(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 103571475 A (43)申请公布日 2014.02.12

- (21)申请号 201210268336.7
- (22)申请日 2012.07.31
- (71) 申请人 海洋王照明科技股份有限公司 地址 518000 广东省深圳市南山区南海大道 海王大厦 A 座 22 层

申请人 深圳市海洋王照明技术有限公司

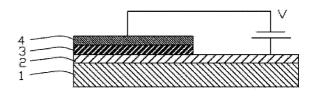
- (72) 发明人 周明杰 王平 陈吉星 黄辉
- (74) 专利代理机构 广州三环专利代理有限公司 44202

代理人 郝传鑫 熊永强

(51) Int. CI.

CO9K 11/68 (2006.01)

HO1L 33/50 (2010, 01)


权利要求书2页 说明书7页 附图2页

(54) 发明名称

钛锰共掺杂三族钼酸盐发光材料、制备方法 及其应用

(57) 摘要

一种钛锰共掺杂三族钼酸盐发光材料,其化学式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} ,其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素, x为 $0.01^{\circ}0.05$, y为 $0.005^{\circ}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。该钛锰共掺杂三族钼酸盐发光材料制成的发光薄膜的电致发光光谱(EL)中,在 520nm 波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。本发明还提供该钛锰共掺杂三族钼酸盐发光材料的制备方法及其应用。

- 1. 一种钛锰共掺杂三族钼酸盐发光材料, 其特征在于:其化学式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质, 锰离子和钛离子是激活元素, x 为 $0.01^{\sim}0.05$, y 为 $0.005^{\sim}0.03$, Re 为铝离子, 镓离子, 铟离子或铊离子。
 - 2. 一种钛锰共掺杂三族钼酸盐发光材料的制备方法,其特征在于,包括以下步骤:

根据 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀, 其中 x 为 $0.01^{\sim}0.05$, y 为 $0.005^{\sim}0.03$, Re_2O_3 为 Al_2O_3 , Ga_2O_3 , In_2O_3 或 Tl_2O_3 ;及

将混合均匀的粉体在 900 \mathbb{C}^{-1300} \mathbb{C} 下烧结 0.5 小时 \mathbb{C}^{-5} 小时即得到化学式为 \mathbb{C}^{-5} \mathbb{C}^{-5} \mathbb{C}^{-5} 小时即得到化学式为 \mathbb{C}^{-5} \mathbb{C}^{-5} \mathbb{C}^{-5} \mathbb{C}^{-5} \mathbb{C}^{-5} 小时即得到化学式为 \mathbb{C}^{-5} \mathbb{C}^{-5}

- 3. 一种钛锰共掺杂三族钼酸盐发光薄膜,其特征在于,该钛锰共掺杂三族钼酸盐发光薄膜的材料的化学通式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素, x 为 0. $01^{\circ}0$. 05, y 为 0. $005^{\circ}0$. 03, Re 为铝离子, 镓离子, 铟离子或铊离子。
 - 4. 一种钛锰共掺杂三族钼酸盐发光薄膜的制备方法,其特征在于,包括以下步骤:

根据 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀在 900° ~ 1300° ℃下烧结 0.5 小时 ~ 5 小时制成靶材,其中,x 为 0.01° 0.05, y 为 0.005° 0.03, Re_2O_3 为 Al_2O_3 , Ga_2O_3 , In_2O_3 或 Tl_2O_3 ;

将所述靶材以及衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 1.0×10^{-3} Pa $^{-1}$. 0×10^{-5} Pa;及

调整磁控溅射镀膜工艺参数为:基靶间距为 $45\text{mm}^295\text{mm}$,磁控溅射工作压强0. $2\text{Pa}^24\text{Pa}$,工作气体的流量为 $10\text{sccm}^235\text{sccm}$,衬底温度为250 °C 750 °C ,激光能量为 $50\text{W}^2500\text{W}$,接着进行制膜,得到化学式为 $\text{Re}_2(\text{MoO}_4)_3$: xTi^{4+} , yMn^{4+} 的钛锰共掺杂三族钼酸盐发光薄膜,Re 为铝离子,镓离子,铟离子或铊离子。

- 5. 根据权利要求 4 所述的钛锰共掺杂三族钼酸盐发光薄膜的制备方法,其特征在于,所述真空腔体的真空度为 5.0×10^{-4} Pa,基靶间距为 60 mm,磁控溅射工作压强为 2 Pa,工作气体为氧气,工作气体的流量为 25 sccm,衬底温度为 500 °C,激光能量为 300 W。
- 6. 一种薄膜电致发光器件,该薄膜电致发光器件包括依次层叠的衬底、阳极层、发光层以及阴极层,其特征在于,所述发光层的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质, 锰离子和钛离子是激活元素, x 为 0. $01^{\circ}0$. 05, y 为 0. $005^{\circ}0$. 03, Re 为铝离子, 镓离子, 铟离子或铊离子。
 - 7. 一种薄膜电致发光器件的制备方法,其特征在于,包括以下步骤:

提供具有阳极的衬底;

在所述阳极上形成发光层,所述发光层的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} , x 为 0. $01^{\circ}0$. 05, y 为 0. $005^{\circ}0$. 03, Re 为铝离子,镓离子,铟离子或铊离子;

在所述发光层上形成阴极。

8. 根据权利要求 7 所述的薄膜电致发光器件的制备方法, 其特征在于, 所述发光层的制备包括以下步骤:

根据 Re₂ (MoO₄)₃: xTi⁴⁺, yMn⁴⁺ 各元素的化学计量比称取 Re₂O₃, MoO₃, TiO₂ 和 MnO₂ 粉体

并混合均匀在 900° ~ 1300° 下烧结 0.5 小时 ~5 小时制成靶材,其中 x 为 0.01° 0.05,y 为 0.005° 0.03, Re_2O_3 为 Al_2O_3 , Ga_2O_3 , In_2O_3 或 Tl_2O_3 ;

将所述靶材以及所述衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 1.0×10^{-3} Pa $^{\sim}1.0\times10^{-5}$ Pa;

调整磁控溅射镀膜工艺参数为:基靶间距为 $45\text{mm}^295\text{mm}$,磁控溅射工作压强0. $2\text{Pa}^4\text{Pa}$,工作气体的流量为 $10\text{sccm}^335\text{sccm}$,衬底温度为250 °C 750 °C ,激光能量为 $50\text{W}^500\text{W}$,接着进行制膜,在所述阳极上形成发光层。

9. 根据权利要求 8 所述的薄膜电致发光器件的制备方法, 其特征在于, 所述 x 为 0.03, y 为 0.01。

钛锰共掺杂三族钼酸盐发光材料、制备方法及其应用

技术领域

[0001] 本发明涉及一种钛锰共掺杂三族钼酸盐发光材料、其制备方法、钛锰共掺杂三族钼酸盐发光薄膜、其制备方法、薄膜电致发光器件及其制备方法。

背景技术

[0002] 薄膜电致发光显示器(TFELD)由于其主动发光、全固体化、耐冲击、反应快、视角大、适用温度宽、工序简单等优点,已引起了广泛的关注,且发展迅速。目前,研究彩色及至全色TFELD,开发多波段发光的材料,是该课题的发展方向。但是,可应用于薄膜电致发光显示器的钛锰共掺杂三族钼酸盐发光材料,仍未见报道。

发明内容

[0003] 基于此,有必要提供一种可应用于薄膜电致发光器件的钛锰共掺杂三族钼酸盐发光材料、其制备方法、钛锰共掺杂三族钼酸盐发光薄膜、其制备方法、使用该钛锰共掺杂三族钼酸盐发光材料的薄膜电致发光器件及其制备方法。

[0004] 一种钛锰共掺杂三族钼酸盐发光材料,其化学式为 $Re_2(MoO_4)_3$: xTi^{4+} , yMn^{4+} ,其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素, x 为 $0.01^{\circ}0.05$, y 为 $0.005^{\circ}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。

[0005] 一种钛锰共掺杂三族钼酸盐发光材料的制备方法,包括以下步骤:

[0006] 根据 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀,其中 x 为 $0.01^{\sim}0.05$, y 为 $0.005^{\sim}0.03$, Re_2O_3 为 Al_2O_3 , Ga_2O_3 , In_2O_3 或 Tl_2O_3 ; 及

[0007] 将混合均匀的粉体在 $900 \,^{\circ}$ $^{\circ}$ $1300 \,^{\circ}$ 下烧结 $0.5 \,^{\circ}$ 小时即得到化学式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} 的钛锰共掺杂三族钼酸盐发光材料,Re 为铝离子,镓离子,铟离子或铊离子。

[0008] 一种钛锰共掺杂三族钼酸盐发光薄膜,该钛锰共掺杂三族钼酸盐发光薄膜的材料的化学通式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素, x 为 $0.01^{\circ}0.05$, y 为 $0.005^{\circ}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。

[0009] 一种钛锰共掺杂三族钼酸盐发光薄膜的制备方法,包括以下步骤:

[0010] 根据 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀在 900° 个 1300° 下烧结 0.5 小时 $^{\circ}$ 5 小时制成靶材, 其中 x 为 0.01° 0. 05, y 为 0.005° 0. 03, Re_2O_3 为 $A1_2O_3$, Ga_2O_3 , In_2O_3 或 $T1_2O_3$;

[0011] 将所述靶材以及衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 $1.0 \times 10^{-3} \text{Pa}^{-1}$. $0 \times 10^{-5} \text{Pa}$;及

[0012] 调整磁控溅射镀膜工艺参数为:基靶间距为 $45\text{mm}^{\circ}95\text{mm}$,磁控溅射工作压强 0. $2\text{Pa}^{\circ}4\text{Pa}$,工作气体的流量为 $10\text{sccm}^{\circ}35\text{sccm}$,衬底温度为 $250\,^{\circ}C\,^{\circ}750\,^{\circ}C$,激光能量为 $50\text{W}^{\circ}500\text{W}$,接着进行制膜,得到化学式为 $\text{Re}_{2}(\text{MoO}_{4})_{3}$: xMn^{4+} , yTi^{4+} 的钛锰共掺杂三族钼酸盐

发光薄膜, Re 为铝离子, 镓离子, 铟离子或铊离子。

[0013] 在优选的实施例中,所述真空腔体的真空度为 5.0×10^{-4} Pa, 基靶间距为 60 mm,磁控溅射工作压强为 2 Pa, 工作气体为氧气,工作气体的流量为 25 sccm,衬底温度为 500 °C,激光能量为 300 W。

[0014] 一种薄膜电致发光器件,该薄膜电致发光器件包括依次层叠的衬底、阳极层、发光层以及阴极层,所述发光层的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} ,其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素,x为 $0.01^{\circ}0.05$,y为 $0.005^{\circ}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。

[0015] 一种薄膜电致发光器件的制备方法,包括以下步骤:

[0016] 提供具有阳极的衬底;

[0017] 在所述阳极上形成发光层,所述发光层的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} ,x为 0. 01° 0. 05,y为 0. 005° 0. 03, Re 为铝离子,镓离子,铟离子或铊离子;

[0018] 在所述发光层上形成阴极。

[0019] 在优选的实施例中,所述发光层的制备包括以下步骤:

[0020] 根据 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀在 900° 个 1300° 下烧结 0.5 小时 5 小时制成靶材,其中,x 为 0.01° 0.05, y 为 0.005° 0.03, Re_2O_3 为 $A1_2O_3$, Ga_2O_3 , In_2O_3 或 $T1_2O_3$;

[0021] 将所述靶材以及所述衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 1.0×10^{-3} Pa $^{-1}.0 \times 10^{-5}$ Pa;

[0022] 调整磁控溅射镀膜工艺参数为:基靶间距为 $45\text{mm}^295\text{mm}$,磁控溅射工作压强 0. $2\text{Pa}^4\text{Pa}$,工作气体的流量为 $10\text{scem}^235\text{scem}$,衬底温度为250 °C 2750 °C ,激光能量为 $50\text{W}^2500\text{W}$,接着进行制膜,在所述阳极上形成发光层。

[0023] 上述钛锰共掺杂三族钼酸盐发光材料($Re_2(MoO_4)_3:xMn^{4+},yTi^{4+}$)制成的发光薄膜的电致发光光谱(EL)中,在 520nm 波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。

附图说明

[0024] 图 1 为一实施方式的薄膜电致发光器件的结构示意图;

[0025] 图 2 为实施例 1 制备的钛锰共掺杂三族钼酸盐发光薄膜的电致发光谱图;

[0026] 图 3 为实施例 1 制备的钛锰共掺杂三族钼酸盐发光薄膜的 XRD 图;

[0027] 图 4 是实施例 1 制备的薄膜电致发光器件的电压与电流密度和电压与亮度之间的关系曲线图。

具体实施方式

[0028] 下面结合附图和具体实施例对钛锰共掺杂三族钼酸盐发光材料、其制备方法、钛锰共掺杂三族钼酸盐发光薄膜、其制备方法、薄膜电致发光器件及其制备方法进一步阐明。 [0029] 一实施方式的钛锰共掺杂三族钼酸盐发光材料,其化学式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素,x 为 $0.01^{\circ}0.05$, y 为 0.005~0.03, Re 为铝离子, 镓离子, 铟离子或铊离子。

[0030] 优选的, x 为 0.03, y 为 0.01。

[0031] 该钛锰共掺杂三族钼酸盐发光材料中 Re₂(MoO₄)₃ 是基质,锰离子和钛离子是激活元素。该钛锰共掺杂三族钼酸盐发光材料制成的发光薄膜的电致发光光谱(EL)中,在520nm 波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。

[0032] 上述钛锰共掺杂三族钼酸盐发光材料的制备方法,包括以下步骤:

[0033] 步骤 S11、根据 Re $_2$ (MoO $_4$) $_3$:xMn $^{4+}$,yTi $^{4+}$ 各元素的化学计量比称取 Re $_2$ O $_3$, MoO $_3$, TiO $_2$ 和 MnO $_2$ 粉体,其中 x 为 0.01 $^{\sim}$ 0.05, y 为 0.005 $^{\sim}$ 0.03, Re $_2$ O $_3$ 为 Al $_2$ O $_3$, Ga $_2$ O $_3$, In $_2$ O $_3$ 或 Tl $_2$ O $_3$.

[0034] 该步骤中,优选的, x 为 0.03, y 为 0.01。

[0035] 步骤 S12、将混合均的粉体在 900° $^{\circ}$ $^$

[0036] 该步骤中,优选的在1250℃下烧结3小时。

[0037] 一实施方式的钛锰共掺杂三族钼酸盐发光薄膜,该钛锰共掺杂三族钼酸盐发光薄膜的材料的化学通式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} , 其中 $Re_2(MoO_4)_3$ 是基质, 锰离子和钛离子是激活元素, x 为 0. $01^{\circ}0$. 05, y 为 0. $005^{\circ}0$. 03, Re 为铝离子, 镓离子, 铟离子或铊离子。

[0038] 优选的, x 为 0.03, y 为 0.01。

[0039] 上述钛锰共掺杂三族钼酸盐发光薄膜的制备方法,包括以下步骤:

[0040] 步骤 S21、按 Re₂(MoO₄)₃:xMn⁴⁺, yTi⁴⁺ 各元素的化学计量比称取 Re₂O₃, MoO₃, TiO₂ 和 MnO₂ 粉体并混合均匀在 900 $^{\circ}$ $^{\circ}$ 1300 $^{\circ}$ 下烧结 0.5 小时 $^{\circ}$ 5 小时制成靶材,其中 x 为 0.01 $^{\circ}$ 0.05, y 为 0.005 $^{\circ}$ 0.03, Re₂O₃ 为 Al₂O₃, Ga₂O₃, In₂O₃ 或 Tl₂O₃。

[0041] 该步骤中,优选的,x 为 0. 03,y 为 0. 01,在 1250 ℃下烧结 3 小时成直径为 50mm,厚度为 2mm 的陶瓷靶材。

[0042] 步骤 S22、将步骤 S21 中得到的靶材以及衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 $1.0 \times 10^{-3} \text{Pa}^{-1}$. $0 \times 10^{-5} \text{Pa}$ 。

[0043] 该步骤中,优选的,真空度为 5×10^{-4} Pa。

[0044] 步骤 S23、调整磁控溅射镀膜工艺参数为:基靶间距为 $45 \text{mm}^2 95 \text{mm}$,磁控溅射工作压强 $0.2 \text{Pa}^4 \text{Pa}$,工作气体的流量为 $10 \text{sccm}^2 35 \text{sccm}$,衬底温度为 $250 \, ^{\circ} \, ^{\circ} 750 \, ^{\circ}$;激光能量为 $50 \, ^{\circ} \, ^{\circ} 500 \, ^{\circ}$,得到钛锰共掺杂三族钼酸盐发光薄膜。

[0045] 该步骤中,优选的基靶间距为 60mm,磁控溅射工作压强 2Pa,工作气体为氧气,工作气体的流量为 25sccm,衬底温度为 500℃,激光能量为 300W。

[0046] 请参阅图 1,一实施方式的薄膜电致发光器件 100,该薄膜电致发光器件 100 包括依次层叠的衬底 1、阳极 2、发光层 3 以及阴极 4。

[0047] 村底 1 为玻璃衬底。阳极 2 为形成于玻璃衬底上的氧化铟锡(IT0)。发光层 3 的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3:xMn^{4+},yTi^{4+},x$ 为 $0.01^{\sim}0.05,y$ 为 $0.005^{\sim}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。阴极 4 的材质为银(Ag)。

[0048] 上述薄膜电致发光器件的制备方法,包括以下步骤:

[0049] 步骤 S31、提供具有阳极 2 的衬底 1。

[0050] 本实施方式中,衬底1为玻璃衬底,阳极2为形成于玻璃衬底上的氧化铟锡(IT0)。 具有阳极2的衬底1先后用丙酮、无水乙醇和去离子水超声清洗并用对其进行氧等离子处 理。

[0051] 步骤 S32、在阳极 2 上形成发光层 3,发光层 3 的材料为钛锰共掺杂三族钼酸盐发光材料,该钛锰共掺杂三族钼酸盐发光材料的化学式为 $Re_2(MoO_4)_3$: xMn^{4+} , yTi^{4+} ,其中 $Re_2(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素,x 为 $0.01^{\circ}0.05$, y 为 $0.005^{\circ}0.03$, Re 为铝离子,镓离子,铟离子或铊离子。

[0052] 本实施方式中,发光层3由以下步骤制得:

[0053] 首先,将 $Re_2(MoO_4)_3:xMn^{4+}$, yTi^{4+} 各元素的化学计量比称取 Re_2O_3 , MoO_3 , TiO_2 和 MnO_2 粉体并混合均匀在 900° C $^{\circ}1300^{\circ}$ C 下烧结 0.5 小时 $^{\circ}5$ 小时制成靶材,其中 x 为 $0.01^{\circ}0.05$, y 为 $0.005^{\circ}0.03$, Re_2O_3 为 $A1_2O_3$, Ga_2O_3 , In_2O_3 或 $T1_2O_3$.

[0054] 该步骤中,优选的,x 为 0. 03,y 为 0. 01,在 1250℃下烧结 3 小时成直径为 50mm,厚度为 2mm 的陶瓷靶材。

[0055] 其次,将靶材以及衬底装入磁控溅射镀膜设备的真空腔体,并将真空腔体的真空度设置为 1.0×10^{-3} Pa $^{-1}.0 \times 10^{-5}$ P

[0056] 该步骤中,优选的,真空度为 5×10⁻⁴Pa。

[0057] 然后,调整磁控溅射镀膜工艺参数为:基靶间距为 $45\text{mm}^{\circ}95\text{mm}$,磁控溅射工作压强 $0.2\text{Pa}^{\circ}4\text{Pa}$,工作气体的流量为 $10\text{sccm}^{\circ}35\text{sccm}$,衬底温度为 $250^{\circ}\text{C}^{\circ}750^{\circ}\text{C}$,激光能量为 $50\text{W}^{\circ}500\text{W}$,接着进行制膜,在阳极2上形成发光层3。

[0058] 该步骤中,优选的基靶间距为 60mm,磁控溅射工作压强 2Pa,工作气体为氧气,工作气体的流量为 25secm,衬底温度为 500℃,激光能量为 300W。

[0059] 步骤 S33、在发光层 3 上形成阴极 4。

[0060] 本实施方式中,阴极 4 的材料为银(Ag),由蒸镀形成。

[0061] 下面为具体实施例。

[0062] 实施例 1

[0063] 选用纯度为99.99%的粉体,将1mmo1的A1 $_2$ 0 $_3$,3mmo1的Mo0 $_3$,0.03mo1的Ti0 $_2$ 和0.01mmo1 Mn0 $_2$ 粉体,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10 $^{-4}$ Pa,氧气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,激光能量300W。得到的样品化学式为A1 $_2$ (MoO $_4$) $_3$:0.03Ti $_1^{4+}$,0.01Mn $_1^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。

[0064] 本实施例中得到的钛锰共掺杂三族钼酸盐发光薄膜的化学通式为 $A1_9(MoO_4)_3$:0.03Ti⁴⁺,0.01Mn⁴⁺,其中 $A1_9(MoO_4)_3$ 是基质,锰离子和钛离子是激活元素。

[0065] 请参阅图 2,图 2 所示为得到的钛锰共掺杂三族钼酸盐发光薄膜的电致发光谱 (EL)。由图 2 可以看出,电致发光谱中,在 520nm 波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。

[0066] 请参阅图 3,图 3 为实施例 1 制备的钛锰共掺杂三族钼酸盐发光薄膜的 XRD 曲线,

测试对照标准 PDF 卡片。从图 3 中可以看出,所有的衍射峰是三族钼酸盐对应的结晶特征峰,没有出现掺杂元素以及其他杂质相关的衍射峰,说明样品具有良好的晶体结构。

[0067] 请参阅图 4,图 4 是实施例 1 制备的薄膜电致发光器件的电压与电流密度和电压与亮度之间的关系曲线图,曲线 1 是电压与电流密度关系曲线,可看出该器件从电压 5.5V 开始发光,曲线 2 是电压与亮度关系曲线,可以看出该器件的最大亮度为 155cd/m²,表明器件具有良好的发光特性。

[0068] 实施例 2

[0069] 选用纯度为 99. 99% 的粉体,将 1mmol 的 Al_2O_3 ,3mmol 的 MoO_3 ,0. 005mol 的 TiO_2 和 0. 005mmol MnO_2 粉体,经过均匀混合后,在 900℃下烧结成直径为 50mm,厚度为 2mm 的 陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带 ITO 的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为 45mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-3} Pa,氧气的工作气体流量为 10sccm,压强调节为 0. 2Pa,衬底温度为 250 ℃,激光能量 500W。得到的样品的化学式为 $Al_2(MoO_4)_3$: 0. 005Ti $^{4+}$, 0. 005Mn $^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。 [0070] 实施例 3

[0071] 选用纯度为99.99%的粉体,将1mmol的Al $_2$ O $_3$,3mmol的MoO $_3$,0.05mol的TiO $_2$ 和0.03mmol MnO $_2$ 粉体,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-5} Pa,氧气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃,激光能量50W。得到的样品的化学式为4.0Pa,衬底温度为4.0Pa,衬底温度为4.0Pa,树底温度为4.0Pa,树底温度为4.0Pa,树底温度为4.0Pa,树底

[0072] 实施例 4

[0073] 选用纯度为99.99%的粉体,将1mmol的 Ga_2O_3 ,3mmol的 MoO_3 ,0.03mol的 TiO_2 和0.01mmol MnO_2 粉体,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10⁻⁴Pa,氧气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,激光能量300W。得到的样品的化学式为 $Ga_2(MoO_4)_3$:0.03Ti⁴⁺,0.01Mn⁴⁺的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。

[0074] 实施例 5

[0075] 选用纯度为 99. 99% 的粉体,将 1mmo1 的 Ga_2O_3 , 3mmo1 的 MoO_3 , 0. 005mo1 的 TiO_2 和 0. 005mmo1 MnO_2 粉体,经过均匀混合后,在 900 \mathbb{C} 下烧结成直径为 50mm,厚度为 2mm 的 陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带 ITO 的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为 45mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-3} Pa,氧气的工作气体流量为 10 sccm,压强调节为 0.2Pa,衬底温度为 250 \mathbb{C} ,激光能量 500W。得到的样品的化学式为 $Ga_2(MoO_4)_3$: 0.005Ti $^{4+}$, 0.005Mn $^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。 [0076] 实施例 6

[0077] 选用纯度为 99. 99%的粉体,将 1mmol 的 Ga_2O_3 , 3mmol 的 MoO_3 , 0. 05mol 的 TiO_2 和 0. 03mmol MnO_2 粉体,经过均匀混合后,在 1300 \mathbb{C} 下烧结成直径为 50mm,厚度为 2mm 的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带 ITO 的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为 95mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-5} Pa,氧气的工作气体流量为 35sccm,压强调节为 4. 0Pa,衬底温度为 750 \mathbb{C} ,激光能量 50W。得到的样品的化学式为 $Ga_2(MoO_4)_3$: 0. 05 Ti^{4+} , 0. 03 Mn^{4+} 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。

[0078] 实施例 7

[0079] 选用纯度为99.99%的粉体,将1mmo1的 In_2O_3 ,3mmo1的 MoO_3 ,0.03mo1的 TiO_2 和0.01mmo1 MnO_2 粉体,经过均匀混合后,在1250 \mathbb{C} 下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10⁻⁴Pa,氧气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500 \mathbb{C} ,激光能量300W。得到的样品的化学通式为 $In_2(MoO_4)_3$:0.03 Ti^{4+} ,0.01 Mn^{4+} 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。

[0080] 实施例 8

[0082]

[0081] 选用纯度为 99. 99%的粉体,将 1mmol 的 In_2O_3 ,3mmol 的 MoO_3 ,0. 005mol 的 TiO_2 和 0. 005mmol MnO_2 粉体,经过均匀混合后,在 900 \mathbb{C} 下烧结成直径为 50mm,厚度为 2mm 的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带 ITO 的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为 45mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-3} Pa,氧气的工作气体流量为 10sccm,压强调节为 0.2Pa,衬底温度为 $250\,\mathbb{C}$,激光能量 500W。得到的样品的化学式为 $In_2(MoO_4)_3$: 0.005Ti 4 0. 005Mn 4 1 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。

[0083] 选用纯度为99.99%的粉体,将1mmol的 $A1_2O_3$,3mmol的 MoO_3 ,0.05mol的 TiO_2 和0.03mmol MnO_2 粉体,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-5} Pa,氧气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃,激光能量50W。得到的样品的化学式为 $In_2(MoO_4)_3:0.05Ti^{4+},0.03Mn^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。

[0084] 实施例 10

实施例9

[0085] 选用纯度为99.99%的粉体,将1mmo1的 $T1_2O_3$,3mmo1的 MoO_3 ,0.03mo1的 TiO_2 和0.01mmo1 MnO_2 粉体,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0× 10^{-4} Pa,氧气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,激光能量300W。得到的样品的化学式为 $T1_2(MoO_4)_3$;0.03 Ti^{4+} ,0.01 Mn^{4+} 的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。

[0086] 实施例 11

[0087] 选用纯度为 99. 99% 的粉体,将 1mmol 的 Tl_2O_3 ,3mmol 的 MoO_3 ,0. 005mol 的 TiO_2 和 0. 005mmol MnO_2 粉体,经过均匀混合后,在 900℃下烧结成直径为 50mm,厚度为 2mm 的 陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗 带 ITO 的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为 45mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-3} Pa,氧气的工作气体流量为 10sccm,压强调节为 0.2Pa,衬底温度为 250℃,激光能量 500W。得到的样品的化学式为 $Tl_2(MoO_4)_3$:0. 005Ti $^{4+}$, 0.005Mn $^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层 Ag,作为阴极。

[0088] 实施例 12

[0089] 选用纯度为99.99%的粉体,将1mmo1的 $T1_2O_3$,3mmo1的 MoO_3 ,0.05mo1的 TiO_2 和0.03mmo1 MnO_2 粉体,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带 ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到 1.0×10^{-5} Pa,氧气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃,激光能量50W。得到的样品的化学式为 $T1_2(MoO_4)_3:0.05Ti^{4+},0.03Mn^{4+}$ 的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。

[0090] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

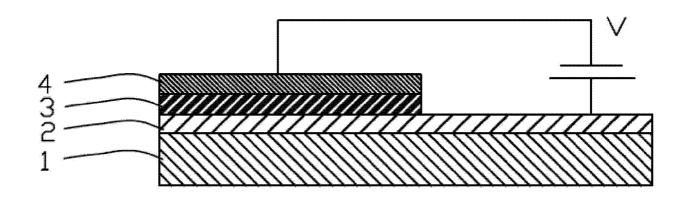


图 1

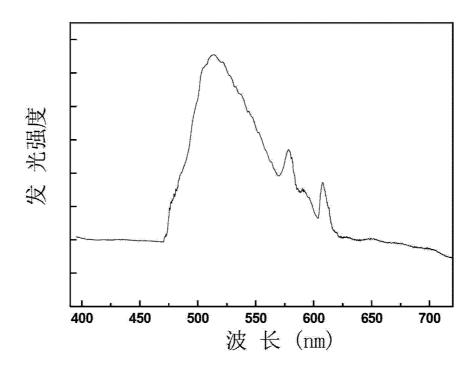


图 2

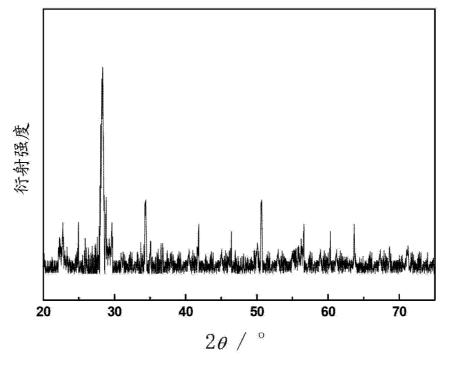
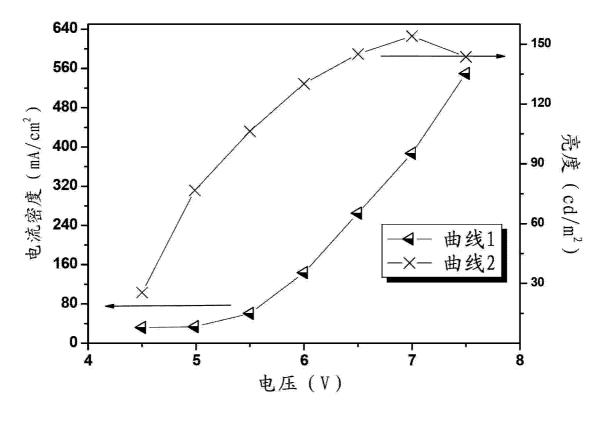
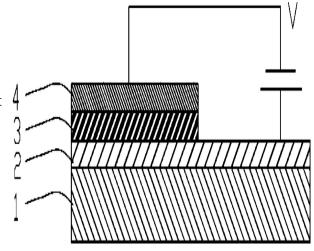


图 3




图 4

专利名称(译)	钛锰共掺杂三族钼酸盐发光材料、	制备方法及其应用		
公开(公告)号	CN103571475A	公开(公告)日	2014-02-12	
申请号	CN201210268336.7	申请日	2012-07-31	
[标]申请(专利权)人(译)	海洋王照明科技股份有限公司 深圳市海洋王照明工程有限公司			
申请(专利权)人(译)	海洋王照明科技股份有限公司 深圳市海洋王照明技术有限公司			
当前申请(专利权)人(译)	海洋王照明科技股份有限公司 深圳市海洋王照明技术有限公司			
[标]发明人	周明杰 王平 陈吉星 黄辉			
发明人	周明杰 王平 陈吉星 黄辉			
IPC分类号	C09K11/68 H01L33/50			
代理人(译)	熊永强			
外部链接	Espacenet SIPO			

摘要(译)

一种钛锰共掺杂三族钼酸盐发光材料,其化学式为Re2(MoO4)3:xTi4+,yMn4+,其中Re2(MoO4)3是基质,锰离子和钛离子是激活元素,x为0.01~0.05,y为0.005~0.03,Re为铝离子,镓离子,铟离子或铊离子。该钛锰共掺杂三族钼酸盐发光材料制成的发光薄膜的电致发光光谱(EL)中,在520nm波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。本发明还提供该钛锰共掺杂三族钼酸盐发光材料的制备方法及其应用。

