

# (19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) . Int. Cl. *G02F 1/1335* (2006.01)

(11) 공개번호

10-2007-0072169

(43) 공개일자

2007년07월04일

(21) 출원번호10-2005-0136158(22) 출원일자2005년12월30일

심사청구일자

없음

(71) 출원인 엘지.필립스 엘시디 주식회사

서울 영등포구 여의도동 20번지

(72) 발명자 안응진

서울 노원구 상계5동 389-605 1층

이민직

대구 동구 신천동 556-1 신천주공APT 107 / 803

(74) 대리인 이수웅

전체 청구항 수 : 총 8 항

# (54) 액정표시패널 및 이의 제조 방법

# (57) 요약

액정표시패널 및 이의 제조 방법이 제공된다. 본 발명의 일 실시예에 따른 액정표시패널은, 광 차단층이 형성된 제 1 기판, 제 1 기판에 대향하며 컬러 필터층이 형성된 제 2 기판 및 제 1 기판과 제 2 기판 사이에 형성된 액정층을 포함한다.

### 대표도

도 2

# 특허청구의 범위

# 청구항 1.

광 차단층이 형성된 제 1 기판;

상기 제 1 기판에 대향하며 컬러 필터층이 형성된 제 2 기판; 및

상기 제 1 기판과 상기 제 2 기판 사이에 형성된 액정층을 포함하는 액정표시패널.

# 청구항 2.

제 1 항에 있어서,

상기 제 1 기판은, 게이트 전극 및 게이트 라인을 형성하는 게이트층;

상기 게이트층과 동일 레이어 상에 형성된 광 차단층;

상기 게이트층 및 상기 광 차단층을 덮도록 형성된 게이트 절연층; 및

상기 게이트 절연층 상에 형성되며, 소스 전극, 드레인 전극 및 데이터 라인을 형성하는 데이터층을 포함하여 구성되는 것을 특징으로 하는 액정표시패널.

### 청구항 3.

제 2 항에 있어서,

상기 광 차단층은, 상기 데이터 라인과 오버랩 되도록 형성되는 것을 특징으로 하는 액정표시패널.

# 청구항 4.

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

상기 제 2 기판은, 컬러 필터층;

상기 컬러 필터층을 덮도록 형성되는 평탄화층; 및

상기 평탄화충 상에 형성되며 상기 제 1 기판과의 일정 간격을 유지하도록 하는 컬럼 스페이서를 포함하여 구성되는 것을 특징으로 하는 액정표시패널.

### 청구항 5.

광 차단층이 형성된 제 1 기판을 제공하는 단계;

상기 제 1 기판에 대향하며 컬러 필터층이 형성된 제 2 기판을 제공하는 단계; 및

상기 제 1 기판과 상기 제 2 기판 사이에 액정층을 형성하는 단계를 포함하는 액정표시패널의 제조 방법.

# 청구항 6.

제 5 항에 있어서,

상기 제 1 기판을 제공하는 단계는, 게이트 전극 및 게이트 라인을 구성하는 게이트층을 형성하는 단계;

상기 게이트층과 동일 레이어 상에 광 차단층을 형성하는 단계;

상기 게이트층 및 상기 광 차단층을 덮도록 게이트 절연층을 형성하는 단계; 및

상기 게이트 절연충 상에, 소스 전극, 드레인 전극 및 데이터 라인을 구성하는 데이터충을 형성하는 단계를 포함하는 것을 특징으로 하는 액정표시패널의 제조 방법.

# 청구항 7.

제 6 항에 있어서.

상기 광 차단층은, 상기 데이터 라인과 오버랩 되도록 형성되는 것을 특징으로 하는 액정표시패널의 제조 방법.

# 청구항 8.

제 5 항 내지 제 7 항 중 어느 한 항에 있어서,

상기 제 2 기판을 형성하는 단계는, 컬러 필터층을 형성하는 단계;

상기 컬러 필터층을 덮도록 평탄화층을 형성하는 단계; 및

상기 평탄화층 상에 상기 제 1 기판과의 일정 간격을 유지하도록 하는 컬럼 스페이서를 형성하는 단계를 포함하는 것을 특징으로 하는 액정표시패널의 제조 방법.

#### 명세서

### 발명의 상세한 설명

### 발명의 목적

### 발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 액정표시패널 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는, 개구 영역의 확대 및 이로 인한 휘도 향상 등의 특성을 갖도록 개선된 액정표시패널과 이의 제조 방법에 관한 것이다.

근래들어 액정표시장치가 디스플레이 수단으로 각광받고 있다.

액정표시장치는 패널의 내부에 주입된 액정의 전기적, 광학적 성질을 이용하여 디스플레이 기능을 수행하는데, 소형, 경량 및 저소비 전력 등의 장점에 의해 컴퓨터 모니터나 이동 통신 단말기 등의 다양한 분야에 폭넓게 응용되고 있는 추세이다.

액정표시장치는 크게, 영상 데이터를 생성하는 액정표시패널 및 액정표시패널에 광(光)을 인가하는 백 라이트 유닛으로 구분할 수 있다.

도 1은 종래의 액정표시패널을 설명하기 위해 개념적으로 나타낸 부분 단면도로써, 특히 액정표시패널의 데이터 라인 부분을 나타낸 도면이다.

도 1을 참조하면, 종래의 액정표시패널은 하부 기판(110) 및 상부 기판(120)과 그 사이에 형성된 액정층(130) 등을 포함 하여 구성됨을 알 수 있다.

하부 기판(110)은 투명 기판(111), 투명 기판(111) 상에 형성되는 게이트층(도시되지 않음), 게이트층을 덮도록 형성되는 게이트 절연층(113), 게이트 절연층(113) 상에 형성되는 데이터층(115), 데이터층(115)을 덮도록 형성되는 패시베이션층(117) 및 패시베이션층(117) 상에 형성되는 화소 전극(119) 등을 구비한다. 그리고 상부 기판(120)은 투명 기판(122), 투명 기판(122) 상의 소정 위치에 형성되는 블랙 매트릭스(124), 블랙 매트릭스(124)와 일부 오버랩 되도록 형성되는 컬러 필터(126) 등을 구비한다.

하부 기판(110)에 형성되는 게이트층은 게이트 신호가 전달되는 게이트 라인 및 박막 트랜지스터(도시되지 않음)의 게이트 전극 등을 구성하며, 데이터층(115)은 데이터 신호가 전달되는 데이터 라인(115) 및 박막 트랜지스터의 소스 전극과 드레인 전극 등을 구성한다.

이때, 상부 기판(120)의 블랙 매트릭스(124)는 하부 기판(110)의 데이터 라인(115)과 대응되는 소정의 영역에 형성됨으로써, 하부 기판(110)의 하부에 위치되는 백 라이트 유닛(도시되지 않음)으로부터 인가되는 광으로 인한 데이터 라인 (115) 주변 영역의 전계 왜곡으로 인해 발생되는 이상 영상을 차단하는 기능을 수행하게 된다.

하지만, 하부 기판(110)과 상부 기판(120)의 합착 공정 과정에서는 합착 오차 등으로 인한 빛샘 불량 등이 발생될 수 있어, 도시된 바와 같이, 이를 고려한 공정 마진(m)을 확보할 수 있도록 블랙 매트릭스를 충분히 크게 설계해야 할 필요가 있다. 그런데, 이러한 마진 설계로 인한 블랙 매트릭스의 확대는 액정표시패널의 개구율을 감소시켜 액정표시장치의 전체적인 휘도를 저하시키게 된다는 문제점이 있다.

또한, 공정 마진을 고려하여 블랙 매트릭스를 크게 설계한 경우라도, 합착 공정에서 허용 오차 범위를 벗어나는 합착 오류가 발생되는 경우 VAC(viewing angle crosstalk) 불량을 유발하게 된다는 등의 문제점이 있다.

#### 발명이 이루고자 하는 기술적 과제

본 발명이 이루고자 하는 기술적 과제는, 개구 영역의 확대 및 이로 인한 휘도 향상 등의 특성을 갖도록 개선된 액정표시패 널과 이의 제조 방법을 제공하는 것이다.

본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업 자에게 명확하게 이해되어질 수 있을 것이다.

### 발명의 구성

상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 액정표시패널은, 광 차단층이 형성된 제 1 기판, 제 1 기판에 대향하며 컬러 필터층이 형성된 제 2 기판 및 제 1 기판과 제 2 기판 사이에 형성된 액정층을 포함한다.

또한, 본 발명의 일 실시예에 따른 액정표시패널의 제조 방법은, 광 차단층이 형성된 제 1 기판을 제공하는 단계, 제 1 기판에 대향하며 컬러 필터층이 형성된 제 2 기판을 제공하는 단계 및 제 1 기판과 상기 제 2 기판 사이에 액정층을 형성하는 단계를 포함한다.

기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있을 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것으로, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.

도 2는 본 발명의 일 실시예에 따른 액정표시패널을 설명하기 위해 개념적으로 나타낸 부분 단면도로써, 특히 하부 기판의데이터 라인과 대응되는 영역의 액정표시패널을 나타낸 부분 단면도이다.

도 2를 참조하면, 본 발명의 일 실시예에 따른 액정표시패널은 크게 하부 기판(210), 상부 기판(220) 및 액정층(230) 등을 포함하여 구성됨을 알 수 있다.

먼저 이들의 제조 공정을 간략히 설명하면 다음과 같다.

하부 기판(210)을 제조하기 위해서는, 투명 절연 기판(211) 상에 게이트층(도시되지 않음) 및 광 차단층(212)을 형성하고, 이들을 덮도록 게이트 절연층(213)을 형성한다. 이때, 게이트층은 게이트 라인 및 게이트 전극 등을 구성하게 되며, 광 차

단층(212)은 하부에 위치되는 백 라이트 유닛(도시되지 않음)으로부터 인가되는 광을 차단할 수 있는 절연체 등의 물질로 형성될 수 있다. 절연체인 광 차단층(212)은 게이트층의 상부, 하부 또는 동일 레이어 상에 형성될 수 있으나, 만일 광 차단층(212)의 구성 물질이 금속 등의 비절연체 물질일 경우에는 게이트층과 동일 레이어 상에 형성되도록 하는 것이 좋다.

또한, 광 차단층(212)이 비 절연 물질일 경우에는 게이트 절연층(213)을 통상의 게이트 절연층에 비해 유전 상수가 큰 물질로 구성하는 것이 바람직할 수 있다.

게이트 절연층(213) 상에는 반도체층(214)이 위치될 수 있으며, 반도체층(214)을 덮도록 데이터층(215)이 형성된다. 반도체층(214)은 박막 트랜지스터(도시되지 않음)의 채널 영역 등의 형성에 이용되는데, 액정표시패널의 공정 조건 등에 따라 형태가 조금씩 달라질 수 있다.

데이터층(215)은 박막 트랜지스터의 소스 전극, 드레인 전극 및 데이터 라인을 구성하며, 도면에는 데이터 라인으로 기능하는 데이터층(215)이 도시되었다.

데이터층(215)의 상부 전면(全面)에는 보호층(216)이 형성된다.

다음, 이와 대응되는 영역의 상부 기판(220)을 살펴보면, 투명 절연 기판(222) 상에 컬러 필터층(224) 및 평탄화층(226) 등이 순차적으로 형성되어 있음을 알 수 있다. 평탄화층(226) 상의 소정 영역에는 상부 기판(220)과 하부 기판(210) 사이의 일정한 간격을 유지시키기 위한 컬럼 스페이서 등이 구비될 수 있으나 이를 도시하지는 않았다.

즉, 하부 기판(210)의 소정 영역에 광 차단층(212)이 구비됨으로써, 상부 기판(220)의 블랙 매트릭스가 불필요하게 된 것이다.

이에 따라, 상부 기판(220)의 제조 공정이 단순화되었을 뿐만 아니라, 종래 공정 마진 등을 고려하여 크게 설계되던 블랙 매트릭스에 비해, 광원과 가까운 하부 기판(210) 상에 형성되는 광 차단층(212)에 의해 백 라이트 유닛으로부터 인가되는 광이 차단됨으로써, 액정표시패널의 전체적인 개구율이 향상될 수 있게 되었다.

아울러, 하부 기판(210)의 배선 영역이나 액정층(230)에 광이 인가되기 이전에 광을 차단함으로써 광 전류나 이로 인한 영상 왜곡 등의 발생을 더욱 감소시킬 수 있게 되었으며, 상부 기판(220) 및 하부 기판(210)의 합착 공정에서 발생되던 미스얼라인 등의 합착 불량도 크게 감소시킬 수 있게 되는 등의 많은 효과를 얻을 수 있게 되었다.

하부 기판(210)을 중심으로 하는 액정표시패널의 구체적인 구조와 동작 등에 대해서는 다음의 도 3을 통해 설명하기로 한다.

도 3은 본 발명의 일 실시예에 따른 액정표시패널에 구비되는 하부 기판을 나타낸 설명도이다.

도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 하부 기판은 표시 영역(310), 데이터 구동부(320) 및 게이트 구동부(330) 등을 포함하여 구성된다.

표시 영역(310) 내에는 다수의 게이트 라인과 데이터 라인이 매트릭스 형태로 형성된다. 그리고 다수의 게이트 라인과 데이터 라인의 교차점에는 박막 트랜지스터(315)가 형성되어 있다.

일반적으로, 박막 트랜지스터(315)가 형성되어 있는 기판에 대향하는 대향 기판에는 공통 전극과 컬러 필터가 형성되며, 두 기판 사이에 액정층이 형성됨으로써 액정표시패널이 구성된다.

자세히 도시되지는 않았지만, 박막 트랜지스터(315)는 게이트 전극, 소스 전극, 드레인 전극, 액티브층 및 오믹 접촉층 등으로 구성되며, 드레인 전극이 화소 전극과 연결되어 단위 화소(P)를 이룬다.

다시 말해, 박막 트랜지스터(315)는 게이트 라인을 통해 게이트 전국에 게이트 신호가 인가되면 이에 동기되어 데이터 라인에 인가된 데이터 신호가 오믹 접촉층 및 액티브층을 통해 소스 전국에서 드레인 전국으로 전달될 수 있도록 동작한다.

즉, 소스 전극에 데이터 신호 인가되면 소스 전극과 연결된 화소 전극에 이와 대응되는 전압이 인가되는데, 이로 인해 화소 전극과 공통 전극 사이에 전압차가 발생한다. 그리고, 화소 전극과 공통 전극의 전압 차이로 인해 그 사이에 게재되어 있는 액정의 분자 배열이 변화되며, 액정의 분자 배열의 변화로 인해 화소의 광 투과량이 변하게 되어 각각의 화소별로 인가된데이터 신호의 차에 따라 화소의 색상 차이가 발생된다.

이와 같은 색상의 차이를 이용하여 액정 표시 장치의 화면을 컨트롤 할 수 있게 된다.

소스 전극에 인가되는 데이터 신호는 데이터 구동부(320)로부터 제공되며, 게이트 전극에 인가되는 게이트 신호는 게이트 구동부(330)로부터 제공된다.

게이트 구동부(330)는 게이트 전극을 활성화 또는 비활성화 시키는 게이트 신호를 다수의 게이트 라인에 순차적으로 제공한다. 그러면 데이터 구동부(320)는 게이트 신호가 인가되는 타이밍에 맞추어 데이터 신호에 해당하는 계조 전압을 다수의 데이터 라인에 제공한다. 데이터 구동부(320)와 게이트 구동부(330) 사이의 타이밍 동기화(synchronizing)는 타이밍 컨트롤러(T-CON, 340) 등에 의해 수행된다.

이때, 게이트 라인 및 박막 트랜지스터(315)의 게이트 전극을 구성하는 게이트층과 동일 레이어, 또는 상부, 하부 레이어에는 백 라이트 유닛으로부터 인가되는 광의 차단을 위한 광 차단층이 형성될 수 있다.

광 차단층은 광 투과를 차단할 수 있는 절연 물질 등에 의해 구성될 수 있는데, 하부 기판에 광 차단층이 구비됨에 따라, 이와 대응되는 상부 기판의 영역에 블랙 매트릭스 등이 불필요하게 됨으로써, 액정표시패널의 전체적인 개구율 향상 및 합착공정 상의 불량 감소 등의 효과를 얻을 수 있음에 대해서는 앞서 설명한 바 있다.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야만 한다.

#### 발명의 효과

상기한 바와 같은 본 발명의 액정표시패널 및 이의 제조 방법에 따르면, 하부 기판에 광 차단층이 구비됨으로써 종래 상부 기판에 형성되던 블랙 매트릭스층이 불필요하게 되었다.

이에 따라, 액정표시패널의 개구 영역이 확대될 수 있게 됨으로써, 결국 액정표시장치의 전체적인 휘도를 향상시킬 수 있게 되었다는 장점이 있다.

또한, 상부 기판과 하부 기판의 합착 공정에서 발생될 수 있는 VAC 불량을 방지할 수 있게 되었다는 등의 부가적인 장점도 있다.

### 도면의 간단한 설명

도 1은 종래의 액정표시패널을 설명하기 위해 개념적으로 나타낸 부분 단면도이다.

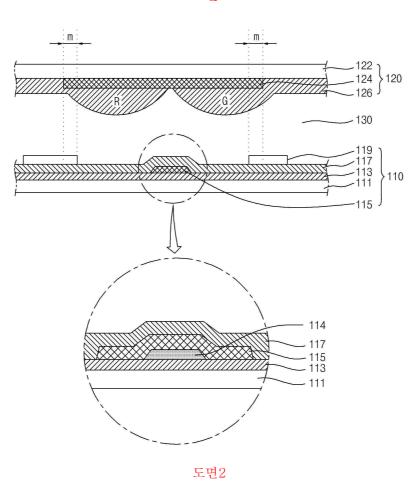
도 2는 본 발명의 일 실시예에 따른 액정표시패널을 설명하기 위해 개념적으로 나타낸 부분 단면도이다.

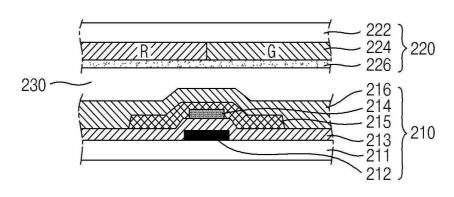
도 3은 본 발명의 일 실시예에 따른 액정표시패널에 구비되는 하부 기판을 나타낸 설명도이다.

<도면의 주요 부분에 관한 부호의 설명>

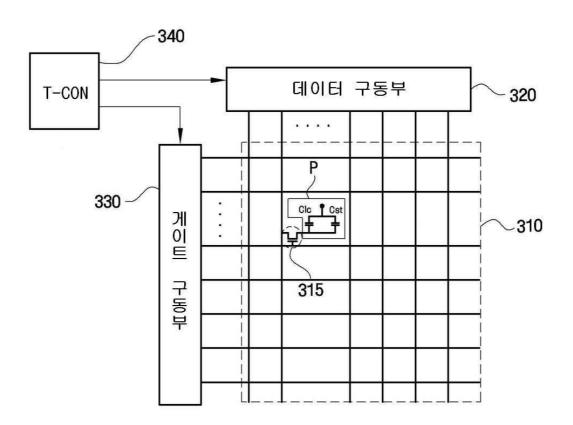
210 : 하부 기판 212 : 광 차단층

213: 게이트 절연층 214: 반도체층


215 : 데이터층 216 : 보호층


220 : 상부 기판 224 : 컬러 필터

226 : 평탄화층 230 : 액정층

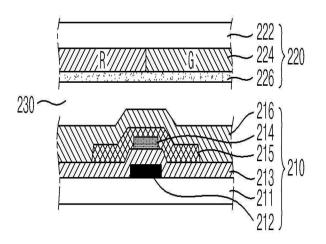

# 도면







# 도면3






| 专利名称(译)        | 液晶显示面板及其制造方法                                                        |         |            |  |
|----------------|---------------------------------------------------------------------|---------|------------|--|
| 公开(公告)号        | KR1020070072169A                                                    | 公开(公告)日 | 2007-07-04 |  |
| 申请号            | KR1020050136158                                                     | 申请日     | 2005-12-30 |  |
| [标]申请(专利权)人(译) | 乐金显示有限公司                                                            |         |            |  |
| 申请(专利权)人(译)    | LG显示器有限公司                                                           |         |            |  |
| 当前申请(专利权)人(译)  | LG显示器有限公司                                                           |         |            |  |
| [标]发明人         | AHN EUNG JIN<br>안응진<br>LEE MIN JIC<br>이민직                           |         |            |  |
| 发明人            | 안응진<br>이민직                                                          |         |            |  |
| IPC分类号         | G02F1/1335                                                          |         |            |  |
| CPC分类号         | G02F1/133514 G02F1/133512 G02F1/133555 G02F1/136286 G02F2001/133357 |         |            |  |
| 外部链接           | Espacenet                                                           |         |            |  |
|                |                                                                     |         |            |  |

# 摘要(译)

提供了一种LCD面板及其制造方法。根据本发明优选实施例的LCD面板包括第二基板和第一基板,第一基板和第二基板,在第二基板中形成滤色器层,同时面对形成有遮光层的第一基板。液晶层形成在第二基板之间。液晶面板,遮光层,开口率,提高亮度,VAC故障。

