

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開2002-117970

(P2002-117970A)

(43)公開日 平成14年4月19日(2002.4.19)

(51) Int.CI ⁷	識別記号	F I	テ-マコード ⁸ (参考)
H 05 B 33/02		H 05 B 33/02	3 K 007
33/10		33/10	
33/12		33/12	E
33/14		33/14	A

審査請求 未請求 請求項の数 420 L (全 35数)

(21)出願番号 特願2001-175073(P2001-175073)

(22)出願日 平成13年6月11日(2001.6.11)

(31)優先権主張番号 09/592075

(32)優先日 平成12年6月12日(2000.6.12)

(33)優先権主張国 米国(US)

(71)出願人 390041542

ゼネラル・エレクトリック・カンパニー
GENERAL ELECTRIC COMPANY

アメリカ合衆国、ニューヨーク州、スケネ

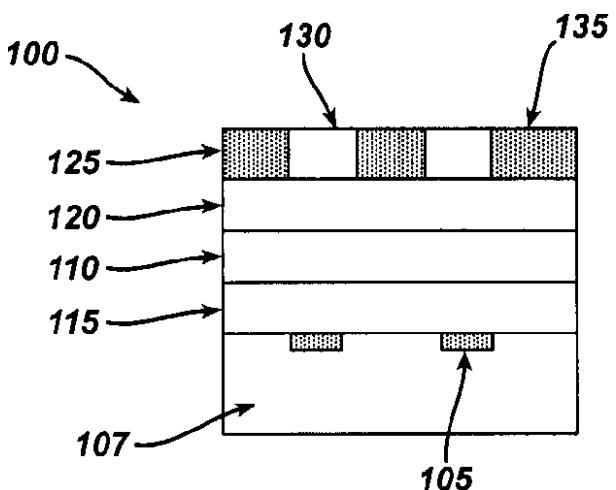
クタディ、リバーロード、1番

(72)発明者 アニル・ラジ・ドゥガル

アメリカ合衆国、ニューヨーク州、ニスカ
ユナ、アルゴンクwin・ロード、2322番

(74)代理人 100093908

弁理士 松本 研一


最終頁に続く

(54)【発明の名称】屋外用エレクトロルミネセンスディスプレイ装置

(57)【要約】

【課題】 有機発光素子(OLED)技術を利用した屋外標識用の装置構成及び方法。

【解決手段】 OLEDをパターン化して標識とし、OLED発光領域上に設けた高散乱性・非吸収性皮膜と非発光領域上に設けた高吸収性皮膜とからなる外層と組合わせる。その結果、周囲光レベルが低い条件下では有機エレクトロルミネンス(EL)光で視認でき、周囲光レベルが高い条件下では外側皮膜で視認できる標識が得られる。

【特許請求の範囲】

【請求項1】 2枚の電極の間に配置された有機発光層を含んでいて、電極間に電気を流すと有機発光層が発光する有機発光素子と、有機発光素子の第一の領域上に設けられた高吸収性皮膜と、有機発光素子の第二の領域上に設けられた高散乱性皮膜とを含むディスプレイ装置。

【請求項2】 有機発光層が複数の有機層からなる、請求項1記載のディスプレイ装置。

【請求項3】 高散乱性皮膜が屈折率1.4以上の粒子からなる、請求項1記載のディスプレイ装置。

【請求項4】 粒子がTiO₂、ZnO及び/又はSiO₂からなる、請求項1記載のディスプレイ装置。

【請求項5】 高散乱性皮膜が顔料からなる、請求項1記載のディスプレイ装置。

【請求項6】 顔料が蛍光物質からなる、請求項1記載のディスプレイ装置。

【請求項7】 第一の領域と第二の領域が有機発光素子上にランダムパターンを形成する、請求項1記載のディスプレイ装置。

【請求項8】 電極の少なくとも一方が実質的に透明である、請求項1記載のディスプレイ装置。 20

【請求項9】 高散乱性皮膜と一方の電極の間に基板をさらに含む、請求項1記載のディスプレイ装置。

【請求項10】 電極及び基板がいずれも実質的に透明である、請求項9記載のディスプレイ装置。

【請求項11】 高散乱性皮膜と高吸収性皮膜の少なくとも一方が塗料からなる、請求項1記載のディスプレイ装置。

【請求項12】 高吸収性皮膜が不透明材料からなる、請求項1記載のディスプレイ装置。

【請求項13】 高散乱性皮膜と高吸収性皮膜の少なくとも一方が基板上に塗工され、基板が有機発光素子上に積層されている、請求項1記載のディスプレイ装置。

【請求項14】 高吸収性皮膜が紙、プラスチック又は金属からなる、請求項1記載のディスプレイ装置。

【請求項15】 電極の少なくとも一方がパターン化されている、請求項1記載のディスプレイ装置。

【請求項16】 街路標識の形態を有する、請求項15記載のディスプレイ装置。

【請求項17】 ディスプレイ装置の輝度が約30~140000Cd/m²である、請求項16記載のディスプレイ装置。

【請求項18】 電極間の印加電圧が2~20ボルトである、請求項17記載のディスプレイ装置。

【請求項19】 高散乱性皮膜が有機発光層の観測色を変化させる、請求項11記載のディスプレイ装置。

【請求項20】 高吸収性皮膜が着色性、蛍光性及び散乱性の少なくともいづれかの性質を有する、請求項19記載のディスプレイ装置。

【請求項21】 高散乱性皮膜が蛍光物質からなる、請 50

求項19記載のディスプレイ装置。

【請求項22】 第一の電極層を有機発光層で被覆する工程と、有機発光層を第二の電極層で被覆する工程と、有機発光層の上方に高散乱性皮膜と高吸収性皮膜を表示パターンに応じて施工する工程とを含む、ディスプレイ装置の製造方法。

【請求項23】 電極層の少なくとも一方が表示パターンに対応したパターンをなす、請求項22記載の方法。

【請求項24】 ランダムな表示パターンをなすように高散乱性皮膜と高吸収性皮膜を施工する工程を含む、請求項22記載の方法。 10

【請求項25】 電極層の少なくとも一方が透明又は実質的に透明である、請求項22記載の方法。

【請求項26】 電極層の少なくとも一方がなすパターンに対応したパターンをなすように高散乱性皮膜を施工する工程をさらに含む、請求項23記載の方法。

【請求項27】 第一の電極層がパターンをなし、第二の電極層が実質的に透明である、請求項23記載の方法。

【請求項28】 高散乱性皮膜が屈折率1.4以上の粒子からなる、請求項22記載の方法。 20

【請求項29】 粒子がTiO₂、ZnO及び/又はSiO₂からなる、請求項28記載の方法。

【請求項30】 高散乱性皮膜が顔料からなる、請求項22記載の方法。

【請求項31】 顔料が蛍光物質からなる、請求項30記載の方法。

【請求項32】 高散乱性皮膜と高吸収性皮膜のいずれか又は両方が塗料からなる、請求項22記載の方法。

【請求項33】 高散乱性皮膜と高吸収性皮膜のいずれか又は両方が紙、プラスチック又は金属からなる、請求項22記載の方法。 30

【請求項34】 ディスプレイ装置の輝度が約30~100000Cd/m²である、請求項22記載の方法。

【請求項35】 電極層間の印加電圧が2~20ボルトである、請求項22記載の方法。

【請求項36】 高散乱性皮膜が有機発光層の観測色を変化させる、請求項22記載の方法。

【請求項37】 第一の電極層を複数の有機層で被覆する工程を含む、請求項22記載の方法。

【請求項38】 高散乱性皮膜と電極層の間に基板層を追加する工程をさらに含む、請求項22記載の方法。

【請求項39】 基板及び電極層がいずれも透明又は実質的に透明である、請求項38記載の方法。

【請求項40】 明所・暗所のいずれでも視認できるパターンの表示方法であって、暗所では、請求項1記載の装置の電極間に電気を加え、明所では電極間に電気を加えない工程を含む、方法。

【請求項41】 電気を加える工程が、光のレベルに応じて電極層間に電気を加えるエレクトリックアイを用い

て制御される、請求項40記載の方法。

【請求項42】光の量に応じて電極間に電気を可変的に加える素子をさらに含む、請求項1記載の装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はエレクトロルミネセンス素子に関する。さらに具体的には、本発明は広い範囲の周囲光条件下で視認できる屋外用エレクトロルミネセンスディスプレイ装置に関する。

【0002】

【従来の技術】例えば夜間と昼間のように周囲光レベルが高い条件下でも低い条件下でも読み取れる標識には多くの用途が存在する。道路標識が見慣れた具体例である。通例、これらの標識は反射光の下で高いコントラストを与えるように印刷されている。昼間は日光の反射で読み取ることができ、夜間は自動車のヘッドライト光や標識に当たられた専用スポットライトの光のような人工光の反射で視認できる。夜間に専用スポットライトで視認できる標識は、エネルギー面での効率が悪い。スポットライト光の大部分は標識を読み取るのに照明の必要なない領域を照明するのに浪費されるからである。夜間の読み取り性を自動車のヘッドライト光に頼る標識は、自動車がそれらに直面しているときにしか視認できないという短所を有する。さらに、夜間自動車のヘッドライト光の大半が雨滴で散乱されるような降雨条件下では、標識を読み取るのは難しい。

【0003】陰極線管(CRT)技術の開発により、暗所でも読み取れるカスタマイズ可能な標識が得られた。かかるディスプレイは、新たな標識を表示すべく電子的に迅速に再構成できる。同様な能力をもったその他の技術としては、液晶ディスプレイ、薄膜プラズマディスプレイ及び有機エレクトロルミネセンスディスプレイがある。しかし、これらのディスプレイは複雑な電子回路を要し、単純な多くの標識用には高価すぎる。

【0004】米国特許第5962962号には、基本的な有機発光素子(OLED)が記載されている。OLEDは陽極、有機発光層及び陰極が順次積層された構成であり、有機発光層は陽極と陰極の間に挟まれている。一般に、陽極と陰極の間を流れる電流は有機発光層の様々な点を通過して、それを発光させる。光を発する側の表面に位置する電極は透明又は半透明フィルムからなる。他方の電極は特殊な金属薄膜で形成され、金属でも合金でもよい。

【0005】有機発光素子は普通、基板の上に形成される。場合によっては、性能向上のため、陽極と有機発光層の間に正孔輸送層が設けられ、陰極と有機発光層の間に電子注入層が設けられる。

【0006】米国特許第5902688号には、OLEDの別の例が開示されている。この米国特許には、所望の形状にパターン化した絶縁体を設けることによって製

造したディスプレイが開示されている。一般に、陰極と陽極がOLEDの特定の点と直接経路をもつところでOLEDは発光する。この米国特許の絶縁体は、有機層と一方の電極との間で不完全層をなして、少なくとも一方の電極がOLED上の特定の点からなるパターンと接触するのを防いで、そうした有機層の点での発光を防ぐ。特定のディスプレイとするため、絶縁体層は、所望ディスプレイの比較的暗くする領域に応じて有機層を流れる電流を抑制するようにパターン化される。しかし、

10 このディスプレイを用いた標識は装置の明領域と暗領域とのコントラストのみに依存し、実用OLED素子で達成可能な輝度は比較的低い(<10000カンデラ/平方メートル(Cd/m²))。そのため、このようなディスプレイ装置は光レベルの低い条件下では視認できが、明るい周囲条件下では(例えば、真昼の太陽の下では)読み取ることができない。さらに、絶縁体層の形成プロセスは困難で時間がかかり、かかる装置の生産コストが上がる。

【0007】

【発明が解決しようとする課題】そこで、周囲光レベルが高い条件下でも低い条件下でも読み取れ、上述の欠点のないコストパフォーマンスに優れた標識を提供できれば望ましい。さらに、かかる標識の簡単な製造方法を提供することも望ましい。

【0008】

【課題を解決するための手段】有機発光素子(OLED)技術を利用した屋外標識の製造を可能にする装置構成及び方法を開示する。装置の具体例には、OLEDをパターン化して標識とし、(1)OLED発光領域上に設けた高散乱性・非吸収性皮膜と(2)非発光領域上に設けた高吸収性皮膜とからなる外層と組合せたものがある。その結果、周囲光レベルが低い条件下では有機エレクトロルミネセンス光で視認でき、周囲光レベルが高い条件下では外側皮膜により視認できる標識が得られる。このように、本発明の実施形態は自然の日光の下でも夜間でもある程度のコントラストを与えて、街路標識などの視認性を向上させる。

【0009】

【発明の実施の形態】好ましい実施形態に関する以下の詳細な説明を添付図面と併せて参照することで、本発明の特徴及び利点についての理解を深めることができよう。なお、添付の図面において、類似構成要素は同一符号を用いて示した。

【0010】本発明の代表的な実施形態には、良好なコントラストとディスプレイ反射光での視認性を与えるため、高散乱性・非吸収性皮膜の領域と高吸収性皮膜の領域とを有する層を隣接して設けたOLEDディスプレイがある。

【0011】「有機発光素子」(OLED)とは、2枚の電極(陽極と陰極)と有機発光層(概して陽極と陰極

の間に配置される)を有するエレクトロルミネセンス子を意味する。有機発光層に電流が流れると有機発光層は発光する。

【0012】「有機発光層」とは、電流を流すと発光する1種以上の有機化合物を含む層を意味する。本発明は特定の有機化合物に限定されず、当技術分野で知られた広範な化合物を包含する。

【0013】「高散乱性皮膜」とは、反射光で容易に視認できる皮膜を意味する。高散乱性皮膜は、TiO₂やSiO₂やZnOのような屈折率の比較的高い物質の粒子を含むものでよい。通例、光散乱性粒子は1.4以上の屈折率を有する。高散乱性皮膜は吸収性でも非吸収性でもよいが、その厚さはOLEDの放つ光が実質的に透過する(透過率>20%、好ましくは>40%)ように十分な薄さのものである。任意には、高散乱性皮膜は蛍光性及び/又は着色体でもよい。

【0014】「高吸収性皮膜」とは、OLEDの放つ光を実質的に吸収する皮膜で、概して>60%、好ましくは>90%、最も好ましくは>99%の吸収率に対応するものを意味する。高吸収性皮膜に適宜追加し得る性質には、着色、蛍光性及び高散乱性などがあるが、これらの性質は単独で発現してもよいし、上記の性質との組合せで発現してもよい。

【0015】本発明の実施形態では、夜間条件下でエレクトロルミネンス光を放出させることが望まれるOLED領域上には高散乱性皮膜が配置され、残りの領域の一部又は全部には高吸収性皮膜が配置される。これら2種類の皮膜を設ける簡単な手段は塗料である。アクリル系エナメルが好ましい塗料であるが、その他の種類の塗料も使用できる。一実施形態では、高散乱性皮膜は白色塗料からなる。緑や赤などのその他の色も高散乱性皮膜に使用できることはいうまでもない。なお、夜間条件下で装置の発する色はOLEDの発光色で決定される。非吸収性塗料層の厚さは、周囲光レベルが高い条件下での反射光に対する良好な視認性を与えるのに十分な厚さで、周囲光レベルの低い条件下でのエレクトロルミネンス光に対する良好な視認性を与えるのに十分な薄さに選択される。

【0016】高吸収性皮膜は例えば黒色塗料でもよいし、その他OLEDの放つ光を実質的に吸収する色の塗料でもよい。高吸収性皮膜は、好ましくは、反射光として高散乱性皮膜と良好なコントラストを与えるとともに、OLED発光が高吸収性皮膜領域からは実質上全く出ないようにOLED発光を実質的に全て吸収するのに十分な厚さである。勿論、高吸収性皮膜の厚さは適度の吸収率(通例60%以上の吸収率)を与えるのに十分なものであるべきである。塗料以外の高吸収性皮膜の例には、下層に固着させた不透明材料(不透明な紙、プラスチック、金属など)がある。

【0017】種類にかかわらず、高散乱性皮膜又は高吸

吸性皮膜は、透明ガラスやプラスチックフィルムのような追加の基板上にOLEDを積層した装置にも使用でき、基板は高散乱性皮膜及び/又は高吸収性皮膜で被覆される。これらの皮膜は、スプレーコート、ディップコート、刷毛塗り、積層又はレーザ印刷などの慣用技術で施工し得る。

【0018】一般に、有機発光素子は2つの電極の間に有機発光層を配置してなるルミネセンスディスプレイとして提供される。有機発光層は電極間に電圧を印加すると発光する。陽極及び陰極が有機発光層に電荷キャリヤ(すなわち、正孔及び電子)を注入すると、それらは再結合して励起分子又は励起子を生じ、かかる分子又は励起子が消滅する時に光を放つ。かかる分子によって放出される光の色は、分子又は励起子の励起状態と基底状態とのエネルギー差に依存する。通例、印加電圧は約3~10ボルトであるが、30ボルトもしくはそれ以上に達することもあり、外部量子効率(放出光子/注入電子)は0.01~5%であるが、10%、20%、30%もしくはそれ以上に達する可能性もある。有機発光層は通例約50~500ナノメートルの厚さを有し、各電極は通例約100~1000ナノメートルの厚さを有する。

【0019】陰極は、一般に、比較的低い電圧で陰極から電子が放出されるように仕事関数の小さい材料からなる。陰極は、例えば、カルシウム或いは金、インジウム、マンガン、スズ、鉛、アルミニウム、銀、マグネシウム又はマグネシウム/銀合金のような金属からなるものでよい。別法として、陰極は電子注入を高めるため二層で構成することもできる。具体例には、LiFの薄い内層の上にそれより厚いアルミニウム又は銀の外層を設けたもの、或いはカルシウムの薄い内層の上にそれより厚いアルミニウム又は銀の外層を設けたものがある。

【0020】陽極は通例仕事関数の大きい材料からなる。陽極は、有機発光層中で生じた光がルミネンスディスプレイの外部に放出されるように透明であるのが好ましい。陽極は、例えば、酸化インジウムスズ(ITO)、酸化スズ、ニッケル又は金からなるものでよい。電極は、真空蒸着やスパッタリングなどの慣用の蒸着技術で形成し得る。

【0021】本発明の実施形態では、様々な有機発光層を使用できる。一実施形態では、有機発光層は単一層からなる。有機発光層は、例えば、ルミネンスを示す共役ポリマー、電子輸送分子と発光材料をドープした正孔輸送ポリマー、又は正孔輸送分子と発光材料をドープした不活性ポリマーでよい。有機発光層は発光性有機低分子の非晶質膜からなるものでもよく、かかる非晶質膜には他の発光性分子をドープし得る。

【0022】別法として、有機発光層は正孔注入、正孔輸送、電子注入、電子輸送及びルミネンスの機能を果たす2以上の二次層からなるものでもよい。機能素子を得るのに必要とされるのは発光層だけである。ただし、

二次層を追加すると一般に正孔と電子の再結合による発光効率が高まる。そこで、有機発光層は、正孔注入用二次層、正孔輸送用二次層、発光用二次層及び電子注入用二次層を含む1～4層の二次層を含み得る。また、1以上の二次層は正孔注入、正孔輸送、電子注入、電子輸送及びルミネセンスなどの2以上の機能を果たす材料を含み得る。

【0023】以下、有機発光層が单一層からなる実施形態について説明する。

【0024】第一の実施形態では、有機発光層は共役ポリマーからなる。「共役ポリマー」という用語は、ポリマー主鎖に沿った非局在化電子系を含むポリマーを意味する。非局在化電子系はポリマーに半導性を与え、ポリマー主鎖に沿って高い移動度をもった正及び負電荷キャリヤを担持する能力を与える。ポリマー膜の外來電荷キャリヤ濃度は十分低く、電極間に電界を印加するとポリマーに電荷キャリヤが注入され、ポリマーから光を発する。共役ポリマーについては、例えば、R. H. Friend, Journal of Molecular Electronics, 4 (1988) 37-46で議論されている。

【0025】電圧の印加により発光する共役ポリマーの一例は、PPV(ポリ(p-フェニレンビニレン))である。PPVは約500～690ナノメートルのスペクトル域の光を放つとともに、良好な耐熱亀裂性及び耐応力亀裂性を有する。適当なPPVフィルムは通常約100～1000ナノメートルの厚さを有する。PPVフィルムは、PPV前駆体のメタノール溶液を基材にスピンドルコートし、真空炉で加熱することにより形成できる。

【0026】PPVの発光特性を保持しつつPPVに様々な改変を施すことができる。例えば、PPVのフェニレン環は所望に応じてアルキル、アルコキシ、ハロゲン及び二トロから独立に選択される1以上の置換基を有していてもよい。本発明の実施形態では、PPVから誘導されるその他の共役ポリマーを使用してもよい。かかるPPV誘導体の例としては、(1)フェニレン環を縮合環系で置き換える(例えば、フェニレン環をアントラセンやナフタレン環系で置き換える)ことにより誘導されるポリマー(これらの代替環系もフェニレン環について上記で説明した種類の1以上の置換基を有し得る)、(2)フェニレン環をフラン環などの複素環系で置き換えることにより誘導されるポリマー(かかるフラン環もフェニレン環について上記で説明した種類の1以上の置換基を有し得る)、及び(3)各フェニレン環その他の環系に結合したビニレン基の数を増加させることにより誘導されるポリマーが挙げられる。上述の誘導体は様々なエネルギーギャップを有するので、所望の色範囲の光を放つ有機発光層の形成に際して選択肢が拡がる。発光性共役ポリマーについてのさらに詳しい情報は米国特許第5247190号に記載されており、その開示内容は

援用によって本明細書に取り込まれる。

【0027】その他の適当な共役ポリマーの例としては、2,7-置換-9-置換フルオレン類、9-置換フルオレンオリゴマー及びポリマーのようなポリフルオレン類がある。ポリフルオレン類は概して良好な熱安定性と化学安定性及び高い固相蛍光量子収率を有する。かかるフルオレン類、オリゴマー及びポリマーの9位は、2つのヒドロカルビル基(任意には硫黄、窒素、酸素、リン又はケイ素の1以上のヘテロ原子を有していてもよい)；フルオレン環上の9位炭素と共に形成されたC₅₋₂₀環構造、又は9位炭素と共に形成され、硫黄、窒素又は酸素の1以上のヘテロ原子を含むC₄₋₂₀環構造；あるいはヒドロカルビリデン基で置換し得る。一実施形態では、フルオレンの2位と7位はアリール基で置換され、該アリール基は架橋能又は連鎖延長能をもつ基或いはトリアルキルシロキシ基で置換されていてもよい。フルオレンポリマー及びオリゴマーは2位と7位が置換されていてもよい。フルオレンオリゴマー及びポリマーのモノマー単位は2位と7位で連結している。末端2,7-アリール基上の架橋能又は連鎖延長能をもつ基を連鎖延長又は架橋反応に付して2,7-アリール-9-置換フルオレンオリゴマー及びポリマー同士をさらに反応させれば、さらに高分子量のポリマーを合成できる。

【0028】上述のフルオレン類及びフルオレンオリゴマー又はポリマーは、慣用有機溶剤に容易に溶解する。それらは、スピンドルコート、スプレーコート、ディップコート及びロールコートなどの慣用技術で薄膜又は皮膜へと加工できる。かかる膜は硬化すると通常の有機溶剤に対する耐性と高い耐熱性を示す。かかるポリフルオレン類についてのさらに詳しい情報は米国特許第5708130号に記載されており、その開示内容は援用によって本明細書に取り込まれる。

【0029】本発明の例示的実施形態で使用し得る他の適当なポリフルオレン類には、青色エレクトロルミネセンスを示すポリ(フルオレン-アントラセン)のようなポリ(フルオレン)コポリマーがある。これらのコポリマーは、2,7-ジプロモ-9,9-ジ-*n*-ヘキシルフルオレン(DHF)のようなポリフルオレンサブユニットと、9,10-ジプロモアントラセン(ANT)のような別のサブユニットとを含んでいる。DHFとANTとの高分子量コポリマーは、それらの対応アリールプロミドのニッケル触媒共重合により調製できる。最終ポリマーの分子量は、末端封鎖剤の2-ブロモフルオレンを重合の種々の段階で添加することによって調節できる。かかるコポリマーは熱安定性で、分解温度が400℃を上回っており、テトラヒドロフラン(THF)やクロロホルムやキシレンやクロロベンゼンのような慣用有機溶剤に可溶である。これらは約455nmの波長の青色光を放つ。かかるポリフルオレン類についてのさ

らに詳しい情報は、Gerrit Klarner他，“Colorfast Blue Light Emitting Random Copolymers Derived from Di-n-hexylfluorene and Anthracene”Adv. Mater., 10 (1998) 993-997に記載されており、その開示内容は援用によって本明細書に取り込まれる。

【0030】単一層素子の第二の実施形態では、有機発光層は分子ドープしたポリマーからなる。分子ドープしたポリマーは典型的には電荷輸送分子を不活性ポリマーバインダー中に分子分散させた二元固溶体からなる。電荷輸送分子は、正孔と電子がドープポリマー中を移動して再結合する能力を高める。不活性ポリマーは、利用し得るドーパント材料及びホストポリマーバインダーの機械的性質に関して多数の選択肢を与える。

【0031】分子ドープポリマーの一例は、ポリ(メチルメタクリレート)(PMMA)に、正孔輸送分子であるN,N-ジフェニル-N,N-ビス(3-メチルフェニル)-1,1-ビフェニル-4,4-ジアミン(TPD)と発光材料であるトリス(8-キノリノラト)アルミニウム(III)(Alq)を分子ドープしたものである。TPDは $10^{-3} \text{ cm}^2/\text{ボルト}\cdot\text{秒}$ の高い正孔ドリフト移動度を有し、Alqはその発光特性の他に電子輸送特性をもつ発光性金属錯体である。

【0032】ドープ濃度は通例約50%であるが、TPDとAlqのモル比は例えば約0.4から1.0まで変更し得る。ドープPMMAフィルムは、TPDとAlqとPMMAを適量含むジクロロエタン溶液を混合し、この溶液を酸化インジウムスズ(ITO)電極などの所望の基材上にディップコートすることによって製造できる。ドープPMMA層の厚さは通例約100ナノメートルである。電圧を印加して付勢すると、緑色光を発する。かかるドープポリマーについてのさらに詳しい情報は、Junji Kido他，“Organic Electroluminescent Devices Based on Molecularly Doped Polymers”, Appl. Phys. Lett., 61, (1992) 761-763に記載されており、その開示内容は援用によって本明細書に取り込まれる。

【0033】本発明の別の実施形態では、有機発光層は2つの二次層からなる。第一の二次層は正孔輸送性、電子輸送性及び発光性を提供するもので、陰極に隣接して配置される。第二の二次層は正孔注入用二次層として機能するもので、陽極に隣接して配置される。第一の二次層は正孔輸送ポリマーに電子輸送分子と発光材料(例えば、染料又はポリマー)をドープしたものからなる。正孔輸送ポリマーは、例えばポリ(N-ビニルカルバゾール)(PVK)などである。電子輸送分子は、例えば2

- (4-ビフェニル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)などである。発光材料は典型的には発光色を変化させる発光中心として機能する低分子又は高分子を含む。例えば、発光材料は有機染料のクマリン460(青色)、クマリン6(緑色)又はナイルレッドを含んでいてよい。これらの材料は、例えば、Aldrich Chemical社、Lancaster Synthesis社、TCI America社及びLambda Physics社などから市販されている。これらの混合物の薄膜は、様々な量のPVK、電子輸送分子及び発光材料を含有するクロロホルム溶液のスピンドルコートによって形成できる。例えば、適当な混合物は100重量%のPVK、40重量%のPBD及び0.2~1.0重量%の有機染料からなる。

【0034】第二の二次層は正孔注入用二次層として作用し、例えばBayer社から入手可能なポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホネート(PEDT/PPS)を含んでいてもよく、スピンドルコートなどの慣用法で形成できる。電子輸送分子及び発光材料をドープした正孔輸送ポリマーについてのさらに詳しい情報は、Chung-Chih Wu他，“Efficient Organic Electroluminescent Devices Using Single-Layer Doped Polymer Thin Films with Bipolar Carrier Transport Abilities”, IEEE Trans. On Elec. Devices, 44 (1997年) 1269-1281に記載されており、その開示内容は援用によって本明細書に取り込まれる。

【0035】図1及び図2は、文字「A」の形の光を放つようにパターン化したOLED装置100を示す。かかる1文字又は1記号標識の集合体からモジュラ方式で所望の標識を構成できることはいうまでもない。図2は図1示すOLED装置の上面図である。図1及び図2の装置は、金属の陰極105と酸化インジウムスズ(ITO)の陽極110を含んでいる。電極105及び110は、有機発光層115の両側に配置されている。この実施形態では、陰極105は文字「A」の形にパターン化されているが、陽極110を全く同様にパターン化してもよいし、両電極をパターン化してもよい。別法として、両電極共にパターン化しなくてもよい。透明基板120が陽極110に隣接する。基板120上には、高散乱性皮膜130を、例えばパターン化陰極105に対応した文字「A」の形など所望のパターンをなすように設ける。高吸収性皮膜135を、基板120上の高散乱性皮膜130で覆われていない領域に設ける。陰極105を水及び酸素から保護するため、例えばガラス又はSi₃N₄やSiO₂のような無機皮膜からなる遮蔽層107を

陰極305上に設けてよい。

【0036】本発明の実施形態はその他にも多数存在する。例えば、OLED装置は全くパターン化しなくてよい。かかるアプローチでは光が浪費されるものの、高吸収性皮膜及び高散乱性皮膜で標識上にパターンを画成できる。さらに、高散乱性皮膜130は反射光で見たときに呈色する顔料又は蛍光顔料を含んでいてよい。好みしくは、かかる顔料は、夜間動作時にOLEDの放つ光を実質的に吸収しない。別法として、OLEDの放つ光の波長をシフトさせる蛍光体を高散乱性皮膜に添加してもよい。高吸収性皮膜は、発光させたくない領域に紙やプラスチックや金属のような不透明材料を物理的に付着させて形成することもできる。かかる不透明材料は、好みしくは、反射光の下で良好なコントラストを与えるのに十分な吸収率を有する。

【0037】本発明の一実施例は、STOP標識のような道路交差点の標識である。かかる標識の外面は、よくある赤地に白色文字を塗装したものでもよい。標識内部にはOLEDを設置し得る。昼間動作時には、かかる標識はその外面に塗工された皮膜により通常の街路標識と同様に視認できる。日中の周囲光は、標識の地と文字を明らさに十分である。夜間及び光レベルの低い条件下では、かかる標識は人工光の反射に依らない。逆に、かかる標識はその文字を照明する内部光源で視認できる。光の透過は高吸収性皮膜によって減衰又は遮断される。標識の夜間視認性は専用のスポットライトに依るものないので、エネルギー消費の点で格段に効率的である。標識はその読み取り性を自動車ヘッドライトに依存しないため、明るいヘッドライトをもたない歩行者、自転車乗用者などにも視認できる。さらに、標識は、自動車ヘッドライト光の多くが雨滴で散乱してしまう夜間降雨条件下でも、車内から容易に視認できる。

【0038】実施例1

図3～図5は、本発明の一実施形態に係るパターン化緑色発光OLED装置の製造中間工程を示す。Applied酸化インジウムスズ(ITO)被覆ガラス(15オーム平方)基板307をFilms社から入手し、王水蒸気を用いてITOの一部を除去して、図3示すパターン化陽極310を得た。この複合基板307及び陽極310を洗剤で機械的に洗浄し、メタノール溶液、次いで沸騰イソプロピルアルコール溶液中に浸漬し、最後にオゾンクリーナ内で5分間処理した。次に、Bayer社製のポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホネート(PEDT/PPS)の厚さ約5ナノメートル(nm)の層(図示せず)を陽極310上にスピニコートした。次に、Aldrich社製のポリ(9-ビニルカルバゾール)(PVK)とAldrich社製の2-(4-フェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)と及びExciton社製のクマリン5450

0の重量比70:30:0.5のポリマーブレンド約100nmを、ジクロロエタンを溶媒として用いてPEDT/PPS層上にスピニコートした。次に、図4に示す通り、図4示す陰極パターンを画成するため装置上にシャドウマスクを通して約0.8nmのフッ化リチウム層及び約100nmのアルミニウムからなる陰極305を蒸着した。装置を次いでグローブボックスに移し、装置の陰極側にスライドガラスをエポキシ樹脂で付着させて封入した。得られた装置は、4つの独立にアドレス指定可能な有機発光素子405からなっており、各素子は陰極305と陽極310が重なり合う領域によって画成される正方形パターンで緑色光を放った。

【0039】次に、このパターン化OLEDを用いて、図5に示す本発明の標識500を以下の通り製造した。装置の透明基板307側の、アドレス指定可能な正方形のうちの1つの上方に白色塗料(Sherwin-Wiliams社の一事業部であるKrylon社製Acrylic Enamel Industrial Tough Coat(Acrylic Enamel Industrial Tough Coat))からなる高散乱性皮膜510をスプレー塗装した。白色塗料の周囲には、黒色塗料(Testors社製Flat Enamel 11149 Black)からなる高吸収性皮膜505を刷毛で塗布した。高散乱性皮膜からなる正方形510は図4示す4つの素子405の1つに対応する。周囲光レベルの低い条件下では、電極間に電圧を印加して標識500を付勢できる。この具体的な装置では、電圧を印加すると、黒色の背景の中に緑色の正方形510が照らし出される。電圧12ボルト(V)では、約30Cd/m²の輝度が測定された。この輝度レベルでは、緑色標識は暗所で容易に視認できる。電圧20Vでは、約500Cd/m²の輝度が測定された。この輝度レベルでは、緑色標識は明るく照明された屋内環境又は曇った日の屋外でも容易に視認できる。明るい日光の下では、この標識は、標識外面に設けられた皮膜により、黒地に白色の正方形としてはっきりと視認できる。

【0040】実施例2

パターン化赤色発光OLED装置を以下の通り製造した。Applied Films社製の酸化インジウムスズ(ITO)被覆ガラス(15オーム平方)を入手し、王水蒸気を用いてITOの一部を除去して、図3示すITOパターンを得た。この基板を洗剤で機械的に洗浄し、メタノール溶液、次いで沸騰イソプロピルアルコール溶液中に浸漬し、最後にオゾンクリーナ内で5分間処理した。次に、Bayer社製のポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホネート(PEDT/PPS)の厚さ約20nmの層をITO上にスピニコートした。次に、キシレンを溶媒として用いて、赤色発光ポリマー(Dow Chemical社製のRed-A)の厚さ約50nmの層をPEDT/PPS

層上にスピンドルコートした。次に、図6示す陰極パターンを画成するため装置上にシャドウマスクを通して約0.8nmのフッ化リチウム層及び約200nmのアルミニウムからなる陰極を蒸着した。なお、陰極の蒸着はグローブボックス内で行った。陰極の蒸着後、装置の陰極側にスライドガラスをエポキシ樹脂で付着させて封入した。得られた装置は、長方形パターンの赤色光を放つ2つの独立にアドレス指定可能なOLEDからなっていた。

【0041】次に、このパターン化OLEDを用いて、本発明の標識を以下の通り製造した。OLEDの発光色に似た赤色の高散乱性赤色蛍光皮膜（Model Master社製のFluorescent Red # F S 28915）をスライドガラス上にスプレーコートした。スライドガラスの赤色蛍光皮膜で覆われた領域は、スライドガラスをOLED装置の発光面に重ねたときに1つのOLEDの発光領域と一致するように選択した。スライドガラスの赤色蛍光領域の周囲には、図7に示す通り、長方形を取り囲むように黒色塗料（Krylon社製のIndustrial Tough Coat Latex Enamel # S 63725セミフラット・ブラック）からなる高吸収性皮膜をスプレーコートした。次いで、スライドガラスをOLED装置の発光側に積層して長方形の標識を完成した。明るい日光の下では、かかる標識は黒地に赤色蛍光の長方形としてはっきりと視認できる。周囲光レベルの低い条件下では、装置に電圧を印加して標識を付勢できる。この具体的な装置では、電圧を印加すると、黒地に赤色の長方形が照らし出される。電圧5Vでは、約120Cd/m²の輝度が測定された。この輝度レベルでは、赤色標識は明るく照明された屋内環境又は曇った日の屋外でも容易に視認できる。この実施例では、OLEDの放つ赤色光が赤色蛍光皮膜を通過する透過率は約40%であり、OLEDの放つ赤色光が黒色吸収皮膜で吸収される吸収率は99%を超えることが判明した。この実施例は、高吸収性皮膜と高散乱性皮膜の少なくともいざれかをOLED上に直接設けずに追加の基板（本例ではスライドガラス）上に施工し得ることも例示する。

【0042】実施例3

パターン化緑色発光OLED装置を以下の通り製造した。Applied Films社製の酸化インジウムスズ（ITO）被覆ガラス（15オーム平方）を入手し、王水蒸気を用いてITOの一部を除去して、図3示すITOパターンを得た。この基板を洗剤で機械的に洗浄し、メタノール溶液、次いで沸騰イソプロピルアルコール溶液中に浸漬し、最後にオゾンクリーナ内で5分間処理した。次に、Bayer社製のポリ（3,4）エチレンジオキシチオフェン/ポリスチレンスルホネート（PEDT/PPS）の厚さ約30nmの層をITO上にスピンドルコートした。次に、キシレンを溶媒として用い

て、緑色発光ポリマー（Dow Chemical社製のグリーンB（Green-B））の厚さ約70nmの層をPEDT/PPS層上にスピンドルコートした。次に、図6示す陰極パターンを画成するため装置上にシャドウマスクを通して約0.8nmのフッ化リチウム層及び約200nmのアルミニウムからなる陰極を蒸着した。なお、陰極の蒸着はグローブボックス内で行った。陰極の蒸着後、装置の陰極側にスライドガラスをエポキシ樹脂で付着させて封入した。得られた装置は、長方形パターンで緑色光を放つ2つの独立にアドレス指定可能なOLEDからなっていた。

【0043】次に、このパターン化OLEDを用いて、本発明の標識を以下の通り製造した。OLEDの発光色と同様な緑色を有する高散乱性の緑色皮膜（Testors社製のSpray Enamel # 1601 Transparent Candy Emerald Green）を薄い透明プラスチックフィルム（3M社製のTransparency Film PP2200）上にスプレーコートした。フィルムの緑色皮膜で覆われた領域は、フィルムをOLED装置の発光面上に重ねたときに1つのOLEDの発光領域と一致するように選択した。フィルムの緑色領域の周囲には、図8に示す通り、長方形を取り囲むようにして白色塗料（Sherwin-Williams社の一事業部であるKrylon社社製のAcrylic Enamel Industrial Tough Coat）からなる厚い高散乱性皮膜をスプレーコートした。次いで、透明プラスチックフィルムをOLED装置の発光側に積層して長方形の標識を完成した。明るい日光の下では、かかる標識は白地に緑色蛍光の長方形としてはっきりと視認できる。周囲光レベルの低い条件下では、装置に電圧を印加して標識を付勢できる。この具体的な装置では、電圧を印加すると、白地に緑色の長方形が照らし出される。電圧4.5Vでは、約120Cd/m²の輝度が測定された。この輝度レベルでは、緑色標識は明るく照明された屋内環境又は曇った日の屋外でも容易に視認できる。この実施例では、OLEDの放つ緑色光が緑色皮膜を通過する透過率は約40%であり、OLEDの放つ緑色光が白色吸収皮膜で吸収される吸収率は約90%であることが判明した。この実施例は、高吸収性皮膜と高散乱性皮膜の少なくともいざれかをOLED上に直接設けずに追加の基板（本例では薄い透明プラスチックフィルム）上に施工し得ることも実証する。この実施例は、白色塗料が（実施例3のように）十分な厚さを有すれば高吸収性皮膜として作用し、一方（実施例1のように）薄ければ高散乱性皮膜として作用し得ることをも示す。

【0044】本発明の追加の実施形態には、屋外用ディスプレイ装置の様々な実施方法がある。最も簡単な方法は、昼夜を問わずOLEDに電力を連続的に供給することである。この方法は、最も望ましい動作モードとはい

えない。昼間の周囲光レベルが高い条件下では、標識はOLEDではなく反射光で読取られ、電力が浪費されるからである。別の方法は、特定の時間（例えば、夜間）にOLEDに電力を供給するタイミング回路を利用するものである。この方法は最初の方法よりも望ましいが、周囲光レベルが予想外に低い条件下（例えば、曇った日）には有効でない。より望ましい方法は、周囲光レベルの低下を感じし得るホトセンサ又はエレクトリックアイを含み、周囲光レベルが低下したときにOLEDに電力を供給する回路を用いてOLEDへの電力供給を制御するものである。この回路は、周囲光レベルが所定の閾値を下回るとOLEDに一定電圧を供給するように設計してもよいし、別法として周囲光条件に応じてOLEDへの印加電圧を連続的に変化させるものでもよい。

【0045】以上の説明は、細かい事項が多数含まれているが、それらはもっぱら説明のために示したものであって、本発明を限定するものではない。本発明の技術的思想及び技術的範囲から逸脱することなく、上記の実施形態に様々な変更を加えることが可能であるが、そうした変更は特許請求の範囲に包含される。

【図面の簡単な説明】

【図1】本発明の一実施形態を示す側面図である。

【図2】図1の実施形態の上面図である。

【図3】本発明の一実施形態に係る装置の有機発光層の下方に設けられた陽極層の上面図である。

*【図4】本発明の一実施形態に係る装置の有機発光層の上方に設けられた陰極層の上面図である。

【図5】本発明の一実施形態に係る装置の陰極層の上方に設けられたパターン化皮膜の上面図である。

【図6】フッ化リチウムの層を蒸着した後、シャドウマスクを通してアルミニウムを蒸着することによって形成された陰極パターンの上面図である。

【図7】黒地に赤の長方形を描いた標識である。

【図8】白地に緑の長方形を描いた標識である。

【符号の説明】

100 有機発光素子

105 陰極

107 遮蔽層

110 陽極

115 有機発光層

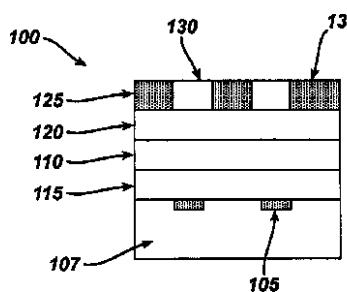
120 基板

130 高散乱性皮膜

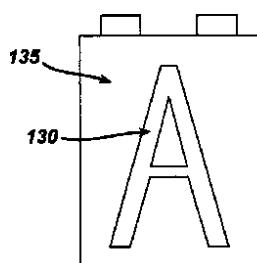
135 高吸収性皮膜

305 陰極

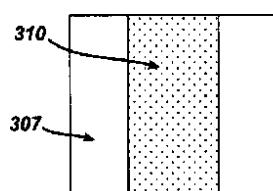
307 基板

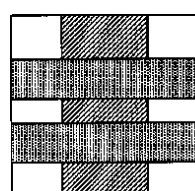

310 陽極

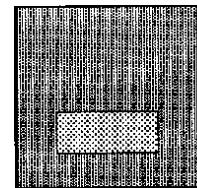
405 有機発光素子

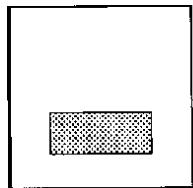

500 標識

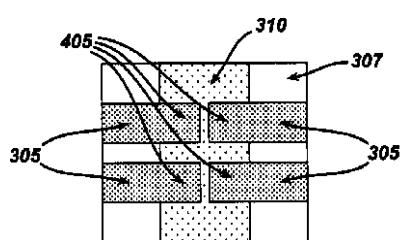
505 高吸収性皮膜

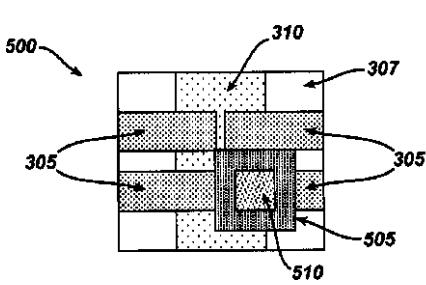

【図1】


【図2】


【図3】


【図6】


【図7】


【図8】

【図4】

【図5】

フロントページの続き

(72)発明者 ラリー・ジーン・ターナー

アメリカ合衆国、ニューヨーク州、ゴール
ウェイ・レイク、メイウッド・グローブ、
2600番

F ターム(参考) 3K007 AB17 AB18 BA06 BB01 BB06

CA01 CB01 DA01 DB03 EA01
EA04 EB00 FA01 GA04

【外国語明細書】

1. Title of Invention

OUTDOOR ELECTROLUMINESCENT DISPLAY DEVICES

2. Claims

1. A display device comprising:

an organic light emitting device comprising an organic light emitting layer disposed between two electrodes, whereby said organic light emitting layer luminesces when electricity flows between said electrodes;

a highly absorbing coating on a first region of the organic light emitting device; and

a highly scattering coating on a second region of the organic light emitting device.

2. The display device of claim 1, wherein the organic light emitting layer comprises a plurality of organic layers.

3. The display device of claim 1, wherein the highly scattering coating comprises particles having an index of refraction greater than 1.4.

4. The display device of claim 3, wherein the particles comprise TiO_2 , ZnO , and/or SiO_2 .

5. The display device of claim 1, wherein the highly scattering coating comprises a pigment.

6. The display device of claim 5, wherein the pigment comprises a fluorescent material.

7. The display device of claim 1, wherein the first and second regions form a random pattern on the organic light emitting device.

8. The display device of claim 1, wherein at least one of the electrodes is substantially transparent.

9. The display device of claim 1, further comprising a substrate between the highly scattering coating and one of the two electrodes.

10. The display device of claim 9, wherein the electrode and the substrate are both substantially transparent.

11. The display device of claim 1, wherein at least one of the highly scattering coating and the highly absorbing coating comprises paint.

12. The display device of claim 1, wherein said highly absorbing coating comprises an opaque material.

13. The display device of claim 1, wherein at least one of the highly scattering coating and the highly absorbing coating is applied to a substrate, and the substrate is laminated onto the organic light emitting device.

14. The display device of claim 1, wherein said highly absorbing coating comprises paper, plastic, or metal.

15. The display device of claim 1, wherein at least one of the electrodes is patterned.

16. The display device of claim 15, in the form of a street sign.

17. The display device of claim 16, wherein the luminance of the display device is between about 30 Cd/m² and 10,000 Cd/m².

18. The display device of claim 17, wherein the voltage applied between the electrodes is between 2 volts and 20 volts.

19. The display device of claim 11, wherein the highly scattering coating changes the observed color of the organic light emitting layer.

20. The display device of claim 19, wherein the highly absorbing coating is at least one of colored, fluorescent and scattering.

21. The display device of claim 19, wherein said highly scattering coating comprises a fluorescent material.

22. A method for making a display device comprising the steps of:

coating a first electrode layer with an organic light emitting layer;

coating the organic light emitting layer with a second electrode layer;

applying a highly scattering coating and a highly absorbing coating above the organic light emitting layer, corresponding to a pattern to be displayed.

23. The method of claim 22, wherein at least one of said electrode layers forms a pattern corresponding to the pattern to be displayed.

24. The method of claim 22, comprising applying the highly scattering coating and the highly absorbing coating to form a randomly displayed pattern.

25. The method of claim 22, wherein at least one of said electrodes is transparent or substantially transparent.

26. The method of claim 23, further comprising applying the highly scattering coating in a pattern corresponding to the pattern formed by at least one of said electrode layers.

27. The method of claim 23, wherein the first electrode layer forms a pattern and the second electrode layer is substantially transparent.

28. The method of claim 22, wherein the highly scattering layer comprises particles having an index of refraction greater than 1.4.

29. The method of claim 28, wherein said particles comprise TiO₂, ZnO, and/or SiO₂.

30. The method of claim 22, wherein the highly scattering coating comprises a pigment.

31. The method of claim 30, wherein the pigment comprises a fluorescent material.

32. The method of claim 22, wherein the highly scattering coating, the highly absorbing coating, or both comprise paint.

33. The method of claim 22, wherein the highly scattering coating and the highly absorbing coating, or both comprise paper, plastic, or metal.

34. The method of claim 22, wherein the luminance of the display device is between about 30 Cd/m² and 10,000 Cd/m².

35. The method of claim 22, wherein the voltage applied between the electrodes is between 2 volts and 20 volts.

36. The method of claim 22, wherein the highly scattering coating changes the observed color of the organic light emitting layer.

37. The method of claim 22, comprising coating the first electrode layer with a plurality of organic layers.

38. The method of claim 22, further comprising the step of adding a substrate layer between the highly scattering coating and said electrode.

39. The method of claim 38, wherein both said substrate and said electrode are transparent or substantially transparent.

40. A method for displaying a pattern visible in both light and dark comprising the step of applying electricity between said electrodes of the device of claim 1 when it is dark, and not applying electricity between said electrodes when it is light.

41. The method of claim 40, wherein the step of applying electricity is controlled with an electric eye which applies electricity between the electrodes dependent on the level of light.

42. The device of claim 1, further comprising a device which controllably applies electricity between said electrodes depending on the amount of light.

3. Detailed Description of Invention

BACKGROUND OF THE INVENTION

The present invention relates generally to electroluminescent devices. More particularly, the present invention relates to outdoor electroluminescent display devices that are visible under a wide variety of ambient light conditions.

There are numerous applications for signs that can be read under conditions of both low and high ambient light (e.g., at night and in daylight). Road signs are one common example. Typically, these signs are printed so that they provide high contrast under reflected light. In daylight, they are readable due to reflected sunlight, and at night they are visible due to reflected artificial light, such as from the headlights of an automobile or from a dedicated spotlight aimed at the sign. Signs that are visible at night by means of a dedicated spotlight are inefficient from an energy standpoint, because most of the light from the spotlight is wasted in illuminating regions that do not require illumination for sign readability. Signs that rely on lights from automobile headlights from night-time readability have the disadvantage that they are only visible when the car is aiming directly at them. In addition, these signs can be hard to read at night in rainy conditions where much of the light from the car headlights is scattered by the rain droplets.

Cathode ray tube (CRT) technology has been developed to allow customizable signs that can be read in the dark. Such displays can be quickly reconfigured electronically to display a new sign. Other technologies with similar capabilities include liquid crystal displays, thin film plasma displays, and organic electroluminescent displays. However, these displays require complicated electronics and are too expensive for many simple display sign applications.

U.S. Patent No. 5,962,962 describes a basic organic light emitting device (OLED). The OLED has a structure in which an anode, an organic light emitting layer, and a cathode are consecutively laminated, with the organic light emitting layer sandwiched between the anode and the cathode. Generally, electrical current flowing between the anode and cathode passes through points of the organic light emitting

layer and causes it to luminesce. The electrode positioned on the surface through which light is emitted is formed of a transparent or semi-transparent film. The other electrode is formed of a specific thin metal film, which can be a metal or an alloy.

The organic light emitting device is usually formed on a substrate. In some cases, a hole-transporting layer is provided between the anode and the organic light emitting layer, and an electron-injecting layer is provided between the cathode and the organic light emitting layer, for improved performance.

Another example of an OLED is disclosed in U.S. Patent No. 5,902,688. This patent discloses displays produced by providing an insulator that is patterned in a desired shape. In general, light will be produced in an OLED wherever an anode and cathode have a direct path to a particular point of the OLED. The insulator of this patent is in the form of an incomplete layer between the organic layer and one of the electrodes, and prevents contact of at least one electrode from a pattern of particular points on the OLED, which prevents those points of the organic layer from illuminating. To achieve a particular display, the insulator layer is patterned so as to retard the flow of current through the organic layer in proportion to the areas of the desired display that are to be relatively dark. However, a sign using this display depends only on the contrast between the illuminated and dark areas of the device, and the luminance that is possible with practical OLED devices is relatively low (<10,000 candelas per square meter (Cd/m²)). Because of this, while these displays may be visible during conditions of low light, they cannot be read under bright ambient conditions (e.g., in the midday sun). Further, the process of forming the insulating layer is difficult and time-consuming, which increases the cost of production of such a device.

It would be desirable to provide a cost-effective sign that is readable under low and high ambient light conditions, which does not suffer from the above disadvantages. It would further be desirable to provide a simple method for production of such a sign.

BRIEF SUMMARY OF THE INVENTION

A device structure and method are disclosed that enable the production of outdoor signs utilizing organic light emitting device (OLED) technology. Exemplary embodiments of the device include an OLED that is patterned into a sign combined with an exterior layer comprising (1) a highly scattering, non-absorbing coating over the OLED emitting regions, and (2) a highly absorbing coating over the non-emitting regions. The result is a sign that can be viewed using organic electroluminescent light under low ambient light conditions, and due to the exterior coating, can also be viewed under high ambient light conditions. Thus, embodiments of the present invention provide a degree of contrast, both in natural daylight and at night, which facilitates easy viewing of, for example, a street sign.

DETAILED DESCRIPTION OF THE INVENTION

The features and advantages of the present invention can be understood more completely by reading the following detailed description of preferred embodiments in conjunction with the accompanying drawings, in which like reference indicators are used to designate like elements.

A representative embodiment of the present invention includes an OLED display coupled with an adjacent layer comprising regions of a highly scattering, non-absorbing coating, and regions of a highly absorbing coating, in order to provide both good contrast and visibility in light reflected by the display.

By an "organic light emitting device" (OLED) is meant an electroluminescent device comprising two electrodes (an anode and a cathode) as well as an organic light emitting layer, generally sandwiched between the anode and the cathode. When a current passes through the organic light emitting layer, it luminesces.

By an "organic light emitting layer" is meant a layer including at least one organic compound which, when subjected to an electric current, will luminesce. The invention is not limited to any particular organic compound but rather encompasses a broad range of such compounds known in the art.

By a "highly scattering coating" is meant a coating that can be easily viewed in reflected light. The highly scattering coating may comprise particles of a material having a relatively high index of refraction such as TiO₂ or SiO₂ or ZnO, for example. Typically, the light scattering particles have an index of refraction greater than 1.4. The highly scattering coating can be absorbing or non-absorbing and has a thickness which is thin enough to substantially transmit the light emitted by the OLED (transmission >20%, preferably >40%). Optionally, the highly scattering coating is fluorescent and/or colored.

By a "highly absorbing coating", is meant one which substantially absorbs the light emitted by an OLED, generally corresponding to an absorption >60%, preferably >90%, most preferably >99%. Optionally additional properties of the

highly absorbing coating, which can appear alone or in combination with the properties set forth above, include it being colored, fluorescent, and highly scattering.

According to exemplary embodiments of the invention, the highly scattering coating is placed above the regions of the OLED from which electroluminescent light is desired to be emitted under nighttime conditions, and the highly absorbing coating occupies some or all of the other regions. A simple implementation for the two types of coatings is paint. Acrylic enamel is a preferred paint, but other types of paint may be used. According to one embodiment, the highly scattering coating comprises white paint. Of course, other colors, such as green or red, may be used as the highly scattering coating. Note that the color emitted by the device during nighttime conditions is determined by the emission color of the OLED. The layer of non-absorbing paint is selected to be thick enough to provide good visibility for reflected light in high ambient light conditions, and thin enough to provide good visibility for electroluminescent light in low ambient light conditions.

The highly absorbing coating may comprise black paint, for example, or any other color paint which substantially absorbs the light emitted by an OLED. The highly absorbing coating is preferably thick enough to provide good contrast with the highly scattering coating as reflected light, and to absorb substantially all the OLED generated light such that substantially no OLED generated light is emitted from the region of the highly absorbing coating. The thickness of the highly absorbing coating of course should be sufficient to provide a suitable degree of absorption, typically no less than 60% absorption. Examples of highly absorbing coatings other than paint include opaque materials affixed to the underlying layer, such as an opaque paper, plastic or metal.

Regardless of type, the highly scattering or highly absorbing coatings can be employed in a device where the OLED is overlaid with an additional substrate such as a transparent glass or plastic film, which substrate is coated with the highly scattering and/or highly absorbing coatings. These coatings can be applied by conventional techniques such as spraying, dipping, brushing, lamination or by laser printing.

Generally, the organic light emitting device is provided as a luminescent display which includes an organic light emitting layer disposed between two electrodes. The organic light emitting layer emits light upon application of a voltage across the electrodes. The anode and cathode inject charge carriers, i.e., holes and electrons, into the organic light emitting layer where they recombine to form excited molecules or excitons which emit light when the molecules or excitons decay. The color of light emitted by the molecules depends on the energy difference between the excited state and the ground state of the molecules or excitons. Typically, the applied voltage is about 3-10 volts but can be up to 30 volts or more, and the external quantum efficiency (photons out/electrons in) is between 0.01% and 5%, but could be up to 10%, 20%, 30%, or more. The organic light emitting layer typically has a thickness of about 50-500 nanometers, and the electrodes each typically have a thickness of about 100-1000 nanometers.

The cathode generally comprises a material having a low work function value such that a relatively small voltage causes emission of electrons from the cathode. The cathode may comprise, for example, calcium or a metal such as gold, indium, manganese, tin, lead, aluminum, silver, magnesium, or a magnesium/silver alloy. Alternatively, the cathode can be made of two layers to enhance electron injection. Examples include a thin inner layer of LiF followed by a thicker outer layer of aluminum or silver, or a thin inner layer of calcium followed by a thicker outer layer of aluminum or silver.

The anode typically comprises a material having a high work function value. The anode is preferably transparent so that light generated in the organic light emitting layer can propagate out of the luminescent display. The anode may comprise, for example, indium tin oxide (ITO), tin oxide, nickel, or gold. The electrodes can be formed by conventional vapor deposition techniques, such as evaporation or sputtering, for example.

A variety of organic light emitting layers can be used in conjunction with exemplary embodiments of the invention. According to one embodiment, the organic light emitting layer comprises a single layer. The organic light emitting layer may

comprise, for example, a conjugated polymer which is luminescent, a hole-transporting polymer doped with electron transport molecules and a luminescent material, or an inert polymer doped with hole transporting molecules and a luminescent material. The organic light emitting layer may also comprise an amorphous film of luminescent small organic molecules which can be doped with other luminescent molecules.

Alternatively, the organic light emitting layer may comprise two or more sublayers which carry out the functions of hole injection, hole transport, electron injection, electron transport and luminescence. Only the luminescent layer is required for a functioning device. However, the additional sublayers generally increase the efficiency with which holes and electrons recombine to produce light. Thus the organic light emitting layer can comprise 1-4 sublayers including, for example, a hole injection sublayer, a hole transport sublayer, a luminescent sublayer, and an electron injection sublayer. Also, one or more sublayers may comprises a material which achieves two or more functions such as hole injection, hole transport, electron injection, electron transport, and luminescence.

Embodiments in which the organic light emitting layer comprises a single layer will now be described.

According to a first embodiment, the organic light emitting layer comprises a conjugated polymer. The term conjugated polymer refers to a polymer which includes a delocalized pi-electron system along the backbone of the polymer. The delocalized pi-electron system provides semiconducting properties to the polymer and gives it the ability to support positive and negative charge carriers with high mobilities along the polymer chain. The polymer film has a sufficiently low concentration of extrinsic charge carriers than on applying an electric field between the electrodes, charge carriers are injected into the polymer and radiation is emitted from the polymer. Conjugated polymers are discussed, for example, in R.H. Friend, 4 Journal of Molecular Electronics 37-46 (1988).

One example of a conjugated polymer which emits light upon application of a voltage is PPV (poly(p-phenylenevinylene)). PPV emits light in the spectral range of

about 500-690 nanometers and has good resistance to thermal and stress induced cracking. A suitable PPV film typically has a thickness of about 100-1000 nanometers. The PPV film can be formed by spin coating a solution of the precursor to PPV in methanol onto a substrate and heating in a vacuum oven.

Various modifications can be made to the PPV while retaining its luminescent properties. For example, the phenylene ring of the PPV can optionally carry one or more substituents each independently selected from alkyl, alkoxy, halogen, or nitro. Other conjugated polymers derived from PPV may also be used in conjunction with exemplary embodiments of the invention. Examples of such derivatives of PPV include: 1) polymers derived by replacing the phenylene ring with a fused ring system, e.g., replacing the phenylene ring with an anthracene or naphthalene ring system. These alternative ring systems may also carry one or more substituents of the type described above with respect to the phenylene ring; 2) polymers derived by replacing the phenylene ring with a heterocyclic ring system such as a furan ring. The furan ring may carry one or more substituents of the type described above in connection with the phenylene ring; 3) polymers derived by increasing the number of vinylene moieties associated with each phenylene or other ring system. The above described derivatives have different energy gaps, which allows flexibility in producing an organic light emitting layer which emits in a desired color range or ranges. Additional information on luminescent conjugated polymers is described in U.S. Patent 5,247,190, which is hereby incorporated by reference.

Other examples of suitable conjugated polymers include polyfluorenes such as 2,7-substituted-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers. Polyfluorenes generally have good thermal and chemical stability and high solid-state fluorescence quantum yields. The fluorenes, oligomers and polymers may be substituted at the 9-position with two hydrocarbyl moieties which may optionally contain one or more of sulfur, nitrogen, oxygen, phosphorous or silicon heteroatoms; a C₅-20 ring structure formed with the 9-carbon on the fluorene ring or a C₄-20 ring structure formed with the 9-carbon containing one or more heteroatoms of sulfur, nitrogen or oxygen; or a hydrocarbylidene moiety. According to one embodiment, the fluorenes are substituted at the 2- and 7-positions with aryl moieties which may

further be substituted with moieties which are capable of crosslinking or chain extension or a trialkylsiloxy moiety. The fluorene polymers and oligomers may be substituted at the 2- and 7'-positions. The monomer units of the fluorene oligomers and polymers are bound to one another at the 2- and 7'-positions. The 2,7'-aryl-9-substituted fluorene oligomers and polymers may be further reacted with one another to form higher molecular weight polymers by causing the optional moieties on the terminal 2,7'-aryl moieties, which are capable of crosslinking or chain extension, to undergo chain extension or crosslinking.

The above described fluorenes and fluorene oligomers or polymers are readily soluble in common organic solvents. They are processable into thin films or coatings by conventional techniques such as spin coating, spray coating, dip coating and roller coating. Upon curing, such films demonstrate resistance to common organic solvents and high heat resistance. Additional information on such polyfluorenes is described in U.S. Patent 5,708,130, which is hereby incorporated by reference.

Other suitable polyfluorenes which can be used in conjunction with exemplary embodiments of the invention include poly(fluorene) copolymers, such as poly(fluorene-co-anthracene)s, which exhibit blue electroluminescence. These copolymers include a polyfluorene subunit such as 2,7-dibromo-9,9-di-n-hexylfluorene (DHF) and another subunit such as 9,10-dibromoanthracene (ANT). High molecular weight copolymers from DHF and ANT can be prepared by the nickel-mediated copolymerization of the corresponding aryl dibromides. The final polymer molecular weight can be controlled by adding the end capping reagent 2-bromofluorene at different stages of the polymerization. The copolymers are thermally stable with decomposition temperatures above 400° C and are soluble in common organic solvents such as tetrahydrofuran (THF), chloroform, xylene, or chlorobenzene. They emit blue light having a wavelength of about 455 nm. Additional information on such polyfluorenes is described in Gerrit Klarner et al., "Colorfast Blue Light Emitting Random Copolymers Derived from Di-n-hexylfluorene and Anthracene", 10 Adv. Mater. 993-997 (1998), which is hereby incorporated by reference.

According to a second embodiment of a single layer device, the organic light emitting layer comprises a molecularly doped polymer. A molecularly doped polymer typically comprises a binary solid solution of charge transporting molecules which are molecularly dispersed in an inert polymeric binder. The charge transporting molecules enhance the ability of holes and electrons to travel through the doped polymer and recombine. The inert polymer offers many alternatives in terms of available dopant materials and mechanical properties of the host polymer binder.

One example of a molecularly doped polymer comprises poly(methylmethacrylate) (PMMA) molecularly doped with the hole transporting molecule N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) and the luminescent material tris(8-quinolinolato)-aluminum(III) (Alq). TPD has a high hole drift mobility of 10-3 cm²/volt-sec, while Alq is a luminescent metal complex having electron transporting properties in addition to its luminescent properties.

The doping concentration is typically about 50%, while the molar ratio of TPD to Alq may vary from about 0.4 to 1.0, for example. A film of the doped PMMA can be prepared by mixing a dichloroethane solution containing suitable amounts of TPD, Alq, and PMMA, and dip coating the solution onto the desired substrate, e.g., an indium tin oxide (ITO) electrode. The thickness of the doped PMMA layer is typically about 100 nanometers. When activated by application of a voltage, a green emission is generated. Additional information on such doped polymers is described in Junji Kido et al., "Organic Electroluminescent Devices Based on Molecularly Doped Polymers," 61 Appl. Phys. Lett. 761-763 (1992), which is hereby incorporated by reference.

According to another embodiment of the invention, the organic light emitting layer comprises two sublayers. The first sublayer provides hole transport, electron transport, and luminescent properties and is positioned adjacent the cathode. The second sublayer serves as a hole injection sublayer and is positioned adjacent the anode. The first sublayer comprises a hole-transporting polymer doped with electron

transporting molecules and a luminescent material, e.g., a dye or a polymer. The hole-transporting polymer may comprise poly(N-vinylcarbazole) (PVK), for example. The electron transport molecules may comprise 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), for example. The luminescent material typically comprises small molecules or polymers which act as emitting centers to vary the emission color. For example, the luminescent materials may comprises the organic dyes coumarin 460 (blue), coumarin 6 (green), or nile red. The above materials are available commercially, for example from Aldrich Chemical Inc., Lancaster Synthesis Inc., TCI America, and Lambda Physik Inc. Thin films of these blends can be formed by spin coating a chloroform solution containing different amounts of PVK, electron transport molecules, and luminescent materials. For example, a suitable mixture comprises 100 weight percent PVK, 40 weight percent PBD, and 0.2-1.0 weight percent organic dye.

The second sublayer serves as a hole injection sublayer and may comprise poly(3,4)ethylenedioxythiophene/polystyrenesulphonate (PEDT/PSS), for example, available from Bayer Corporation, which can be applied by conventional methods such as spin coating. Additional information on hole-transporting polymers doped with electron transporting molecules and a luminescent material is described in Chung-Chih Wu et al., "Efficient Organic Electroluminescent Devices Using Single-Layer Doped Polymer Thin Films with Bipolar Carrier Transport Abilities," 44 IEEE Trans. On Elec. Devices 1269-1281 (1997), which is hereby incorporated by reference.

Figures 1 and 2 depict an OLED device 100 patterned to provide light in the form of the letter "A". A desired sign can, of course, be constructed in a modular manner from a collection of such one-letter or one-symbol signs. Figure 2 is a top view of the OLED in Figure 1. The device in Figures 1 and 2 comprises a metal cathode 105 and an indium tin oxide (ITO) anode 110. These electrodes 105, 110 are disposed on opposite sides of an organic light emitting layer 115. In this embodiment, the cathode 105 is patterned in the form of the letter "A", but the anode 110 could just as well be patterned, or both electrodes could be patterned. Alternatively, neither electrode could be patterned. A transparent substrate 120 is adjacent to the anode 110. The highly scattering coating 130 is applied to the substrate 120 in a desired pattern,

e.g. in the form of the letter "A" corresponding to the patterned cathode 105. The highly absorbing coating 135 is applied to the substrate 120 in the regions not occupied by the highly scattering coating 130. A barrier layer 107 comprising, for example, glass or an inorganic coating such as Si_3N_4 or SiO_2 , can be applied over the cathode 105 for protection from water and oxygen.

There are many other possible embodiments of the invention. For example, the OLED device need not be patterned at all. The highly absorbing and highly scattering coatings can define the pattern on the sign, although light is wasted with this approach. In addition, the highly scattering coating 130 can include pigments that provide color when viewed as reflected light or which fluoresce. Preferably, such pigments do not substantially absorb the light emitted by the OLED under nighttime operation. Alternatively, phosphors can be added to the highly scattering coating that shift the wavelength of light emitted by the OLED. The highly absorbing coating can also be formed by physically attaching opaque substances such as paper, plastic, or metal onto the regions where light is not meant to be emitted. The opaque substances preferably have enough absorption to provide good contrast under reflected light viewing.

One embodiment of the present invention is a sign at a roadway intersection, such as a STOP sign. The exterior of the sign can be painted in the familiar red background and white letters. The interior of the sign can comprise an OLED. During daytime operation, the sign is visible, similar to a conventional street sign, due to the coatings applied to the exterior of the sign. Ambient daylight is sufficient to illuminate the background and letters of the sign. At night, and in conditions of low light, the sign does not depend on reflected artificial light. Rather, the sign is visible due to its internal light source, which illuminates the letters of the sign. Light transmission is attenuated or blocked by the highly absorbing coating. Because the sign does not rely on a dedicated spotlight for nighttime visibility, the sign is much more efficient from an energy usage standpoint. Because the sign does not rely on automobile headlights for readability, it is visible to pedestrians, bicyclists, and others who do not have bright headlights. In addition, the sign is easily visible from a

vehicle at night in rainy conditions where much of the light from the car headlights is scattered by the rain droplets.

EXAMPLE 1

Figures 3-5 show intermediate steps in the production of a patterned, green-emitting OLED device according to an embodiment of the present invention. An indium tin oxide (ITO) coated glass (15 ohm-square) substrate 307 was obtained from Applied Films Corporation, and portions of the ITO were etched away using the vapors of aqua regia to provide the patterned anode 310 shown in Figure 3. This combined substrate 307 and anode 310 was then mechanically cleaned with a detergent, soaked in a methanol solution followed by a boiling isopropyl alcohol solution, and finally placed in an ozone cleaner for 5 minutes. An approximately 5 nanometer (nm) layer of poly(3,4)ethylenedioxythiophene/polystyrenesulphonate (PEDT/PSS) (not shown) from Bayer Corporation was then spin coated onto the anode 310. Approximately 100 nm of a polymer blend consisting of poly(9-vinyl carbazole) (PVK) from Aldrich Co., 2-(4-biphenyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) from Aldrich Co., and coumarin 540 from Exciton Co., with weight percent ratios of 70:30:0.5 was then spin coated onto the PEDT/PSS layer using dichloroethane as the solvent. Next, as shown in Figure 4, a cathode 305 comprising an approximately 0.8 nm layer of lithium fluoride followed by about 100 nm of aluminum was evaporated onto the device through a shadow mask to define the cathode pattern shown in Figure 4. The device was then transferred to a glove box, and a glass slide was attached to the cathode side of the device with epoxy to provide encapsulation. The resulting device consisted of four independently addressable organic light emitting devices 405 that each emitted green light in a square pattern, defined by the areas where the cathodes 305 overlap the anode 310.

A sign 500 illustrating the invention, shown in Figure 5, was then made with this patterned OLED in the following manner. A highly scattering coating 510 comprising a white paint (Acrylic Enamel Industrial Tough Coat from Krylon – a division of Sherwin-Williams Company) was sprayed onto the transparent substrate 307 side of the device above one of the addressable squares. Around the white paint, a

highly absorbing coating 505 comprising black paint (Flat Enamel 1149 Black from Testors Co.) was applied by means of a brush. Note that the square 510 comprising the highly scattering coating corresponds to one of the four elements 405 in Figure 4. Under low ambient light conditions, the sign 500 can be activated by applying a voltage across the electrodes. For this particular device, when a voltage is applied, the square 510 lights up with a green color against a black background. With a voltage of 12 volts (V), a luminance of about 30 Cd/m² was measured. At this brightness level, the green sign is easily seen in the dark. With a voltage of 20V, a luminance of about 500 Cd/m² was measured. At this brightness level, the green sign is easily seen in a well-lit indoor environment, or outdoors on an overcast day. In bright daylight, the sign is clearly visible as a white square against a black background due to the coatings applied to the exterior of the sign.

EXAMPLE 2

A patterned, red-emitting OLED device was made in the following manner. Indium tin oxide (ITO) coated glass (15 ohm-square) was obtained from Applied Films Corporation, and portions of it were etched away using the vapors of aqua regia to provide the ITO pattern shown in Figure 3. This substrate was then mechanically cleaned with a detergent, soaked in a methanol solution followed by a boiling isopropyl alcohol solution, and finally placed in an ozone cleaner for 5 minutes. An approximately 20 nm layer of poly(3,4)ethylenedioxythiophene/polystyrenesulphonate (PEDT/PSS) from Bayer Corporation was then spin coated onto the ITO. Approximately 50 nm of a red-emitting polymer (Red-A obtained from Dow Chemical Co.) was then spin coated onto the PEDT/PSS layer using xylene as the solvent. Next, a cathode consisting of an approximately 0.8 nm layer of lithium fluoride followed by about 200 nm of aluminum was evaporated onto the device through a shadow-mask to define the cathode pattern shown in Figure 6. The cathode deposition was carried out in a glove box. After cathode deposition, a glass slide was attached to the cathode side of the device with epoxy to provide encapsulation. The resulting device consists of 2 independently addressable OLEDs which emit red light in a rectangular pattern.

A sign illustrating this invention was then made with this patterned OLED in the following manner. A highly scattering red fluorescent coating (Fluorescent Red #FS28915 available from Model Master) with a similar red color to that of the OLED emission color was sprayed onto a glass slide. The area of the slide covered by the fluorescent red coating was chosen to match the emissive area of one of the OLED devices when the glass slide is overlayed onto the emitting surface of the OLED device. Around this fluorescent red region of the slide, a highly absorbing coating consisting of a black paint (Krylon Industrial tough coat latex enamel #S63725 semi-flat black) was sprayed around the rectangle as illustrated in Figure 7. The slide was then overlayed onto the emissive side of the OLED device to complete the sign in the form of a rectangle. In bright daylight, the sign is clearly visible as a fluorescent red rectangle against a black background. Under low ambient light conditions, the sign can be activated by applying a voltage across the device. For this particular device, when a voltage is applied, the rectangle lights up with a red color against a black background. With a voltage of 5V, a luminance of about 120 Cd/m² was measured. At this brightness level, the red sign is easily seen in a well-lit indoor environment or outdoors on an overcast day. For this particular example, the transmission of the red light emitted by the OLED through the fluorescent red coating was measured to be approximately 40%, and the absorption of the red light emitted by the OLED through the black absorbing coating was greater than 99%. This embodiment also illustrates that one or more of the highly absorbing coating and the highly scattering coating can be applied to an additional substrate (in this case a glass slide) rather than directly onto the OLED.

EXAMPLE 3

A patterned, green-emitting OLED device was made in the following manner. Indium tin oxide (ITO) coated glass (15 ohm-square) was obtained from Applied Films Corporation, and portions of it were etched away using the vapors of aqua regia to provide the ITO pattern shown in Figure 3. This substrate was then mechanically cleaned with a detergent, soaked in a methanol solution followed by a boiling isopropyl alcohol solution, and finally placed in an ozone cleaner for 5 minutes. An approximately 30 nm layer of

poly(3,4)ethylenedioxythiophene/polystyrenesulphonate (PEDT/PSS) from Bayer Corporation was then spin coated onto the ITO. Approximately 70 nm of a green-emitting polymer (Green-B purchased from Dow Chemical Co.) was then spin coated onto the PEDT/PSS layer using xylene as the solvent. Next, a cathode consisting of an approximately 0.8 nm layer of lithium fluoride followed by about 200 nm of aluminum was evaporated onto the device through a shadow-mask to define the cathode pattern shown in Figure 6. The cathode deposition was carried out in a glove box. After deposition of the cathode, a glass slide was attached to the cathode side of the device with epoxy in order to provide encapsulation. The resulting device consists of two independently addressable OLEDs which emit green light in a rectangular pattern.

A sign illustrating this invention was then made with this patterned OLED in the following manner. A highly scattering green coating (Testor's Spray Enamel #1601 Transparent Candy Emerald Green) with a green color similar to that of the OLED emission color was sprayed onto a thin transparent plastic film (3M Transparency Film PP2200). The area of the film covered by the green coating was chosen to match the emissive area of one of the OLED devices when the film is overlayed onto the emitting surface of the OLED device. Around this green region of the slide, a thick layer of a highly scattering coating consisting of a white paint (Acrylic Enamel Industrial Tough Coat from Krylon – a division of Sherwin-Williams Company) was sprayed around the rectangle as illustrated in Figure 8. The transparent plastic film was then overlayed onto the emissive side of the OLED device to complete the sign in the form of a rectangle. In bright daylight, the sign is clearly visible as a green rectangle against a white background. Under low ambient light conditions, the sign can be activated by applying a voltage across the device. For this particular device, when a voltage is applied, the rectangle lights up with a green color against a white background. With a voltage of 4.5V, a luminance of about 1200 Cd/m² was measured. At this brightness level, the green sign is easily seen in a well-lit indoor environment or outdoors on an overcast day. For this particular example, the transmission for the green light emitted by the OLED through the green coating was measured to be approximately 40%, and the absorption of the green light emitted by the OLED through the white absorbing coating was measured to be about 90%.

This example demonstrates that one or more of the highly absorbing coating and the highly scattering coating can be applied to an additional substrate (in this case a thin transparent plastic film) rather than directly onto the OLED. The example also shows that the a white paint can serve as the highly absorbing layer if it has a sufficient thickness (as in this EXAMPLE 3), or as the highly scattering layer if it is thin (as in EXAMPLE 1).

Additional embodiments of the invention involve various methods of implementing the outdoor display. The simplest method is to continuously provide power to the OLED day and night. This method may not be the most desirable mode of operation, because during the high ambient light conditions of daylight, the sign is read through reflected light rather than OLED light and hence power is wasted. An alternative method involves utilizing a timing circuit to power the OLED during a selected time interval (e.g., at night). This method is more desirable than the first, but is not effective during unexpected low ambient light conditions such as during an overcast day. A more desirable method involves controlling the powering of the OLED using a circuit which includes a photosensor or electric eye that can sense when low ambient light occurs and which provides power to the OLED at these times. The circuit can be designed to provide a fixed voltage to the OLED when the ambient light drops below a pre-set threshold value, or the circuit can modify the voltage applied to the OLED continuously in response to the ambient lighting conditions.

While the foregoing description includes many details, it is to be understood that these have been included for purposes of explanation only, and are not to be interpreted as limitations of the present invention. Many modifications to the embodiments described above can be made without departing from the spirit and scope of the invention, as is intended to be encompassed by the claims.

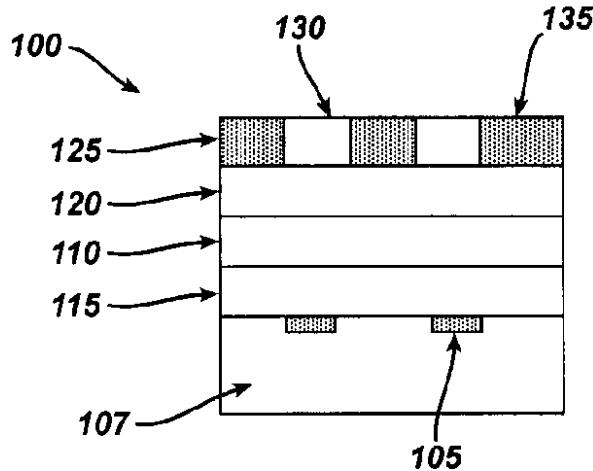
4. Brief Description of Drawings

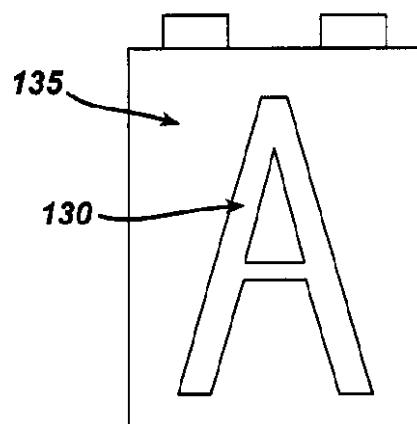
Figure 1 is a side view of one embodiment of the invention;

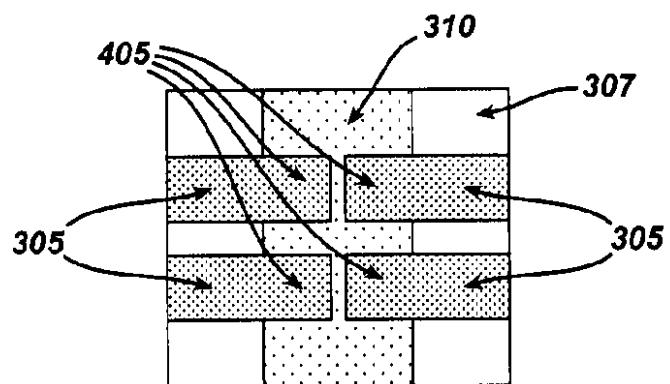
Figure 2 is a top view of the embodiment in Figure 1;

Figure 3 is a top view of an anode layer applied below an organic light emitting layer of a device according to an embodiment of the invention;

Figure 4 is a top view of a cathode layer applied over an organic light emitting layer of a device according to an embodiment of the present invention;


Figure 5 is a top view of a patterned coating applied over a cathode layer of a device according to an embodiment of the present invention;




Figure 6 is a top view of a cathode pattern formed by evaporating a layer of lithium fluoride followed by aluminum onto the device through a shadow mask;

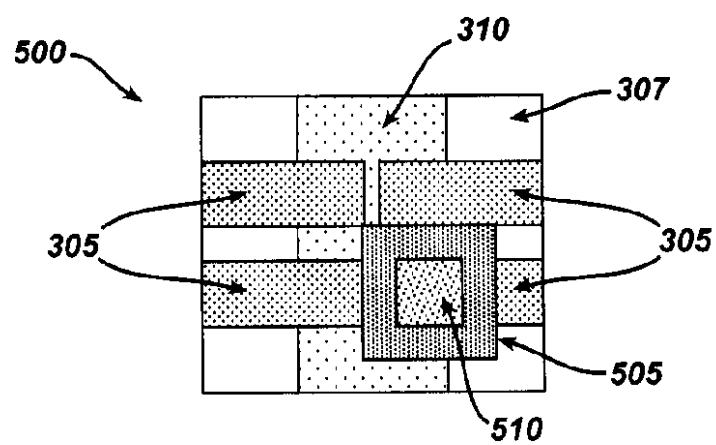
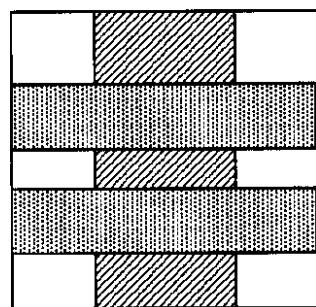


Figure 7 is a sign in the form of a red rectangle in a black background; and

Figure 8 is a sign in the form of a green rectangle in a white background.

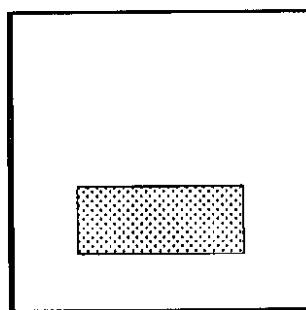

FIG. 1

FIG. 2**FIG. 3****FIG. 4**

FIG. 5**FIG. 6****FIG. 7**

FIG. 8

1. Abstract

A device structure and method for outdoor signs utilizing organic light emitting device (OLED) technology. Exemplary embodiments of the device include an OLED that is patterned into a sign combined with an exterior layer consisting of a highly scattering, non-absorbing coating over the OLED emitting regions and a highly absorbing coating over the non-emitting regions. The result is a sign that can be viewed using organic electroluminescent (EL) light under low ambient light level conditions, and due to the exterior coating, can also be viewed under high ambient light conditions.

2. Representative Drawing: Figure 1

专利名称(译)	<无法获取翻译>		
公开(公告)号	JP2002117970A5	公开(公告)日	2008-07-24
申请号	JP2001175073	申请日	2001-06-11
[标]申请(专利权)人(译)	通用电气公司		
申请(专利权)人(译)	通用电气公司		
[标]发明人	DUGGAL ANIL RAJ TURNER LARRY GENE アニルラジドゥガル ラリージーンタナー		
发明人	アニル・ラジ・ドゥガル ラリー・ジーン・タナー		
IPC分类号	H05B33/02 H05B33/10 H05B33/12 H01L51/50 H05B33/14		
CPC分类号	H05B33/22 H05B33/12 H01L27/3239 H05B33/10 H01L51/5281		
FI分类号	H05B33/02 H05B33/10 H05B33/12.E H05B33/14.A		
F-TERM分类号	3K007/CA01 3K007/FA01 3K007/EA04 3K007/DB03 3K007/EA01 3K007/DA01 3K007/GA04 3K007/CB01 3K007/EB00 3K007/AB17 3K007/BB06 3K007/BB01 3K007/AB18 3K007/BA06 3K107/AA01 3K107/BB01 3K107/BB06 3K107/CC32 3K107/CC45 3K107/EE09 3K107/EE22 3K107/EE24 3K107/EE27 3K107/EE28 3K107/FF04 3K107/FF06 3K107/FF12 3K107/HH04		
代理人(译)	松本健一		
优先权	09/592075 2000-06-12 US		
其他公开文献	JP2002117970A		

摘要(译)

利用有机发光器件 (OLED) 技术的户外标志的设备配置和方法。
 SOLUTION : 将OLED图案化成标记，并与外层结合，该外层由设置在
 OLED发射区上的高散射/不吸收膜和设置在非发射区上的高吸收膜组
 成。结果是标签在低环境光水平下用有机电致发光 (EL) 可见，而在高
 环境光水平下在外涂层上可见。