(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 109599426 A (43)申请公布日 2019.04.09

(21)申请号 201811507586.5

(22)申请日 2018.12.11

(71)申请人 上海天马有机发光显示技术有限公司

地址 201201 上海市浦东新区龙东大道 6111号1幢509室

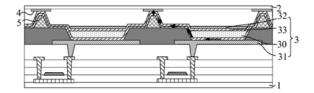
(72)发明人 李婷婷 熊志勇 刘丽媛 安平

(74)专利代理机构 北京汇思诚业知识产权代理 有限公司 11444

代理人 王刚 龚敏

(51) Int.CI.

H01L 27/32(2006.01)


权利要求书2页 说明书7页 附图6页

(54)发明名称

显示面板和显示装置

(57)摘要

本发明实施例提供了一种显示面板及显示 装置,涉及显示技术领域,用以解决现有技术中 OLED显示面板在进行显示时不同的子像素之间 出现的相互串扰问题。该显示面板包括相对设置 的第一基板和第二基板,以及位于第一基板朝向 第二基板的一侧的多个发光器件;发光器件包括 层叠设置的第一电极,发光层,公共层和第二电 极;公共层位于发光层朝向第一电极和/或第二 电极的一侧;该显示面板还包括辅助电极,辅助 电极与位于相邻两个发光层之间的公共层接触。

1.一种显示面板,其特征在于,包括:

相对设置的第一基板和第二基板;

多个发光器件,所述发光器件位于所述第一基板朝向所述第二基板的一侧;所述发光器件包括层叠设置的第一电极,发光层,公共层和第二电极;所述公共层位于所述发光层朝向所述第一电极和/或所述第二电极的一侧;

辅助电极,所述辅助电极连接负电位,且所述辅助电极与位于相邻两个所述发光层之间的所述公共层接触。

- 2.根据权利要求1所述的显示面板,其特征在于,所述辅助电极在所述显示面板所在平面的正投影与所述发光层在所述显示面板所在平面的正投影不交叠。
- 3.根据权利要求2所述的显示面板,其特征在于,所述显示面板还包括支撑柱;所述支撑柱位于所述第一基板和所述第二基板之间;所述辅助电极与所述支撑柱在所述显示面板 所在平面的正投影交叠。
- 4.根据权利要求2所述的显示面板,其特征在于,所述辅助电极的形状包括网格状和/或条状。
- 5.根据权利要求2所述的显示面板,其特征在于,所述辅助电极与所述公共层靠近所述 第二基板的一侧接触。
- 6.根据权利要求5所述的显示面板,其特征在于,所述辅助电极与所述第二电极电连接。
- 7.根据权利要求5所述的显示面板,其特征在于,所述辅助电极与所述第二电极互不相连。
- 8.根据权利要求6或7所述的显示面板,其特征在于,所述辅助电极包括第一辅助电极和第二辅助电极,所述第一辅助电极和所述第二辅助电极电连接;所述第二辅助电极与所述公共层接触;所述第二辅助电极在所述显示面板所在平面的正投影与所述发光层在所述显示面板所在平面的正投影不交叠。
- 9.根据权利要求8所述的显示面板,其特征在于,所述第二辅助电极复用为所述支撑柱。
- 10.根据权利要求8所述的显示面板,其特征在于,所述第二辅助电极的形状包括球体、锥体、柱体中的任意一种。
- 11.根据权利要求2所述的显示面板,其特征在于,所述显示面板还包括触控电极层,所述触控电极层形成于所述第二基板。
- 12.根据权利要求11所述的显示面板,其特征在于,所述辅助电极形成于所述第二基板,且,所述辅助电极与所述触控电极层位于不同层。
- 13.根据权利要求11所述的显示面板,其特征在于,所述辅助电极包括间隔设置的子辅助电极;所述触控电极层包括间隔设置的子触控电极;所述子辅助电极和所述子触控电极同层交替排列;相邻的两个所述子触控电极通过架桥连接;

所述架桥与所述子触控电极位于不同层,所述架桥与所述子触控电极通过过孔连接。

- 14.根据权利要求2所述的显示面板,其特征在于,所述辅助电极与所述第一电极同层设置,所述辅助电极与所述公共层靠近所述第一基板的一侧接触。
 - 15.根据权利要求1所述的显示面板,其特征在于,所述辅助电极的材料包括金属或透

明金属氧化物。

16.一种显示装置,其特征在于,所述显示装置包括权利要求1-15任一项所述的显示面板。

显示面板和显示装置

【技术领域】

[0001] 本发明涉及显示技术领域,尤其涉及一种显示面板和显示装置。

【背景技术】

[0002] 有机发光(Organic Light-Emitting Diode,以下简称OLED)显示面板因其具 有主动发光、高对比度、无视角限制等诸多优点而被广泛应用于显示技术领域。

[0003] 在0LED显示面板中,为了增强载流子的迁移和复合效率,通常会在 0LED器件的电极和发光层之间设置诸如电子传输层、电子注入层、空穴传输 层和空穴注入层等功能膜层。但是,由于这些功能膜层通常在显示面板中为 覆盖所有有机发光器件的整面结构,导致在显示面板进行显示时,对应不同 的0LED器件的载流子在正常的从各自的阴极和/或阳极向对应的发光层纵向 迁移的过程之外,还会出现载流子通过上述功能膜层在不同的 0LED器件之 间横向迁移的情况,即,出现横向漏流,导致在显示面板进行显示时不同的 子像素之间出现相互串扰的问题,例如,可能出现本不应该发光的子像素发 光的现象,影响显示效果。

【发明内容】

[0004] 有鉴于此,本发明实施例提供了一种显示面板和显示装置,用以解决现 有技术中 OLED显示面板在进行显示时不同的子像素之间出现的相互串扰问 题。

[0005] 一方面,本发明实施例提供了一种显示面板,包括:

[0006] 相对设置的第一基板和第二基板;

[0007] 多个发光器件,所述发光器件位于第一基板朝向第二基板的一侧;所述发光器件包括层叠设置的第一电极,发光层,公共层和第二电极;所述公共层位于发光层朝向所述第一电极和/或所述第二电极的一侧;

[0008] 辅助电极,所述辅助电极连接负电位,且所述辅助电极与位于相邻两个所述 发光层之间的所述公共层接触。

[0009] 另一方面,本发明实施例还提供了一种显示装置,所述显示装置包括上述的显示面板。

[0010] 本发明实施例提供的显示面板和显示装置,通过设置与位于相邻两个发光层 之间的公共层接触的辅助电极,并使辅助电极与负电位电连接,这样,在该显示 面板的工作过程中,在发生横向漏流,即,某个发光器件的载流子从该发光器件 通过公共层向其余的发光器件横向迁移时,这些横向迁移的载流子便可以经由上 述连接负电位的辅助电极导走,从而避免使载流子在不同的发光器件之间迁移,即,避免出现各个发光器件在工作时的相互串扰问题,改善显示面板的显示效果。

【附图说明】

[0011] 为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要 使用的

附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

- [0012] 图1是现有技术中一种显示面板的截面示意图;
- [0013] 图2是本发明实施例所提供的一种显示面板的俯视示意图;
- [0014] 图3是图2沿AA'的一种截面示意图;
- [0015] 图4是本发明实施例提供的另一种显示面板的俯视示意图:
- [0016] 图5是图2沿AA'的另一种截面示意图:
- [0017] 图6是图2沿AA'的又一种截面示意图;
- [0018] 图7是图2沿AA'的又一种截面示意图;
- [0019] 图8是本发明实施例提供的又一种显示面板的俯视示意图;
- [0020] 图9是图8中对应4×4个子像素大小位置处的一种放大示意图;
- [0021] 图10是图9沿BB'的一种截面示意图:
- [0022] 图11是图8中对应4×4个子像素大小位置处的另一种放大示意图;
- [0023] 图12是图11沿CC'的一种截面示意图
- [0024] 图13是图9沿BB'的另一种截面示意图;
- [0025] 图14是图9沿BB'的又一种截面示意图;
- [0026] 图15是本发明实施例提供的一种显示装置的示意图。

【具体实施方式】

[0027] 为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。

[0028] 应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

[0029] 在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的"一种"、"所述"和"该"也旨在包括多数形式,除非上下文清楚地表示其他含义。

[0030] 应当理解,本文中使用的术语"和/或"仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符"/",一般表示前后关联对象是一种"或"的关系。

[0031] 应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述辅助电极,但这些辅助电极不应限于这些术语。这些术语仅用来将辅助电极彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一辅助电极也可以被称为第二辅助电极,类似地,第二辅助电极也可以被称为第一辅助电极。

[0032] 如图1所示,图1为现有技术中一种显示面板的截面示意图,其中,该显示面板包括多个有机发光器件,图1中以第一有机发光器件1'和第二有机发光器件2'为例,每个有机发光器件均包括层叠设置的阳极11'、发光层 10'和阴极12'。在有机发光器件需要发光时,向该有机发光器件1'的阳极11'和阴极12'提供电信号,在阳极11'和阴极12'的压差的

作用下,阳极11'产生的空穴注入到发光层10'中,阴极12'产生的电子也注入到发 光层 10'中,电子和空穴在发光层10'中复合产生激子,激子辐射从激发态 跃迁到基态,使得发 光层10'发出相应颜色的光。在有机发光器件不需要发 光时,该有机发光器件的阳极11'和 阴极12'之间的压差为0,包括电子和 空穴在内的载流子不会从阳极11'和阴极12'向发光层10'移动,相应的,发光层10'中没有激子的产生,从而使发光层10'不发光。

[0033] 目前,为了提高载流子的迁移和复合效率,如图1所示,通常会在阳极 11'和发光层10'之间设置空穴注入层13'和空穴传输层14',并在阴极 12'和发光层10'之间设置电子注入层15'和电子传输层16'。但是,由于 上述包括空穴注入层13'、空穴传输层14'、电子注入层15'和电子传输层 16'在内的功能膜层通常为覆盖各个有机发光器件的面状结构,因此,如图1 所示,如果在某一时刻,需要使第一有机发光器件1'处于发光状态,使第二 有机发光器件2'处于不发光状态,那么在该时刻第一有机发光器件1'所包 括的阳极11'和阴极12'接收电信号,第二有机发光器件2'所包括的阳极 11'和阴极12'不接收电信号。与第一有机发光器件1'对应的空穴注入层 13'、空穴传输层14'、电子注入层15'和电子传输层16'中有载流子通过,向第一有机发光器件1'包括的发光层10'中迁移。但是,由于第一有机发光器件1'和第二有机发光器件2'之间的诸如空穴注入层13'、空穴传输层 14'、电子注入层15'和电子传输层16'在内的公共膜层相互连通,因此,载流子会经上述公共膜层从第一有机发光器件1'向第二有机发光器件2'迁移,导致本不应发光的第二有机发光器件2'也可能出现发光的情况,即,使第一有机发光器件1'和第二有机发光器件2'出现相互串扰的问题。

[0034] 基于此,本发明实施例提供了一种显示面板,如图2和图3所示,图2 为本发明实施例提供的一种显示面板的俯视示意图,图3为图2沿AA'的一种截面示意图,其中,该显示面板包括相对设置的第一基板1和第二基板2,以及位于第一基板1朝向第二基板2的一侧的发光器件3。具体的,发光器件3包括层叠设置的第一电极31,发光层30,公共层33和第二电极32;公共层33位于发光层30朝向第一电极31和/或第二电极32的一侧;该显示面板还包括辅助电极4,辅助电极4连接负电位,且辅助电极4与位于相邻两个发光层30之间的公共层33接触。

[0035] 示例性的,上述第一电极31可以为阳极,第二电极32可以为阴极,相 应的,位于发光层30朝向第一电极31的一侧的公共层33可以包括空穴注入 层和空穴传输层,位于发光层30朝向第二电极32的一侧的公共层33可以包 括电子注入层和电子传输层。

[0036] 本发明实施例提供的显示面板,通过设置与位于相邻两个发光层30之间 的公共层33接触的辅助电极4,并使辅助电极4与负电位电连接,这样,在 该显示面板的工作过程中,在发生横向漏流,即,某个发光器件的载流子从 该发光器件通过公共层33向其余的发光器件横向迁移时,这些横向迁移的载 流子便可以经由上述连接负电位的辅助电极4导走,如图3中箭头方向所示 即为载流子的流向示意,从而避免使载流子在不同的发光器件之间迁移,即,避免出现各个发光器件在工作时的相互串扰问题,改善显示面板的显示效果。

[0037] 示例性的,如图3所示,上述辅助电极4在显示面板所在平面的正投影 与发光层30 在显示面板所在平面的正投影不交叠,从而避免辅助电极4影响 发光层30射出的光线,保证发光层30的正常出光。

[0038] 示例性的,如图2和图3所示,上述显示面板还包括支撑柱5;支撑柱5 位于第一基板1和第二基板2之间;辅助电极4与支撑柱5在显示面板所在 平面的正投影交叠。本发明实施例通过在显示面板中设置支撑柱5,在蒸镀显 示面板中的发光层30时,可以利用该支撑柱5来支撑蒸镀时需要用到的掩膜 板。并且,本发明实施例通过将支撑柱5设置在相邻两个发光层30之间,避 免了支撑柱5对发光层30射出光线的遮挡。在此基础上,本发明实施例通过 使辅助电极4与支撑柱5在显示面板所在平面的投影交叠,在保证辅助电极4 和支撑柱5不影响发光层30的正常出光的基础上,能够避免将相邻两个发光 层30之间的空间设置的过大,从而使该显示面板的开口率不会降低。

[0039] 示例性的,在保证辅助电极4与发光层30不交叠的基础上,可以将辅助 电极4设计为多种形状。例如,如图2所示,其中,辅助电极4的形状为网 格状。或者,如图4所示,图4为本发明实施例提供的另一种显示面板的俯 视示意图,其中,辅助电极4的形状还可以设计为条状。当然,也可以将辅 助电极4的形状设计为条状和网格状的混合,只要保证辅助电极4不与发光 层30交叠即可,本领域技术人员可以根据不同的设计需求进行相应的调整。

[0040] 示例性的,在保证辅助电极4与位于相邻两个发光层30之间的公共层33 接触的基础上,辅助电极4在该显示面板中的位置可以有多种设计,例如,可以使辅助电极4与公共层33靠近第二基板2的一侧接触,也可以使辅助电 极4与公共层33靠近第一基板1的一侧接触,以下分别对此进行说明。

[0041] 如图3所示,当将辅助电极4设置为与公共层33靠近第二基板2的一侧 接触时,本发明实施例可以将第二电极32图形化设置为条状或块状结构,即,仅使第二电极32覆盖相应的发光层30,使辅助电极4位于相邻的发光层30之间,也就是说,使辅助电极4与第二电极32互不相连。此时,辅助电极4与第二电极32上的信号相互独立,因此,可以将辅助电极4连接至比第二电 极32的电位更低的电位处,示例性的,可以使辅助电极4的电位在-7V~-3V之间,使辅助电极4与显示面板中已有的低电平信号端VGL(未图示)或参 考电压信号端Vref(未图示)相连,以更好的改善横向漏流现象。

[0042] 在使第二电极32仅覆盖相应的发光层30的基础上,示例性的,如图5 所示,图5为图2沿AA'的另一种截面示意图,其中,辅助电极4包括第一 辅助电极41和第二辅助电极42,第一辅助电极41和第二辅助电极42电连接;第二辅助电极42与公共层33靠近第二基板2的一侧接触,或者,可以通过 向第二辅助电极42施加压力使第二辅助电极42压入公共层33内与公共层33 接触;其中,第一辅助电极41和第二辅助电极42在显示面板所在平面的正 投影与发光层30在显示面板所在平面的正投影均不交叠。在发生横向漏流现 象时,载流子可以依次通过第二辅助电极42和第一辅助电极41流向电位较 低处,如图5中箭头方向所示即为载流子的流向示意,以避免载流子在不同 的发光器件3之间迁移,即,避免出现各个发光器件3在工作时的相互串扰 问题,改善显示面板的显示效果。

[0043] 示例性的,该第二辅助电极42可以复用为支撑柱5,即,在本发明实施 例中,使第二辅助电极42不仅用于传导横向迁移的载流子,还用于支撑蒸镀 发光层30时需要用到的掩膜板(未图示),如此以避免在相邻两个发光层30 之间设置过大的空间分别用于放置支撑柱5和第二辅助电极42,以使该显示 面板的开口率不会降低。示例性的,上述第二辅助电极42的形状包括球体、椭球体、锥体、柱体中的任意一种。示例性的,锥体可以包括圆锥体、三角 锥体等,本发明实施例对此不做限定。

[0044] 以上以对第二电极32进行图案化,即,使第二电极32仅覆盖相应的发 光层30为例对本发明实施例提供的显示面板的结构进行了介绍,实际上,在 本发明实施例中,还可以将第二电极32设置为覆盖各个发光器件3的面状结 构,示例性的,如图6所示,图6为图2沿AA'的又一种截面示意图,其中,第二电极32为覆盖各个发光器件3的面状结构,在此情况下,本发明实施例 将辅助电极4与第二电极32电连接,能够降低第二电极32的电阻。若第二电极32上的电阻较大,在第二电极32通电时,第二电极32上将产生较大的 压降,从而在提供给第二电极32的电压一定的情况下,将导致第二电极32 的不同位置处接收到的电压不同。例如,在由位于显示面板的边框区的驱动 芯片(未图示)向第二电极32提供电压时,由于第二电极32上的压降较大,将导致第二电极32中靠近边框区的位置处接收到的电压较高,而第二电极32 中位于显示面板的中间位置处,即远离边框区的位置处接收到的电压较低,如此将导致在显示时出现显示面板的中间区域偏暗,周边区域偏亮的现象,即,出现显示不均的情况。本发明实施例通过使辅助电极4与第二电极32电 连接,不仅能够利用辅助电极4改善不同的发光器件3之间出现的相互串扰 问题,而且还能够降低第二电极32的电阻,从而降低第二电极32在工作时 的压降,提高显示面板各处的显示均一性。

[0045] 在将第二电极32设置为覆盖各发光器件3的面状结构的基础上,与上述 将第二电极32图案化设置为仅覆盖相应的发光层30的情况相同,也可以将 辅助电极4设置为包括第一辅助电极41和第二辅助电极42,示例性的,如图 7所示,图7为图2沿AA'的又一种截面示意图,其中,辅助电极4包括电 连接的第一辅助电极41和第二辅助电极42,此时,辅助电极4的具体结构与 上述图5所示情况类似,相同之处此处不再赘述。不同之处在于,此时,第 二辅助电极42与第二电极32接触,能够降低第二电极32的电阻,使第二电 极32在显示面板工作时的压降减小,起到改善显示面板各处的显示均一性的 效果。

[0046] 示例性的,如图8所示,图8为本发明实施例提供的又一种显示面板的 俯视示意图,其中,本发明实施例提供的显示面板还可以包括形成于第二基 板的触控电极层6,触控电极层6的设置能够使该显示面板实现触控操作,丰 富该显示面板的使用功能。

[0047] 具体的,如图8所示,触控电极层6可以包括触控驱动电极601和触控 感应电极602,在进行触控位置的判断时,通过向触控驱动电极601提供触控 驱动信号,并检测触控感应电极602输出信号的变化,来判断触控的发生位 置。

[0048] 示例性的,为了提高触控电极层6的透光性,通常会将触控电极层6中 的触控驱动电极601和/或触控感应电极602均设计成网格状或者条状,如图 9所示,图9为图8中对应4×4个子像素大小位置处的一种放大示意图,其 中,触控电极层6包括间隔设置的子触控电极61;相邻两个子触控电极61之 间存在间隙,以提高该触控电极层6的透光性。

[0049] 在将辅助电极4设置为与公共层33朝向第二基板2的一侧接触时,在实际制作时,可以使上述辅助电极4形成于第二基板2,并使辅助电极4与触控电极层6位于不同层,具体的,如图10所示,图10为图9沿BB'的一种截面示意图,其中,辅助电极4和触控电极层6之间还包括绝缘层7。在触控显示面板的实际生产中,通常将触控电极层6和发光器件3在不同的基板上分开制作完成后,再将两块基板进行贴合以完成触控显示面板的制作。因此,本发明实施例通过将辅助电极4和触控电极层6均形成于第二基板2上,在实际的工艺过程中,仅需在触控电极层6制备完成后增设辅助电极4的制程即可,工艺简单易实现。

[0050] 以上是以触控电极层6和辅助电极4位于不同层对包括触控电极层6的 显示面板

进行的介绍,实际上,在制作包括触控电极层6的显示面板时,还 可以将触控电极层6和辅助电极4设置于同一膜层,如图11和图12所示,图11为图8中对应4×4个子像素大小位置处的另一种放大示意图,图12为图11沿CC'的一种截面示意图,其中,上述辅助电极4包括间隔设置的子辅助电极40;触控电极层6包括间隔设置的子触控电极61;子辅助电极40和子触控电极61同层交替排列;相邻的两个子触控电极61通过架桥62连接;架桥62与子触控电极61位于不同层,具体的,架桥62和子触控电极61之间还包括绝缘层7,绝缘层7中包括过孔70,架桥62与子触控电极61通过过孔70连接。

[0051] 需要说明的是,图10和图12所示仅是以将触控电极层6设置于第二基 板2朝向第一基板1的一侧,即将触控显示面板设置为In-cell结构进行的示 意,实际上,如图13所示,图13为图8沿BB'的另一种截面示意图,本发 明实施例还可以将该触控显示面板设置为0n-cell或0ut-cell结构,即,将触 控电极层6设置于第二基板2背离第一基板1的一侧。

[0052] 另外,需要说明的是,在制作包括触控电极层6的显示面板时,图10、图12和图13 所示的结构仅为示意,实际上,还可以将第二电极32设置为图 案化结构,即,仅使第二电极32仅覆盖相应的发光层30,使第二电极32与 辅助电极4不相连。并且,也可以使辅助电极4设置为包括相互连接的第一 辅助电极和第二辅助电极,并令第二辅助电极复用为支撑柱。也就是说,第 二电极32是否图案化,辅助电极4是否设置为包括第一辅助电极41和第二 辅助电极42,以及显示面板是否包括触控电极层,触控电极层是否与辅助电 极4同层设置,这些特征均可以自由组合,本发明实施例在此不对其不同的 组合方式进行一一罗列,但在本发明实施例的精神和原则之内,采用对上述 不同特征的不同组合形成的方案均应包含在本发明保护的范围之内。

[0053] 以上以辅助电极4与公共层33靠近第二基板2的一侧接触为例对本发明 实施例进行了介绍,实际上,辅助电极4还可以设置为与公共层33靠近第一 基板1的一侧接触,如图14所示,图14为图8沿BB'的又一种截面示意图,其中,辅助电极4与公共层33靠近第一基板1的一侧接触,具体的,辅助电 极4可以与第一电极31同层设置,这样在制作该显示面板时,可以使辅助电 极4与第一电极31采用同一道工序进行制作。仅需在后续制程中在第一电极31对应位置处蒸镀发光层30,在辅助电极4对应位置处不蒸镀发光层30即 可。

[0054] 应当理解的是,在辅助电极4位于公共层33靠近第一基板1的一侧时,也可以在该显示面板中按照上述将辅助电极4设置于公共层33远离第一基板 1的一侧的方式设置触控电极层6,此处不再赘述。

[0055] 示例性的,上述辅助电极4和触控电极层6的材料可以选择金属或透明 金属氧化物,可选的,金属材料可以选用诸如铜、银、钛等中的任意一种。透明金属氧化物材料可以选用诸如氧化铟锡、氧化铟锌、氧化铟镓锌等中的 任意一种。在实际的显示面板的制作过程中,辅助电极4和触控电极层6的 材料可以相同,也可以不同,本发明实施例对此不做限定。例如,在本发明 实施例中,为了增强触控电极层6的透光性,并减小触控电极层6的电阻,可以选用纳米银线材料或者其他的可透光的纳米材料来制作触控电极层6,以 避免影响各个发光器件3的正常出光,并保证触控灵敏性。

[0056] 本发明实施例还提供了一种显示装置,如图15所示,图15为本发明实施例 提供的一种显示装置的示意图,其中,该显示装置包括上述的显示面板100。其中,其中,显示面板100的具体结构已经在上述实施例中进行了详细说明,此处 不再赘述。当然,图15所示的显

示装置仅仅为示意说明,该显示装置可以是例 如手机、平板计算机、笔记本电脑、电纸书或电视机等任何具有显示功能的电子 设备。

[0057] 本发明实施例提供的显示装置,通过在显示面板中设置与位于相邻两个 发光层之间的公共层接触的辅助电极,并使辅助电极与负电位电连接,这样,在该显示面板的工作过程中,在发生横向漏流,即,某个发光器件的载流子 从该发光器件通过公共层向其余的发光器件横向迁移时,这些横向迁移的载 流子便可以经由上述连接负电位的辅助电极导走,从而避免使载流子在不同 的发光器件之间迁移,即,避免出现各个发光器件在工作时的相互串扰现象,改善显示装置的显示效果。

[0058] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

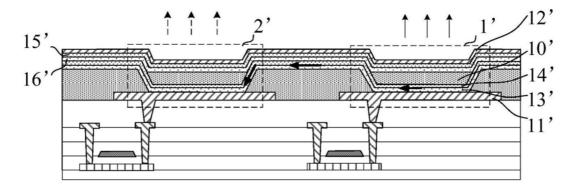


图1

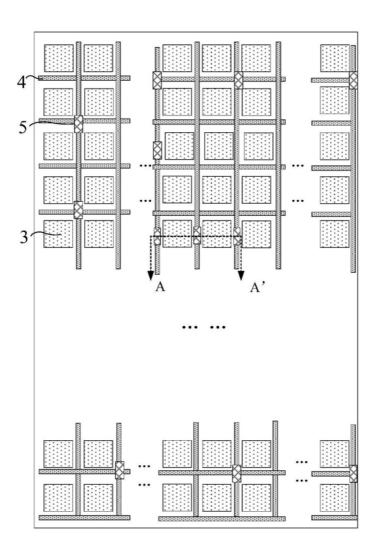


图2

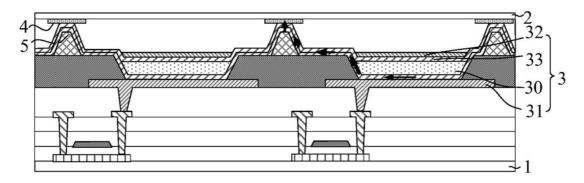


图3

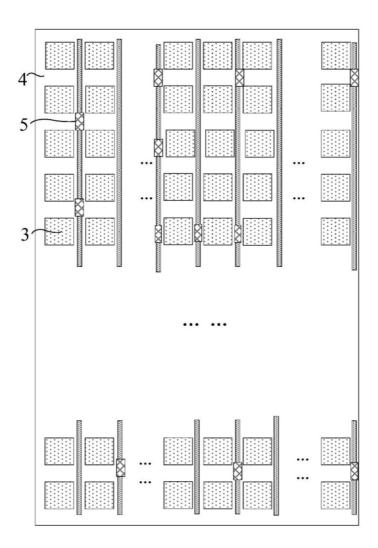


图4

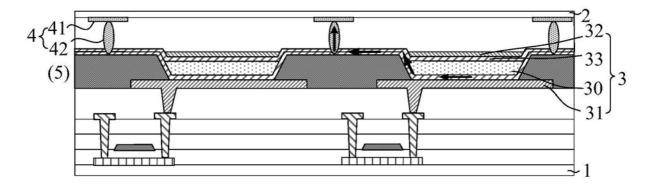


图5

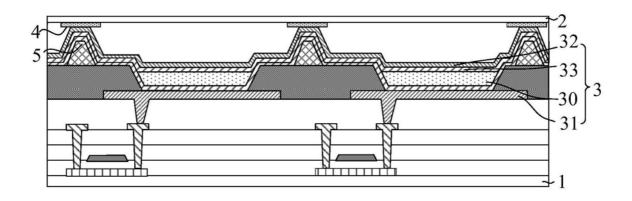


图6

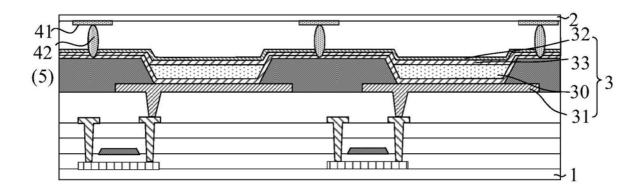


图7

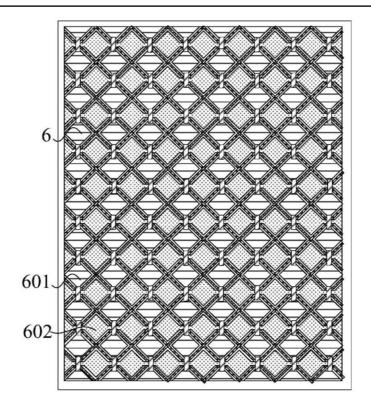
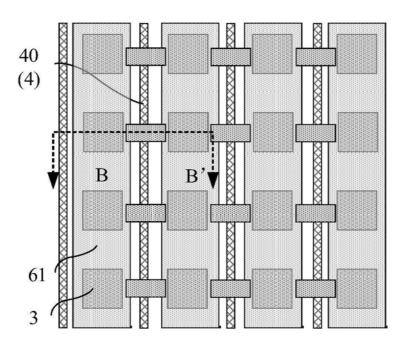



图8

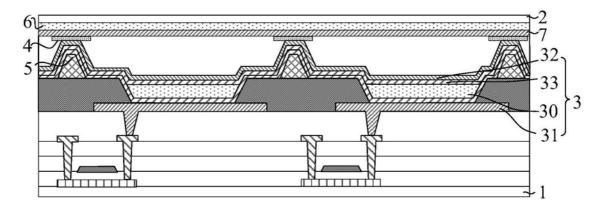


图10

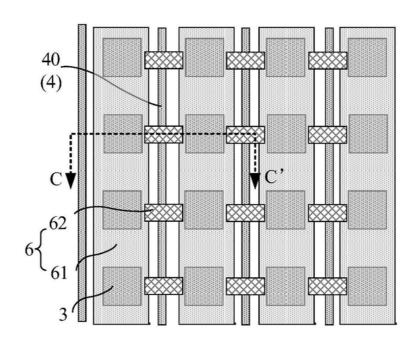


图11

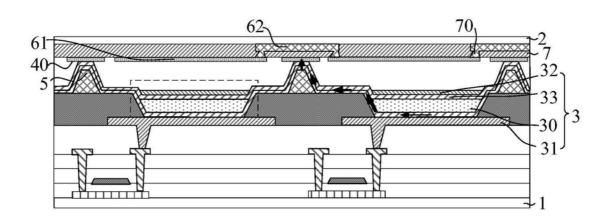


图12

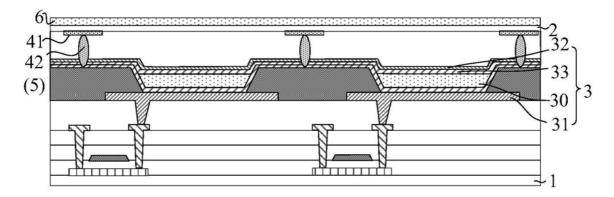


图13

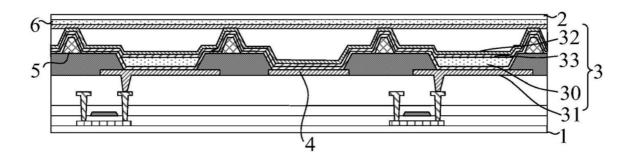
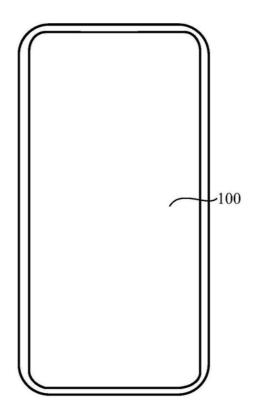
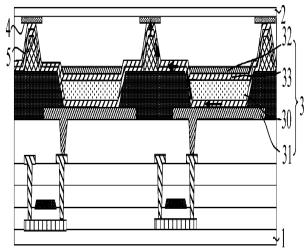


图14




图15

专利名称(译)	显示面板和显示装置			
公开(公告)号	<u>CN109599426A</u>	公开(公告)日	2019-04-09	
申请号	CN201811507586.5	申请日	2018-12-11	
[标]申请(专利权)人(译)	上海天马有机发光显示技术有限公司			
申请(专利权)人(译)	上海天马有机发光显示技术有限公司			
当前申请(专利权)人(译)	上海天马有机发光显示技术有限公司			
[标]发明人	李婷婷 熊志勇 刘丽媛 安平			
发明人	李婷婷 熊志勇 刘丽媛 安平			
IPC分类号	H01L27/32			
CPC分类号	H01L27/32 H01L27/3244			
代理人(译)	王刚 龚敏			
外部链接	Espacenet SIPO			

摘要(译)

本发明实施例提供了一种显示面板及显示装置,涉及显示技术领域,用以解决现有技术中OLED显示面板在进行显示时不同的子像素之间出现的,相互串扰问题。该显示面板包括相对设置的第一基板和第二基板,以及位于第一基板朝向第二基板的一侧的多个发光器件;发光器件包括层叠设置的第一电极,发光层,公共层和第二电极;公共层位于发光层朝向第一电极和/或第二电极的一侧;该显示面板还包括辅助电极,辅助电极与位于相邻两个发光层之间的公共层接触。

