrode electrically coupled to the previous scan line, a first electrode electrically coupled to a third power line, and a second electrode electrically coupled to the driving transistor.

[0011] A voltage of the first power line is higher than a voltage of the third power line. The fourth switch may include a control electrode electrically coupled to the scan line, a first electrode electrically coupled to the data line, and a second electrode electrically coupled to the first capacitor, the second capacitor, and the third switch.

5 [0012] The fifth switch may include a control electrode electrically coupled to the scan line, a first electrode electrically coupled to a node between the driving transistor and the organic light emitting diode. The sixth switch may be further electrically coupled to the fifth switch.

10 [0013] The sixth switch may include a control electrode electrically coupled to the scan line, a first electrode electrically coupled to a third power line, and a second electrode electrically coupled to the fifth switch. The first switch, the second switch, the third switch, the fourth switch and the fifth switch may be P-channel field effect thin-film transistors and the sixth switch is a N-channel field effect thin-film transistor.

15 [0014] The first capacitor may include a first electrode electrically coupled to the second capacitor, the third switch, and the fourth switch, and a second electrode electrically coupled to the driving transistor and the second switch. The second capacitor may include a first electrode electrically coupled to the first capacitor, the third switch, and the fourth switch, and a second electrode electrically coupled to the fifth switch.

20 [0015] The organic light emitting diode may include an anode electrode electrically coupled to the driving transistor and the fifth switch, and a cathode electrode electrically coupled to the second power line.

25 [0016] A third capacitor may be further electrically coupled to a node between the first power line and the first capacitor. The third capacitor may include a first electrode electrically coupled to the first power line and a second electrode electrically coupled to a node between the first capacitor, the second capacitor, the third switch, and the fourth switch.

30 [0017] A voltage of the first power line may be higher than a voltage of the second power line. The third switch may include a control electrode electrically coupled to the previous scan line, a first electrode electrically coupled to a data line, the first capacitor, and the second capacitor, and a second electrode electrically coupled to a node between the first switch and the driving transistor. The fifth switch may be electrically coupled to the sixth switch, and the second switch and the sixth switch are electrically coupled to the third power line.

35 [0018] When the previous scan line has a low level, the scan line has a high level, the emission line has a low level, a first electrode of the first capacitor, a first electrode of the second capacitor and a control electrode of the driving transistor are electrically coupled to a third power line, such that the first electrode of the first capacitor, the first electrode of the second capacitor and the control electrode of the driving transistor are initialized to a voltage level of the third power line.

40 [0019] When the previous scan line is maintained at a low level, the scan line is maintained at a high level, and the emission line changes to a high level, a threshold voltage of the driving transistor may be reflected in the first and second capacitor, such that a voltage of the control electrode of the driving transistor has the voltage the level of the third power line, and the threshold voltage of the driving transistor is compensated.

45 [0020] When the previous scan line changes to a high level, the scan line changes to a low level, and the emission line changes to a low level, a data voltage of the data line may be stored in the first and second capacitors and simultaneously, a threshold voltage of the organic light emitting diode is reflected.

50 [0021] When the previous scan line is maintained at a high level, the scan line changes to a high level and the emission line is maintained at a low level, current provided to the organic light emitting diode through the driving transistor may increase due to the data voltage and the threshold voltage of the organic light emitting diode reflected in the first and second capacitor.

55 [0022] The current provided to the organic light emitting diode may increase in proportion to the threshold voltage of the organic light emitting diode.

BRIEF DESCRIPTION OF THE DRAWINGS

45 [0023] The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art upon making reference to the following description of embodiments thereof which is given with reference to the attached drawings, in which:

50 [0024] FIG. 1 is a block diagram of organic light emitting display according to an embodiment of the invention;

55 [0025] FIG. 2 is a circuit diagram of an pixel circuit employable by an organic light emitting display according to an embodiment of the present invention;

[0026] FIG. 3 is a timing diagram of signals employable to drive the pixel circuit of FIG. 2;

[0027] FIG. 4 illustrates an operating state of the pixel circuit of FIG. 2 during an initialization period;

[0028] FIG. 5 illustrates an operating state of the pixel circuit of FIG. 2 during a threshold voltage compensating period;

[0029] FIG. 6 illustrates an operating state of the pixel circuit of FIG. 2 during a date write period and a voltage sensing period;

[0030] FIG. 7 illustrates an operating state of the pixel circuit of FIG. 2 during an emitting period; and

[0031] FIG. 8 is a circuit diagram of another pixel circuit employable by an organic light emitting display according to

another embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

5 [0032] Embodiments of the invention will now be described more fully hereinafter with reference to the accompanying drawings. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will clearly convey the nature of the invention to those skilled in the art.

10 [0033] Elements having similar constitutions and/or operations are denoted by the same and/or like reference numerals throughout the specification. Furthermore, it should be understood that electrical coupling between a certain component and another component includes direct electrical coupling between them as well as indirect electrical coupling between them by an interposed component. It will also be understood that, unless specified otherwise, when an element is referred to as being "between" two elements, it can be the only element between the two elements, or one or more intervening elements may also be present.

15 [0034] FIG. 1 is a block diagram of an organic light emitting display 100, in the form of a flat panel display, according to the invention.

[0035] Referring to FIG. 1, the illustrated organic light emitting display 100 includes a scan driver 110, a data driver 120, an emission driver 130, an organic light emitting display panel 140 (hereinafter, a "panel"), a first power supply 150, a second power supply 160 and a third power supply 170.

20 [0036] The scan driver 110 can sequentially apply a scan signal(s) to the panel 140 via a plurality of scan lines (Scan[1], Scan[2],...,Scan[n]).

[0037] The data driver 120 can apply a data signal(s) to the panel 140 via a plurality of data lines (Data[1], Data[2],...,Data[m]).

25 [0038] The emission driver 130 can sequentially apply emission signal(s) to the panel 140 via a plurality of emission lines (Em[1], Em[2],...,Em[n]).

[0039] The panel 140 includes a plurality of scan lines (Scan[1], Scan[2],...,Scan[n]) arranged in a column direction, a plurality of emission lines (Em[1], Em[2],...,Em[n]) arranged in a column direction, a plurality of data lines (Data[1], Data[2],...,Data[m]) arranged in a row direction, and a plurality of pixel circuits 141.

30 [0040] The pixel circuits 141 are partially defined by respective portions of the plurality of scan lines (Scan[1], Scan[2], ..., and Scan [n]), the plurality of data lines (Data[1], Data[2], ..., and Data[m]) and the plurality of emission lines (Em [1], Em[2], ..., and Em[n]). More particularly, each of the pixel circuits 141 is formed in a region defined by respective portions of two neighboring ones of the plurality of scan lines (Scan[1], Scan[2], ..., and Scan [n]) (or two neighboring ones of the plurality of emission lines (Em[1], Em[2], ..., and Em[n])) and two neighboring ones of the plurality of data lines (Data[1], Data[2], ..., and Data[m]).

35 [0041] The pixel circuits 141 can be driven by respective ones of the plurality of scan lines (Scan[1], Scan[2],...,Scan[n]), the plurality of data lines (Data[1], Data[2],...,Data[m]), and the plurality of emission lines (Em[1], Em[2],...,Em[n]). As described above, a scan signal(s) output from the scan driver 110 can be applied to the respective one of the scan lines (Scan[1], Scan[2],...,Scan[n]), a data signal(s) output from the data driver 120 can be applied to the respective one of the data lines (Data[1], Data[2],...,Data[m]), and an emission signal(s) output from the emission driver 130 can be applied to the respective one of the emission lines (Em[1], Em[2],...,Em[n]).

40 [0042] The first power supply 150, the second power supply 160, and the third power supply 170 can respectively provide a first voltage ELVDD, a second voltage ELVSS, and a third voltage V_{dc} to each of the pixel circuits 141 of the panel 140.

45 [0043] FIG. 2 illustrates a circuit diagram of a pixel circuit 241 employable by an organic light emitting display according to the present invention. For example, one, some or all of the pixel circuits 141 of the organic light emitting display of FIG. 1 may correspond to the pixel circuit 241 illustrated in FIG. 2. For ease of description, the pixel circuit 241 is illustrated as being coupled to the nth scan line (Scan[n]), the mth data line (Data[m]) and the nth emission line (Em[n]) of the organic light emitting display 100 of FIG. 1.

50 [0044] More particularly, referring to FIG. 2, the pixel circuit 241 is coupled to the nth emission line (EM[n]), a previous scan line (Scan[n-1]), the nth scan line (Scan[n]), the mth data line (Data[m]), the first power supply (ELVDD), the second power supply (ELVSS) and the third power supply (V_{dc}) of the display 100. The pixel circuit 241 includes a first switch S1, a second switch S2, a third switch S3, a fourth switch S4, a fifth switch S5, a sixth switch S6, a first capacitor C1, a second capacitor C2, a driving transistor DT, and an organic light emitting diode (OLED).

55 [0045] As described in more detail below, the emission signal(s) supplied via the nth emission line (EM[n]) initialize the first and second capacitors C1, C2 and/or substantially and/or completely compensate for a threshold voltage of the driving transistor DT of the pixel circuit 241. Additionally, referring to FIG. 2, in some embodiments with the emission line (EM[n]) electrically coupled to a control electrode of the first switch S1, the emission signal(s) supplied via the emission line (EM[n]) also controls an emission time of the OLED. As one example, if the emission line (EM[n]) is at a

low level, the previous scan line (Scan[n-1]) is at a low level, and the scan line (Scan[n]) is at a high level, the first and second capacitor C1, C2 are initialized to a value between the level of the first power supply (ELVDD) and the level of the third power supply (V_{dc}). As described above, the emission line (EM[n]) is electrically coupled to the emission driver 130 (see FIG. 1) for generating an emission signal(s) supplied thereto.

5 [0046] The previous scan line (Scan[n-1]) can apply a previous scan signal, for selecting the previous scan line (Scan[n-1]) to the pixel 241 of the nth scan line (Scan[n]) during a previous (n-1)th scanning period. Referring to FIG. 2, the previous scan line (Scan[n-1]) can apply the previous scan signal to a control electrode of the second switch S2 and a control electrode of the third switch S3 during the previous (n-1)th scanning period. If the previous scan signal supplied to the previous scan line (Scan[n-1]) is at a low level while the emission line (EM[n]) is at a high level, and the scan line (Scan[n]) is at a high level, a threshold voltage of the driving transistor DT is stored in the first and second capacitors C1, C2.

10 [0047] The nth scan line (Scan[n]) can apply a respective scan signal(s) from the scan driver 110 (see FIG. 1) to select respective ones of the pixel circuits coupled to the nth scan line (Scan[n]) which are to emit light during an nth driving period. That is, during the nth driving period, OLEDs of the selected ones of the pixels circuits coupled to the nth scan line (Scan[n]) can emit light. More particularly, e.g., the pixel circuit 241 can be selected to emit light during a driving period by supplying the scan signal thereto. Referring to FIG. 2, the nth scan line (Scan[n]) can apply a respective scan signal(s) to a control electrode of the fourth switch S4, a control electrode of the fifth switch S5, and a control electrode of the sixth switch S6. For example, in embodiments in which the fourth switch S4 and the fifth switch S5 are p-type transistors, the nth scan signal can be described as 'supplied' when the scan signal has a low voltage level. When the nth scan signal is supplied to the pixel circuit 241, the OLED thereof emits light during the respective driving period.

15 [0048] More particularly, when the nth scan signal is supplied to the nth scan line (Scan[n]), a data voltage from the mth data line (Data[m]) is stored in the first and second capacitors C1, C2, and simultaneously, a voltage (V_{EL}) of the OLED can be sensed and reflected. The nth scan line (Scan[n]) is electrically coupled to the scan driver 110, which may produce the respective scan signal(s).

20 [0049] The mth data line (Data[m]) can apply a data signal (voltage), from the data driver 120 (see FIG. 1) to the first and second capacitors C1, C2 and the driving transistor DT. The voltage of the data signal is proportional or inversely proportional to a light emission brightness of the OLED of the pixel circuit 241. The mth data line (Data[m]) can be electrically coupled to the data driver 120 (see FIG. 1), which may produce the respective data signal(s).

25 [0050] A first power line can enable the first voltage (ELVDD) to be applied to the OLED of the pixel circuit 241. The first power line can be coupled to the first power supply 150 (see FIG. 1), for supplying the first voltage (ELVDD).

30 [0051] A second power line can enable the second voltage (ELVSS) to be applied to the OLED of the pixel circuit 241. The second power line can be coupled to the second power supply 160 (see FIG. 1), for supplying the second voltage (ELVSS). The first voltage (ELVDD) can be higher than the second voltage (ELVSS).

35 [0052] A third power line can enable the third voltage (V_{dc}) to be applied to the first and second capacitors C1, C2 and a control electrode of the driving transistor DT. The third power line can be coupled to the third power supply 170 (see FIG. 1), for supplying the third voltage. The third voltage (V_{dc}) can be lower than the first voltage (ELVDD).

40 [0053] Referring to FIG. 2, the first switch S1 includes a control electrode (gate electrode) electrically coupled to the nth emission line (EM[n]), a first electrode (source electrode or drain electrode) electrically coupled to the first power line for receiving the first voltage (ELVDD), and a second electrode (the other of drain electrode or source electrode) electrically coupled to the driving transistor DT.

45 [0054] The second switch S2 includes a control electrode electrically coupled to the previous scan line (Scan[n-1]), a first electrode electrically coupled to the third power line for receiving the third voltage (V_{dc}), and a second electrode electrically coupled to the driving transistor DT.

50 [0055] The third switch S3 includes a control electrode electrically coupled to the previous scan line (Scan[n-1]), a first electrode electrically coupled to the fourth switch S4, the first capacitor C1, and the second capacitor C2, and a second electrode electrically coupled to a node between the first switch S1 and the driving transistor DT.

55 [0056] The fourth switch S4 includes a control electrode electrically coupled to the nth scan line (Scan[n]), a first electrode electrically coupled to the data line (Data[m]), and a second electrode electrically coupled to the first capacitor C1, the second capacitor C2, and the third switch S3.

56 [0057] The fifth switch S5 includes a control electrode electrically coupled to the nth scan line (Scan[n]), a first electrode electrically coupled to a node between the driving transistor DT and the OLED, and a second electrode electrically coupled to the sixth switch S6.

57 [0058] The sixth switch S6 includes a control electrode electrically coupled to the scan line (Scan[n]), a first electrode electrically coupled to the third power line for supplying the third voltage (V_{dc}), and a second electrode electrically coupled to the fifth switch S5.

58 As described above, when a scan signal of a low level is applied to the pixel circuit 241 via the nth scan line (Scan[n]), the fourth switch S4 and the fifth switch S5 are turned on, and the sixth switch S6 is turned off. When a scan signal of a high level is applied to the pixel circuit 241 via the scan line (Scan[n]), the fourth switch S4 and the fifth switch S5 are turned off, and the sixth switch S6 is turned on.

[0059] The first capacitor C1 includes a first electrode electrically coupled to a node (B) between the second capacitor C2, the third switch S3, and the fourth switch S4, and a second electrode electrically coupled to the driving transistor DT and the second switch S2.

5 [0060] The second capacitor C2 includes a first electrode electrically coupled to the node (B) between the first capacitor C1, the third switch S3, and the fourth switch S4, and a second electrode electrically coupled to a node (A) between the fifth switch S5 and the sixth switch S6.

[0061] A first electrode of the driving transistor DT is electrically coupled to the first switch S1 and the third switch S3 and a second electrode thereof is electrically coupled to the fifth switch S5 and the OLED. The control electrode of the driving transistor DT is electrically coupled to the first capacitor C1 and the second switch S2.

10 [0062] In the embodiment illustrated in FIG. 2, the first, second, third, fourth, and fifth switches S1, S2, S3, S4, S5 and the driving transistor DT are illustrated as p-type transistors, e.g., p-channel field effect transistors, and the sixth switch S6 is illustrated as a n-type transistor, e.g., a n-channel field effect transistor. However, embodiments of the invention are not limited thereto.

15 [0063] The driving transistor DT and/or the first, second, third, fourth and fifth switches S1, S2, S3, S4, S5, S6 may be any one selected from an amorphous silicon thin film transistor, a poly silicon thin film transistor, an organic thin film transistor, a micro thin film transistor, and equivalents thereof. However, embodiments of the invention are not limited thereto.

20 [0064] If the driving transistor DT and/or the switches S1, S2, S3, S4, S5, S6 are poly silicon thin film transistors, they may be formed using, e.g., a laser crystallization method, a metal induction crystallization method, and equivalent methods thereof. However, embodiments of the invention are not limited thereto.

[0065] The OLED includes an anode electrode electrically coupled to the driving transistor DT and the fifth switch S5, and a cathode electrode electrically coupled to the second power line for supplying the second voltage (ELVSS). The OLED emits lights of a predetermined brightness based on an amount of current controllably supplied thereto via the driving transistor DT.

25 [0066] The OLED includes an emitting layer. The emitting layer may include, e.g., a low-polymer or a high-polymer. However, embodiments of the invention are not limited thereto. Because characteristics of a low-polymer material are widely known, it can be easily developed, and mass production is possible at an early stage. A high-polymer material may have excellent thermal stability, superior mechanical hardness, and a more-natural color as compared with a low-polymer material.

30 [0067] FIG. 3 is a drive signal timing diagram illustrating signals employable to drive the pixel circuit 241 of FIG. 2.

[0068] As illustrated in FIG. 3, a driving period for driving the pixel circuit 241 may include an initializing period (①), a threshold voltage compensating period (②), a data writing and OLED voltage sensing period (③), and an emitting period (④).

35 [0069] The operation of the pixel circuit 241 in accordance with the invention will be described with reference to FIGS. 2 through 7.

[0070] FIG. 4 illustrates an operating state of the pixel circuit 241 of FIG. 2 during an initializing period (①).

40 [0071] During the initializing period (①), an emission signal at a low level is applied to the control electrode of the first switch S1 via the nth emission line (EM[n]). A previous scan signal at a low level is applied to the control electrode of the second switch S2 and the control electrode of the third switch S3 via the previous scan line (Scan[n-1]). A scan signal at a high level is applied to the fourth switch S4, the fifth switch S5, and the sixth switch S6 via the scan line (Scan[n]).

[0072] Therefore, during the initializing period (①), the first switch S1, the second switch S2, the third switch S3, and the sixth switch S6 are turned on while the fourth switch S4 and the fifth switch S5 are turned off.

45 [0073] Accordingly, the first electrode of the first capacitor C1 is electrically coupled to the first power line for supplying the first voltage (ELVDD). The first electrode of the second capacitor C2 is also electrically coupled to the first power line for supplying the first voltage (ELVDD). The second electrode of the first capacitor C1 and the second electrode of the second capacitor C2 are electrically coupled to the third power line (V_{dc}). The control electrode of the driving transistor DT is also electrically coupled to the third power line (V_{dc}).

[0074] During the initializing period (①), a voltage of the control electrode of the driving transistor DT and a voltage of the first electrode of the driving transistor DT are determined by the following Equation Set 1.

【Equation Set 1】

$$V_G = V_A = V_{dc}$$

$$V_s = V_B = ELVDD$$

5 Here, V_G is a voltage of the control electrode of the driving transistor DT. V_A is a voltage of node (A) between the second capacitor C2, the sixth switch S6 and the fifth switch S5. V_{dc} is the third voltage supplied via the third power line.

10 [0075] Further, V_s is a voltage of the first electrode of the driving transistor DT. V_B is a voltage of node (B) between the third switch S3, the first capacitor C1, the second capacitor C2 and the fourth switch S4. ELVDD is the first voltage supplied via the first power line.

15 [0076] FIG. 5 illustrates an operating state of the pixel circuit 241 of FIG. 2 during a threshold voltage compensating period (②).

20 [0077] An emission signal at a high level is applied to the control electrode of the first switch S1 via the nth emission line (EM[n]). A previous scan signal at a low level is applied to the control electrode of the second switch S2 and the control electrode of the third switch S3 via the previous scan line (Scan[n-1]). A scan signal at a high level is applied to the control electrodes of the fourth switch S4, the fifth switch S5 and the sixth switch S6 via the scan line (Scan[n]).

25 [0078] Therefore, during the threshold voltage compensating period (②), the second switch S2, the third switch S3, and the sixth switch S6 are turned on while the first switch S1, the fourth switch S4, and the fifth switch S5 are turned off.

30 [0079] Accordingly, the first electrode of the first capacitor C1 and the first electrode of the second capacitor C2 are electrically separated from the first power line for supplying the first voltage (ELVDD). The first electrode of the first capacitor C1 and the first electrode of the second capacitor C2 remain electrically coupled to the first electrode of the driving transistor DT via the third switch S3. The second electrode of the first capacitor C1 and the second electrode of the second capacitor C2 remain electrically coupled to the third power line (V_{dc}) via the second and sixth switches S2, S6, respectively.

35 [0080] Under such conditions, voltages of the first electrode of the first capacitor C1, the first electrode of the second capacitor C2, and the first electrode of the driving transistor DT fall from the first voltage (ELVDD), but do not fall below the threshold voltage of the driving transistor DT.

40 [0081] That is, during the threshold voltage compensating period (②), a voltage of the control electrode of the driving transistor DT and a voltage of the first electrode of the driving transistor are determined by the following Equation Set 2.

【Equation Set 2】

$$V_G = V_A = V_{dc}$$

$$V_s = V_B = V_{dc} + |V_{th}|$$

45 [0082] That is, during a threshold voltage compensating period (②), because the node (B) is electrically separated from the first power line for supplying the first voltage (ELVDD), a voltage V_B at the node (B) continues to fall, but does not fall below a threshold voltage V_{th} of the driving transistor DT. Accordingly, a threshold voltage V_{th} of the driving transistor DT is stored in the first capacitor C1 and the second capacitor C2.

50 [0083] FIG. 6 illustrates an operating state of the pixel circuit 241 of FIG. 2 during a data writing and OLED voltage sensing period (③).

55 [0084] During the data writing and OLED voltage sensing period (③), an emission signal at a low level is applied to the control electrode of the first switch S1 via nth the emission line (EM[n]). A previous scan signal at a high level is applied to the control electrode of the second switch S2 and the control electrode of the third switch S3 via the previous scan line (Scan[n-1]). A scan signal at a low level is applied to the fourth switch S4, the fifth switch S5, and the sixth switch S6 via the nth scan line (Scan[n]).

60 [0085] Therefore, during the data writing and OLED voltage sensing period (③), the first switch S1, the fourth switch S4, and the fifth switch S5 are turned on, and the second switch S2, the third switch S3, and the sixth switch S6 are turned off.

[0086] Accordingly, during the data writing and OLED voltage sensing period (③), the first electrode of the first capacitor C1 and the first electrode of the second capacitor C2 are electrically coupled to the mth data line (Data[m]). The second electrode of the first capacitor C1 is electrically coupled to the control electrode of the driving transistor DT, and the second electrode of the second capacitor C2 is electrically coupled to a node between the second electrode of the driving transistor DT and the anode electrode of the OLED via the fifth switch S5.

[0087] Accordingly, during the data writing and OLED voltage sensing period (③), voltages of the node (A) and the node (B) change. More particularly, during the data writing and OLED voltage sensing period (③), the voltages of the node (A) and the node (B) are determined by the following Equation Set 3.

10

【Equation Set 3】

$$V_A = V_{EL}$$

15

$$V_B = V_{data}$$

Here, V_{EL} is a voltage that may applied to the anode electrode of the OLED. In some embodiments, V_{EL} increases as a degradation level of the OLED increases.

[0088] Further, in some embodiments, a voltage of the control electrode of the driving transistor DT are determined by the following Equation Set 4.

25

【Equation Set 4】

$$V_G = V_{dc} + \Delta V_G$$

30

$$\Delta V_G = V_{data} - (V_{dc} + |V_{th}|)$$

$$V_G = V_{data} - |V_{th}|$$

35

[0089] FIG. 7 illustrates an operating state of the pixel circuit 241 of FIG. 2 during an emitting period (④). During the emitting period (④), an emission signal at a low level is applied to the control electrode of the first switch S1 via the nth emission line (EM[n]). A previous scan signal at a high level is applied to the control electrode of the second switch S2 and the control electrode of the third switch S3 via the previous scan line (Scan[n-1]). A scan signal at a high level is applied to the fourth switch S4, the fifth switch S5, and the sixth switch S6 via the nth scan line (Scan[n]).

[0090] Therefore, during the emitting period (④), the first switch S1 and the sixth switch S6 are turned on, and the second switch S2, the third switch S3, the fourth switch S4, and the fifth switch S5 are turned off.

[0091] Accordingly, during the emitting period (④), the second electrode of the first capacitor C1 is electrically coupled to the control electrode of the driving transistor DT. The first electrode of the first capacitor C1 is electrically coupled to the first electrode of the second capacitor C2. That is, the first capacitor C1 is coupled to the second capacitor C2 in series. The second electrode of the second capacitor C2 is electrically coupled to the third power line for supplying the third voltage (V_{dc}).

[0092] During the emitting period (④), a voltage of node (A) changes and is determined by the following Equation 5.

50

【Equation 5】

$$V_A = V_{dc}$$

55

[0093] A voltage of the control electrode of the driving transistor DT is determined by the following Equation Set 6.

【Equation Set 6】

$$5 \quad V_G = V_{data} - |V_{th}| + \Delta V_{G2}$$

$$\Delta V_{G2} = V_{dc} - V_{EL}$$

$$10 \quad V_G = V_{data} - |V_{th}| + V_{dc} - V_{EL}$$

[0094] During the emitting period (④), a current I_{OLED} that may be supplied to the OLED in accordance with Equation Set 6 is determined by the following Equation 7.

$$15 \quad \begin{aligned} I_{OLED} &= \frac{\beta}{2} (V_{GS} - V_{th})^2 \\ &= \frac{\beta}{2} (V_{SG} - |V_{th}|)^2 \\ &= \frac{\beta}{2} (V_s - V_G - |V_{th}|)^2 \\ &= \frac{\beta}{2} (ELVDD - V_{data} + |V_{th}| - V_{dc} + V_{EL} - |V_{th}|)^2 \\ &= \frac{\beta}{2} (ELVDD - V_{data} - V_{dc} + V_{EL})^2 \end{aligned}$$

[0095] As may be seen in Equation 7, in some embodiments of the invention, the more the voltage V_{EL} of the OLED increases, the more the current I_{OLED} flowing through the OLED may increase. That is, in some embodiments, the current I_{OLED} flowing through the OLED increases proportionally to the voltage V_{EL} of the OLED. In some embodiments, by increasing the voltage V_{EL} of the OLED as the efficiency of the OLED decreases, it is possible to substantially and/or completely suppress image sticking by increasing an amount of the current I_{OLED} supplied to the OLED. As a result, some embodiments of the invention enable the lifetime of an organic light emitting display to be increased by controllably increasing the current I_{OLED} supplied to the OLED as efficiency thereof decreases. Further, in some embodiments of the invention, a threshold voltage of the driving transistor DT is effectively stored effectively and substantially and/or completely compensated.

[0096] FIG. 8 illustrates a circuit diagram of another pixel circuit 341 employable by an organic light emitting display according to another embodiment of the invention. One, some, or all of the pixel circuits 141 of the organic light emitting display of FIG. 1 may correspond to the pixel circuit 341 illustrated in FIG. 7. For ease of description, the pixel circuit 341 is illustrated as being coupled to the nth scan line (Scan[n]), the mth data line (Data[m]) and the nth light emission control line (Em[n]) of the organic light emitting display 100 of FIG. 1.

[0097] As shown in FIG. 8, the pixel circuit 341 has generally the same structure as the exemplary pixel circuit 241 of FIG. 2. Only differences between the pixel circuit 341 of FIG. 8 and the pixel circuit 241 of FIG. 2 will be described below. Referring to FIG. 8, the pixel circuit 341 includes a third capacitor C3 electrically coupled between the first power line for supplying the first voltage (ELVDD) and the second capacitor C2. A first electrode of the third capacitor C3 is electrically coupled to the first power line for supplying the first voltage (ELVDD). A second electrode of the third capacitor C3 is electrically coupled to a node (B') between the third switch S3, the fourth switch S4, the first capacitor C1, and the second capacitor C2.

[0098] The third capacitor C3 serves to adjust a value of a voltage change due to a voltage V_{EL} of the OLED and is employed in a feedback function. That is, in the pixel circuit 241 illustrated in FIG. 2, because the voltage V_{EL} of the OLED is fed back to the control electrode of the driving transistor DT, the current I_{OLED} of the organic light emitting diode can increase excessively.

[0099] However, in the pixel circuit 341 illustrated in FIG. 8, a value of voltage change due to the voltage V_{EL} of the OLED can controllably adjusted by the third capacitor C3 and feedback can be controllably executed. More particularly,

in the pixel circuit 341 illustrated in FIG. 8, the current provided to the OLED is determined by the following Equation 8. As may be seen from Equation 8, the voltage V_{EL} of the OLED, for which a feedback operation is executed by the third capacitor C3, can be adjusted.

5

【Equation 8】

$$\begin{aligned}
 10 \quad I_{OLED} &= \frac{\beta}{2} (V_{as} - V_{th})^2 \\
 &= \frac{\beta}{2} (V_{se} - |V_{th}|)^2 \\
 &= \frac{\beta}{2} (V_s - V_a - |V_{th}|)^2 \\
 15 \quad &= \frac{\beta}{2} \left(ELVDD - (V_{data} - |V_{th}|) + (V_{dc} - V_{EL}) \cdot \frac{C_2}{C_2 + C_3} \right)^2 - |V_{th}| \\
 &= \frac{\beta}{2} \left(ELVDD - V_{data} - (V_{dc} - V_{EL}) \cdot \frac{C_2}{C_2 + C_3} \right)^2 \\
 20 \quad &= \frac{\beta}{2} \left(ELVDD - V_{data} - V_{dc} \cdot \frac{C_2}{C_2 + C_3} + V_{EL} \cdot \frac{C_2}{C_2 + C_3} \right)^2
 \end{aligned}$$

[0100] Some embodiments may provide an organic light emitting display in which an increasing anode voltage of an OLED, which may be proportional to an amount of degradation of the OLED, may be sensed during a data writing period, and thus, an amount of current supplied to the OLED may be increased in proportion to the sensed voltage, such that image sticking and/or a reduction in a lifetime of the display due to degradation of the OLED may be substantially and/or completely suppressed.

[0101] Further, in some embodiments of an organic light emitting display according to the invention, a storage capacitor may be electrically coupled to a node between a control electrode of a driving transistor and a first electrode of the driving transistor, and thus, a power source voltage provided to the first electrode thereof may be blocked, and a threshold voltage of the driving transistor may be stored naturally in the storage capacitor. That is, some embodiments of the present invention may compensate for a threshold voltage of the driving transistor without employing a diode-coupled structure.

[0102] Certain embodiments of the present invention have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present invention as set forth in the following claims.

40 Claims

1. An organic light emitting display, comprising:

45 a driving transistor electrically coupled to a first power line;
 a first switch electrically coupled to the driving transistor and an emission line;
 a second switch electrically coupled to the driving transistor and a previous scan line;
 a third switch electrically coupled to the first switch and a data line;
 a fourth switch electrically coupled to the data line and the third switch;
 a fifth switch electrically coupled to the driving transistor and a scan line;
 50 a first capacitor electrically coupled to the second switch and the third switch;
 a second capacitor electrically coupled to the third switch and the fifth switch; and
 an organic light emitting diode electrically coupled to the driving transistor and a second power line.

55 2. An organic light emitting display as claimed in claim 1, wherein the driving transistor includes a control electrode electrically coupled to the second switch, a first electrode electrically coupled to the first switch and the third switch, and a second electrode electrically coupled to the fifth switch and the organic light emitting diode.

3. An organic light emitting display as claimed in claim 1 or 2, wherein the first switch includes a control electrode

electrically coupled to the emission line, a first electrode electrically coupled to the first power line, and a second electrode electrically coupled to the driving transistor.

- 5 4. An organic light emitting display as claimed in any preceding claim, wherein the second switch includes a control electrode electrically coupled to the previous scan line, a first electrode electrically coupled to a third power line, and a second electrode electrically coupled to the driving transistor.
- 10 5. An organic light emitting display as claimed in any preceding claim, wherein a voltage of the first power line is higher than a voltage of the third power line.
- 15 6. An organic light emitting display as claimed in any preceding claim, wherein the fourth switch includes a control electrode electrically coupled to the scan line, a first electrode electrically coupled to the data line, and a second electrode electrically coupled to the first capacitor, the second capacitor, and the third switch.
- 20 7. An organic light emitting display as claimed in any preceding claim, wherein the fifth switch includes a control electrode electrically coupled to the scan line, and a first electrode electrically coupled to a node between the driving transistor and the organic light emitting diode.
- 25 8. An organic light emitting display as claimed in any preceding claim, wherein the sixth switch is further electrically coupled to the fifth switch.
- 30 9. An organic light emitting display as claimed in any preceding claim, wherein the sixth switch includes a control electrode electrically coupled to the scan line, a first electrode electrically coupled to a third power line, and a second electrode electrically coupled to the fifth switch.
- 35 10. An organic light emitting display as claimed in any preceding claim, wherein the first switch, the second switch, the third switch, the fourth switch, and the fifth switch are P-channel field effect thin-film transistors, and the sixth switch is a N-channel field effect thin-film transistor.
- 40 11. An organic light emitting display as claimed in any preceding claim, wherein the first capacitor includes a first electrode electrically coupled to the second capacitor, the third switch, and the fourth switch, and a second electrode electrically coupled to the driving transistor and the second switch.
- 45 12. An organic light emitting display as claimed in any preceding claim, wherein the second capacitor includes a first electrode electrically coupled to the first capacitor, the third switch, and the fourth switch, and a second electrode electrically coupled to the fifth switch.
- 50 13. An organic light emitting display as claimed in any preceding claim, wherein the organic light emitting diode includes an anode electrode electrically coupled to the driving transistor and the fifth switch, and a cathode electrode electrically coupled to the second power line.
- 55 14. An organic light emitting display as claimed in any preceding claim, wherein a third capacitor is further electrically coupled between the first power line and the first capacitor.
- 15. An organic light emitting display as claimed in any preceding claim, wherein the third capacitor includes a first electrode electrically coupled to the first power line and a second electrode electrically coupled to a node between the first capacitor, the second capacitor, the third switch, and the fourth switch.
- 16. An organic light emitting display as claimed in any preceding claim, wherein a voltage of the first power line is higher than a voltage of the second power line.
- 17. An organic light emitting display as claimed in any preceding claim, wherein the third switch includes a control electrode electrically coupled to the previous scan line, a first electrode electrically coupled to a data line, the first capacitor, and the second capacitor, and a second electrode electrically coupled to a node between the first switch and the driving transistor.
- 18. An organic light emitting display as claimed in any preceding claim, wherein:

the fifth switch is electrically coupled to the sixth switch, and
the second switch and the sixth switch are electrically coupled to the third power line.

5 **19.** An organic light emitting display as claimed in claim 18, wherein when the previous scan line has a low level, the
scan line has a high level, the emission line has a low level, a second electrode of the first capacitor, a second
electrode of the second capacitor and a control electrode of the driving transistor are electrically coupled to a third
power line, such that the second electrode of the first capacitor, the second electrode of the second capacitor and
the control electrode of the driving transistor are initialized to a voltage level of the third power line.

10 **20.** An organic light emitting display as claimed in claim 19, wherein when the previous scan line is maintained at a low
level, the scan line is maintained at a high level, and the emission line changes to a high level, a threshold voltage
of the driving transistor is reflected in the first and second capacitor, such that a voltage of the control electrode of
the driving transistor has the voltage the level of the third power line, and the threshold voltage of the driving transistor
is compensated.

15 **21.** An organic light emitting display as claimed in claim 20, wherein when the previous scan line changes to a high
level, the scan line changes to a low level, and the emission line changes to a low level, a data voltage of the data
line is stored in the first and second capacitors and simultaneously, an anode voltage of the organic light emitting
diode is reflected.

20 **22.** An organic light emitting display as claimed in claim 21, wherein when the previous scan line is maintained at a high
level, the scan line changes to a high level and the emission line is maintained at a low level, current provided to
the organic light emitting diode through the driving transistor increases due to the data voltage and the anode voltage
of the organic light emitting diode reflected in the first and second capacitor.

25 **23.** An organic light emitting display as claimed in claim 22, wherein the current provided to the organic light emitting
diode increases in proportion to the anode voltage of the organic light emitting diode.

30

35

40

45

50

55

FIG. 1

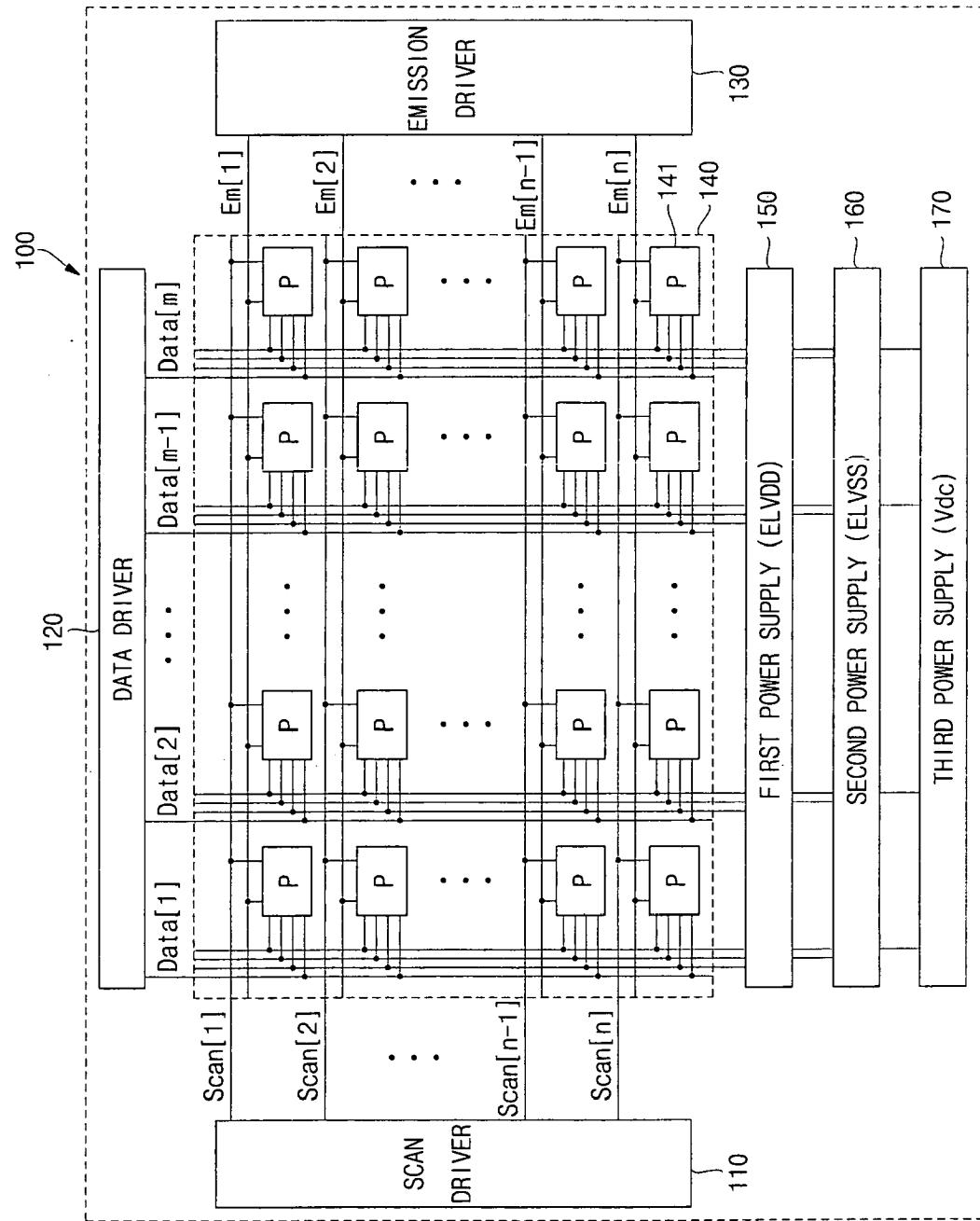


FIG. 2

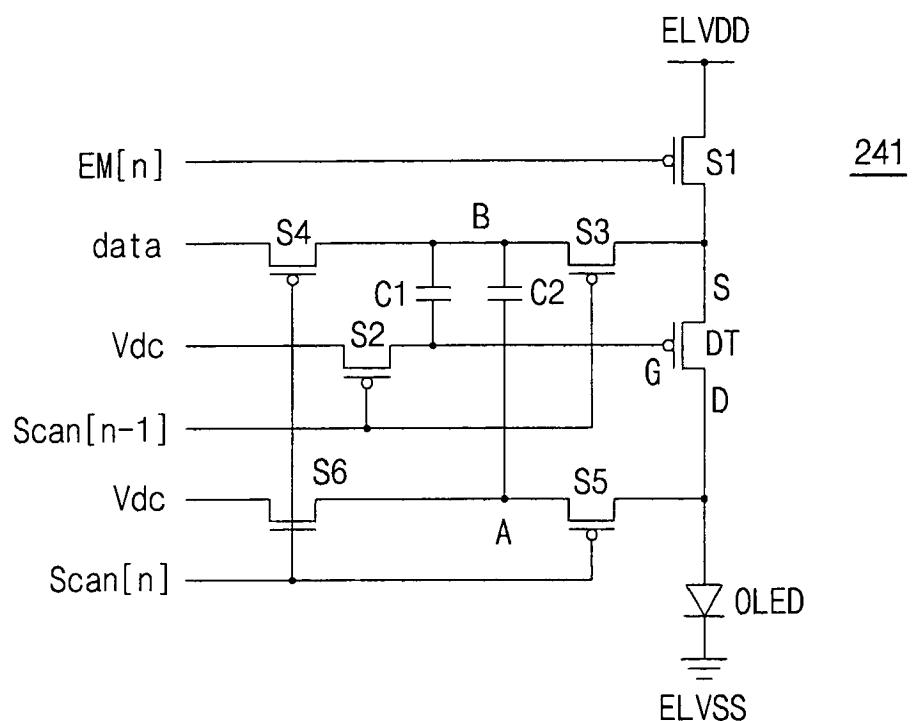


FIG. 3

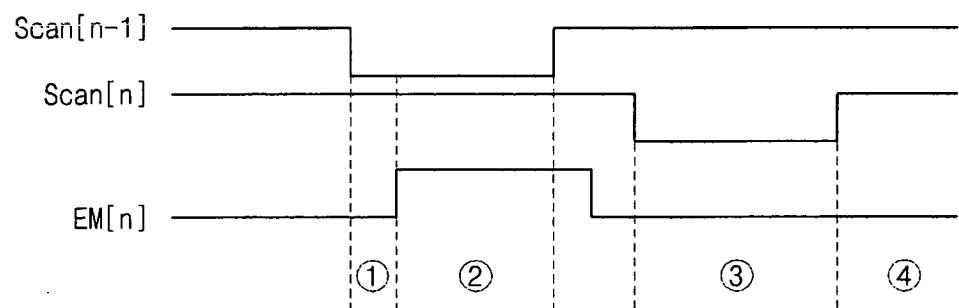


FIG. 4

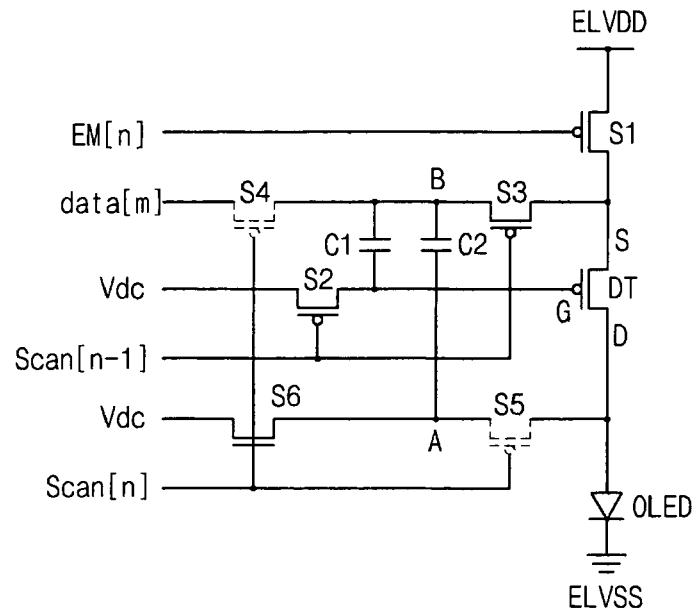


FIG. 5

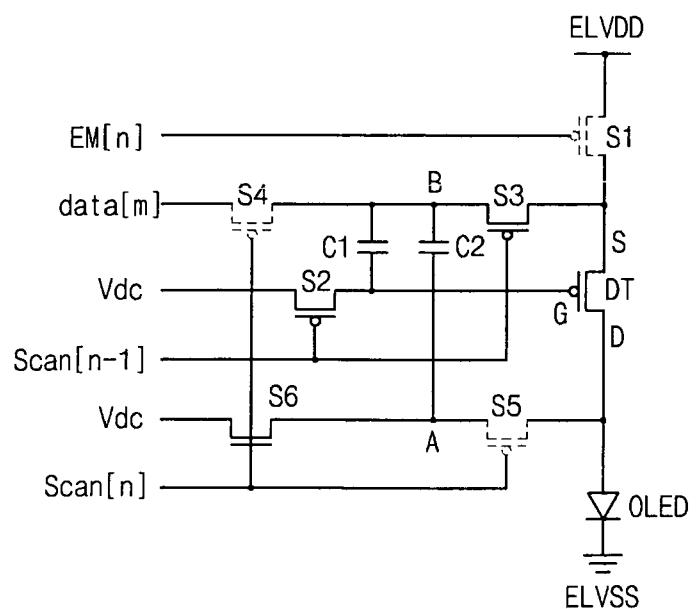


FIG. 6

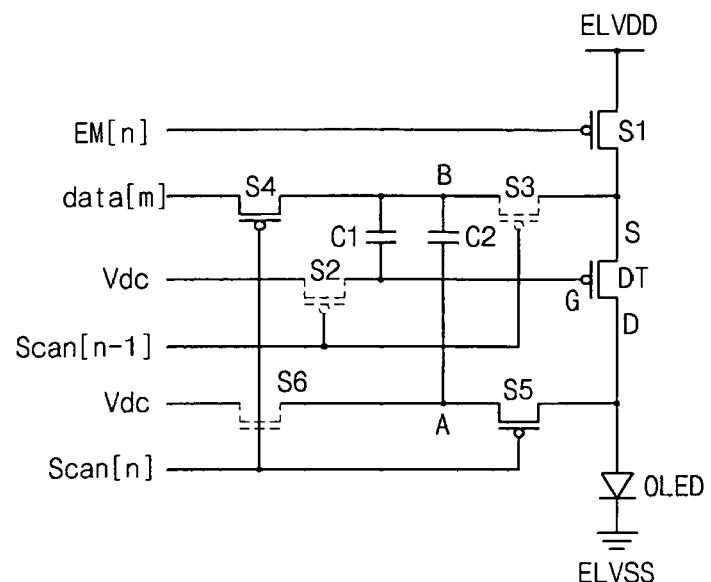


FIG. 7

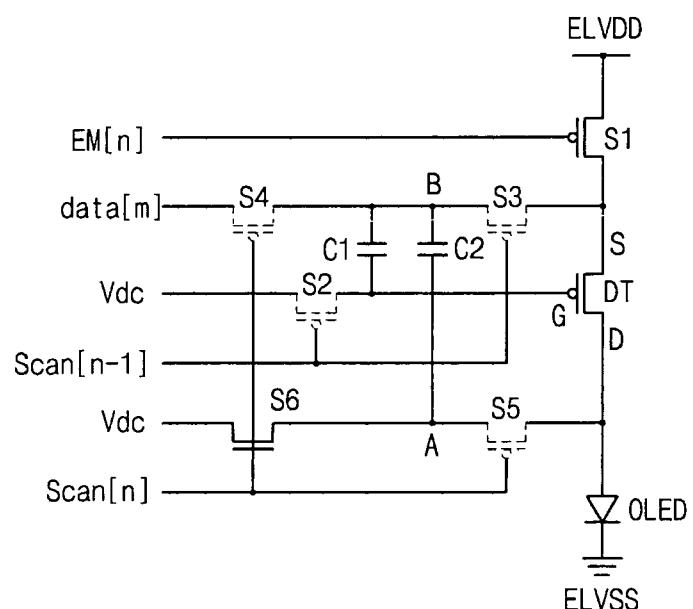
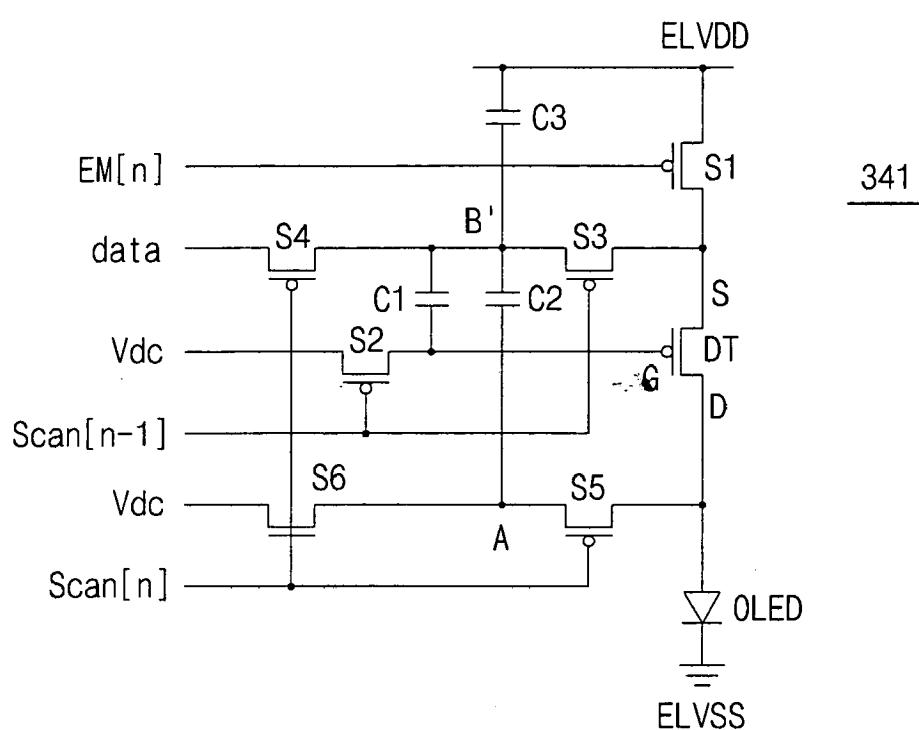



FIG. 8

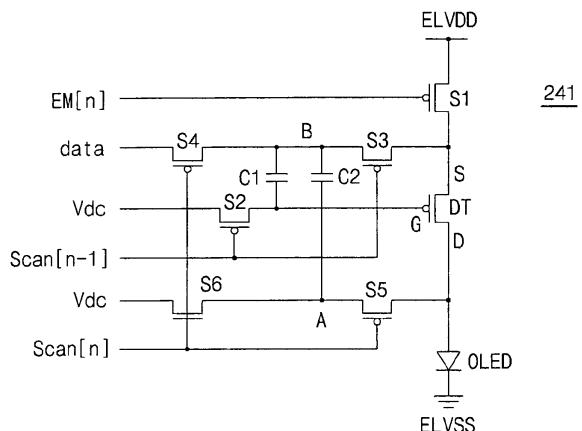
DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	EP 1 758 084 A (SAMSUNG SDI CO LTD [KR]; IUCF HYU [KR]) 28 February 2007 (2007-02-28) * paragraphs [0001], [0049] - [0062] * * figures 3,4 *	1,16	INV. G09G3/32
X	US 2006/055336 A1 (JEONG JIN T [KR] JEONG JIN TAE [KR]) 16 March 2006 (2006-03-16) * paragraphs [0003], [0036] - [0054] * * figures 3,4 *	1,16	
A	US 2007/040769 A1 (TAI YA-HSIANG [TW] ET AL) 22 February 2007 (2007-02-22) * paragraphs [0024] - [0027] * * figures 5,6 *	1	
A	US 6 356 029 B1 (HUNTER IAIN M [GB]) 12 March 2002 (2002-03-12) * the whole document *	1	
			TECHNICAL FIELDS SEARCHED (IPC)
			G09G
<p>The present search report has been drawn up for all claims</p> <p>2</p>			
Place of search	Date of completion of the search	Examiner	
The Hague	23 June 2008	Ladiray, Olivier	
<p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 08 25 0708

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-06-2008


Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1758084	A	28-02-2007	CN	1909046 A		07-02-2007
			JP	2007041515 A		15-02-2007
			US	2007024540 A1		01-02-2007
US 2006055336	A1	16-03-2006		NONE		
US 2007040769	A1	22-02-2007		NONE		
US 6356029	B1	12-03-2002	WO	0126087 A1		12-04-2001
			EP	1135764 A1		26-09-2001
			JP	2003511724 T		25-03-2003
			TW	490650 B		11-06-2002

专利名称(译)	有机发光显示器		
公开(公告)号	EP1968039A1	公开(公告)日	2008-09-10
申请号	EP2008250708	申请日	2008-02-29
[标]申请(专利权)人(译)	三星斯笛爱股份有限公司		
申请(专利权)人(译)	三星SDI CO. , LTD.		
当前申请(专利权)人(译)	三星移动显示器有限公司.		
[标]发明人	KIM YANGWAN		
发明人	KIM, YANGWAN		
IPC分类号	G09G3/32		
CPC分类号	G09G3/3233 G09G2300/0819 G09G2300/0852 G09G2300/0861 G09G2320/043 G09G2320/045		
优先权	1020070020802 2007-03-02 KR		
外部链接	Espacenet		

摘要(译)

一种有机发光显示器，包括电耦合到第一电源线的驱动晶体管，电耦合到驱动晶体管和发射线的第一开关，电耦合到驱动晶体管和先前扫描线的第二开关，第三开关电耦合到第一开关和数据线，电耦合到数据线和第三开关的第四开关，电耦合到驱动晶体管和扫描线的第五开关，电耦合到第二开关的第一电容器和第三开关，电耦合到第三开关和第五开关的第二电容器，以及电耦合到驱动晶体管和第二电源线的有机发光二极管。

FIG. 2

