

(11) **EP 1 061 498 B1**

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

10.10.2012 Bulletin 2012/41

(51) Int Cl.: **G09G 3/36** (2006.01)

(21) Application number: 00112043.5

(22) Date of filing: 02.06.2000

(54) Gate driver for a liquid crystal display

Gate-Treiber für eine Flüssigkristallanzeige Circuit d'attaque de grille pour un dipositif d'affichage à cristaux liquides

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

(30) Priority: 04.06.1999 KR 9920721

(43) Date of publication of application: **20.12.2000 Bulletin 2000/51**

(73) Proprietor: Samsung Electronics Co., Ltd. Suwon-si, Gyeonggi-do, 443-742 (KR)

(72) Inventor: Kwon, Oh-kyong Seoul, 138-240 (KR)

(74) Representative: Mounteney, Simon James
 Marks & Clerk LLP
 90 Long Acre
 London
 WC2E 9RA (GB)

(56) References cited:

EP-A- 0 730 258 EP-A1- 0 911 796 US-A- 5 568 163 US-A- 5 850 216

US-A- 5 883 609

ASADA H ET AL: "A 2.7IN. 1.3MPIXEL DRIVER-INTEGRATED POLY-SI TFT-LCD FOR MULTIMEDIAPROJECTORS", IEEE INTERNATIONAL SOLID STATE CIRCUITS CONFERENCE, US, IEEE INC. NEW YORK, VOL. 39, PAGE(S) 190-191,442 XP000685591 ISSN: 0193-6530 * page 190, left-hand column, paragraphs 1-3; figures 1,2 *

:P 1 061 498 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

40

45

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a liquid crystal display and, more particularly, to a driver of liquid crystal display, in which the driving signal applied to the two scanning lines adjacent to each other is controlled to allow one data line to send a video signal to both pixels, thereby reducing the number of the data lines by half in comparison with the conventional liquid crystal display.

1

Discussion of Related Art

[0002] A liquid crystal display generally consists of upper and lower plates and a liquid crystal being sealed between the two plates. The upper plate has a black matrix, a common electrode and R, G, and B color filter layers for displaying colors formed thereon. On the lower plate, data lines and gate lines are arranged, intersecting each other, to form pixel regions in matrix form. Each of the pixel regions includes one thin film transistor and one pixel electrode.

[0003] FIG. 1 is a cross-sectional view of a general liquid crystal display. Referring to FIG. 1, thin film transistors each of which consists of a gate electrode extended from a scanning line (gate line), source and drain electrodes S and D extended from a data line are arranged in matrix form on a lower plate 1, having a predetermined distance. A pixel electrode 2a connected to the drain electrode D of each thin film transistor 2 is formed in each pixel region. An upper plate 3 has black matrix layers 4 formed thereon in mesh form, for blocking light transmitted to regions other than the pixel region 2a. R, G, B color filters 5 for displaying colors are formed between the black matrix layers 4. A common electrode 6 is formed on the color filters 5 and black matrix layers 4.

[0004] FIG. 2 shows the configuration of the general conventional liquid crystal display. Referring to FIG. 2, the liquid crystal display includes a display panel part 21 consisting of the upper and lower plates and the liquid crystal sealed therebetween to display images, a gate driver part 22 consisting of gate drivers GD each of which applies a driving signal to the panel part 21 in row direction, and a source driver part 23 consisting of source drivers SD each of which supplied a driving signal to the panel part 21 in column direction.

[0005] There is explained below a conventional liquid crystal display and a circuit for driving the same with reference to the attached drawings. FIG. 3 shows the configuration of the conventional liquid crystal display. Referring to FIG. 3, a plurality of scanning lines G1, G2,, Gn-1, Gn are arranged in row direction, having a predetermined distance, and a plurality of data lines D1, D2, ..., Dn-1, Dn are arranged, intersecting the scanning lines. A thin film transistor T1 is formed at the portion where

each scanning line intersects each data line intersect. A pixel electrode C_{ic} is connected to each thin film transistor T1. Accordingly, a driving voltage is sequentially applied to the scanning lines to turn on the thin film transistors, and signal voltages of corresponding data lines are charged into the pixel electrodes through the turned-on thin film transistors.

[0006] FIG. 4 shows the waveform of a driving signal applied to the scanning lines of the conventional liquid crystal display. Referring to FIG. 4, the driving signal is sequentially applied to the scanning lines, starting from the first one G1 to the nth one Gn during one frame, and the signal voltages of corresponding data lines are delivered to the pixel electrodes through the thin film transistors turned on by corresponding scanning lines, to thereby display an image.

[0007] FIG. 5A shows the configuration of the source driver of the conventional liquid crystal display, and FIG. 5B shows the operation waveforms of the source driver. The source driver shown in FIG. 5A is 384-channel 6-bit driver. That is, it has R, G, B data items each of which is 6-bit and the number of its column lines is 384. Referring to FIG. 5A, the source driver includes a shift register 51, a sampling latch 52, a holding latch 53, a digital/analog (D/A) converter 54, and an amplifier 55. The shift register 51 shifts a horizontal synchronous signal pulse HSYNC depending on a source pulse clock HCLK, to output a latch clock to the sampling latch 52. The sampling latch 52 samples and latches the digital R, G, and B data items by column lines according to the latch clock supplied by the shift register 51.

[0008] The holding latch 53 receives and latches the R, G, and B data items, simultaneously, latched by the sampling latch 52 in response to a load signal LD. The D/A converter 54 converts the digital R, G, and B data stored in the holding latch 53 into analog R, G, and B data signals. The amplifier 55 amplifies the currents of the analog R, G, and B data signals and sends them to the data lines. That is, the digital R, G, B data is sampled and held, converted into the analog R, G, and B data, and then current-amplified to be outputted. Here, if the holding latch 53 holds the R, G, B data corresponding to the nth row line, the sampling latch 52 samples the R, G, and B data of the (n+1)th row line.

[0009] FIG. 6A shows the configuration of the gate driver of the conventional liquid crystal display, and FIG. 6B shows the input and output waveforms of the gate driver. Referring to FIG. 6A, the gate driver consists of a shift register 61, a level shifter 62, and an output buffer 63. The shift register 61 shifts a vertical synchronous signal pulse VSYNC depending on a gate pulse clock VCLK, to sequentially enable the scanning lines. The level shifter 62 sequentially level-shifts a signal applied to the scanning lines, to output it to the output buffer 63. Accordingly, the plurality of scanning lines connected to the output buffer 63 are sequentially enabled.

[0010] In the conventional liquid crystal display, as described above, the driving voltage is sequentially applied

15

20

30

35

40

45

50

55

to the scanning lines to turn on or off the thin film transistors each of which is connected to each data line, and signal voltages of corresponding data lines are transmitted to corresponding pixel regions through the turned on thin film transistors, to thereby display an image.

[0011] However, the aforementioned conventional liquid crystal display has the following problem. In case where the number of pixels increases in order to realize a large-sized liquid crystal display with a higher resolution, the number and the size of its drivers also increase to raise the cost. This brings about a new problem such as connection between the drivers and panel.

[0012] The document US-A-5568163 discloses a gate driver that selects simultaneously more than one scan line of a matrix LCDs, such gate driver comprising a shift register, a logic circuit and an output buffer and being adapted to supply a pair of adjacent scanning lines with output signals in a high state during a first section of the horizontal period and to supply one of said scanning lines in the pair with an output signal in a high state and the other scanning line in the pair with an output signal in the low state in the remaining section of the horizontal period; AND gates are used in the logic circuit to perform a gating of single outputs of the shift register with timing signals. [0013] Documents US-A-5883609, JP-A-10090650, US-A-6157361 and US-A-5850216 also disclose gate drivers with logic circuits and buffers, with a first stage being a shift register in the former three documents and a counter/decoder arrangement in the last document, wherein logic circuits are used to perform logical combinations of timing signals with no more than a single one of the outputs of the first stage.

SUMMARY OF THE INVENTION

[0014] Accordingly, the present invention is directed to a driver of liquid crystal display that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.

[0015] An object of the present invention is to provide a driver for driving the liquid crystal display, which is able to display images with the same resolution as that of the conventional liquid crystal display while its data lines are as many as half the number of the data lines of the conventional one, resulting in cost reduction.

[0016] According to an aspect of the invention, there is provided a gate driver as set out in claim 1. A preferred feature is set out in claim 2.

[0017] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE ATTACHED DRAW-INGS

[0018] The accompanying drawings, which are included to provide a further understanding of the invention and

are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention:

In the drawings:

FIG. 1 is a cross-sectional view of a general liquid crystal display;

FIG. 2 roughly shows the configuration of the general liquid crystal display;

FIG. 3 shows the configuration of a conventional liquid crystal display;

FIG. 4 shows the waveform of a driving signal applied to the scanning lines of the conventional liquid crystal display;

FIG. 5A shows the configuration of the source driver of the conventional liquid crystal display;

FIG. 5B shows the operation waveforms of the source driver of the conventional liquid crystal display;

FIG. 6A shows the configuration of the gate driver of the conventional liquid crystal display;

FIG. 6B shows the operation waveforms of the gate driver of the conventional liquid crystal display;

FIG. 7A shows a first configuration of a liquid crystal display suitable for use with the present invention;

FIG. 7B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 7A;

FIG. 8A shows a second configuration of a liquid crystal display suitable for use with the present invention;

FIG. 8B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 8A;

FIG. 9A shows a third configuration of a liquid crystal display suitable for use with the present invention;

FIG. 9B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 9A;

25

35

40

50

FIG. 10A shows a fourth configuration of a liquid crystal display suitable for use with the present invention;

FIG. 10B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 10A;

FIG. 11A shows a fifth configuration of a liquid crystal display suitable for use with the present invention;

FIG. 11B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 11A;

FIG. 12A shows a sixth configuration of a liquid crystal display suitable for use with the present invention;

FIG. 12B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 12A;

FIG. 13A shows a seventh configuration of a liquid crystal display suitable for use with the present invention;

FIG. 13B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 13A;

FIG. 14A shows an eighth configuration of a liquid crystal display suitable for use with the present invention;

FIG. 14B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 14A;

FIG. 15A shows the configuration of a source driver suitable for use with the present invention;

FIG. 15B shows the operation waveforms of the source driver of FIG. 15A;

FIG. 16A shows another configuration of a source driver suitable for use with the present invention;

FIG. 16B shows the operation waveforms of the source driver of FIG. 16A;

FIG. 17A shows the configuration of the gate driver of the liquid crystal display according to the present invention;

FIG. 17B shows the operation waveforms of the

gate driver of FIG. 17A; and

FIG. 18 shows a video signal writing order and the polarities of video signals for a liquid crystal display used with the present invention.

<u>DETAILED DESCRIPTION OF PREFERRED EMBOD-IMENT</u>

0 [0019] Reference will now be made in detail to the preferred embodiment of the present invention and to explanatory details illustrated in the accompanying drawings.

[0020] A liquid crystal display suitable for use with the present invention is characterized in that a driving signal applied to neighboring two scanning lines is controlled to allow one data line to send a video signal to pixel regions placed at both sides thereof, resulting in reduction in the number of the data lines.

[0021] FIG. 7A shows the configuration of a liquid crystal display according suitable for use with the present invention. Referring to FIG. 7A, a plurality of scanning lines G1, G2, ..., Gn-1, Gn are arranged in row direction whereas a plurality of data lines D1, D2, ..., Dn-1, Dn are arranged in column direction, intersecting the scanning lines. At the portion where each scanning line intersects each data line, first and second switches 71 and 73 transmitting a video signal are located at pixel regions placed on the left and right hands of the data line, respectively. First and second pixel electrodes 71c and 73c are respectively connected to the first and second switches 71 and 73. Here, each of the first and second switches is preferably configured of an N-type or P-type thin film transistor.

[0022] The configuration of said liquid crystal display is described below in more detail with reference to the portion "X" of FIG.7A. The first switch 71 located at the left side of a data line D1 includes a first thin film transistor 71a whose source or drain is connected to the data line D1 and whose gate is connected to a corresponding scanning line G1, and a second thin film transistor 71b whose gate is connected to the next scanning line G2, the second thin film transistor 71b being serially connected to the first thin film transistor 71a. The second thin film transistor 71 b is connected to the first pixel electrode 71 c so that a video signal is selectively delivered to the first pixel electrode according to ON/OFF operation of the first and second thin film transistors 71a and 71b.

[0023] The second switch 73 located at the right side of the data line D1 includes a third thin film transistor 73a whose gate is connected to the corresponding scanning line G1 and whose source or drain is connected to the drain line D1, and a fourth thin film transistor 73b whose gate is connected to the corresponding scanning line G1, the fourth thin film transistor 73b being serially connected to the third thin film transistor 73a. Here, the second switch 73 may be configured of only the third thin film transistor 73a.

[0024] In the liquid crystal display constructed as above, the procedure of transmitting a video signal to the first and second pixel electrodes is explained below with reference to the waveforms shown in FIG. 7B. FIG. 7B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display according to the first embodiment of the present invention.

[0025] Referring to FIG. 7B, with one horizontal period being divided into two sections (a) and (b), the video signal is applied to both of the pixels located at the left and right sides of the data line D1 during the first section (a), and it is applied to only the right pixel during the second section (b). That is, the first scanning line G1 receives a 'high' signal during the single horizontal period, and the second scanning line G2 receives the 'high' signal only during the first half horizontal period (it may not be exact one half), i.e., section (a), and receives a 'low' signal during the second half horizontal period, i.e., second (b).

[0026] Accordingly, when both of the first scanning line G1 and second scanning line G2 are at the 'high' state, the first and second thin film transistors 71 a and 71 b of the first switch 71 and the third and fourth thin film transistors 73a and 73b of the second switch 73 are all turned on, to deliver the video signal to the first and second electrodes 71c and 73c. Thereafter, upon application of the 'low' signal to the second scanning line G2, the second thin film transistor 71b is turned off so that the video signal is not transmitted to the first pixel electrode 71c, being delivered to only the second pixel electrode 73c.

[0027] With one horizontal period being divided into two sections (a) and (b), as described above, the video signal loaded on one data line can be selectively delivered to the left and right pixel electrodes. Consequently, the driving signal applied to the scanning lines is controlled to allow one data line to send a video signal to its left and right pixels, thereby reducing the number of the data lines by half in comparison with the conventional liquid crystal display. This also decreases the number of the source drivers by half. FIG. 8A shows a second configuration of a liquid crystal suitable for use with the present invention. Referring to FIG. 8A, this liquid crystal display has a difference from the previous one in the connection points of the gates of the first and second thin film transistors 71a and 71b constructing the first switch 71. Specifically, the first switch 71 includes the first thin film transistor 71a whose source or drain is connected to the data line D1 and whose gate is connected to the scanning line G2 next to the corresponding scanning line G1, and a second thin film transistor 71b whose gate is connected to the corresponding scanning line G1, the second thin film transistor being serially connected to the first thin film transistor 71a. The second switch 73 has the same configuration as that of the first switch 71.

[0028] In the liquid crystal display having the second above-described configuration, upon application of a driving signal with the waveform of FIG. 8B to the scanning lines, an image is displayed, moving from the upper part to the lower part of the liquid crystal panel, and a

corresponding data line delivers the video signal to the pixels located at the left and right sides thereof, resulting in reduction in the total number of the data lines.

[0029] FIG. 9A shows a third configuration of a liquid crystal display suitable for use with the present invention, and FIG. 9B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 9A. Referring to FIG. 9A, in this configuration, the first switch 71 is placed at the right side of the data line D1 and the second switch 73 is located at its left side. That is, the first switch 71 is formed at the right side of the data line in the third embodiment whereas

[0030] it is located at the left side of the data line in the first and second embodiments configurations.

[0031] Specifically, the liquid crystal display having this third configuration includes the plurality of scanning lines G1, G2, ..., Gn-1, Gn arranged in row direction, the plurality of data lines D1, D2, ..., Dn-1, Dn intersecting the scanning lines, the first switches 71 each of which is located at the right side of each data line intersecting each scanning line, the second switches 73 each of which is placed at the left side of each data line, the first pixel electrodes 71c each of which is connected to each first switch 71, and the second pixel electrodes 73c each of which is connected to each second switch 73.

[0032] This third configuration of the liquid crystal display is explained below in detail with reference to the portion "X" of FIG. 9A. At the portion where the scanning line G1 and data line D1 intersect each other, the first switch 71 is disposed at the right side of the data line D1 and the second thin film transistor 71b constructing the first switch 71 is connected to the next scanning line G2. That is, the first switch 71 includes the first thin film transistor 71a whose source or drain is connected to the data line D1 and whose gate is connected to the corresponding scanning line G1, and the second thin film transistor 71b whose gate is connected to the next scanning line G2, the second thin film transistor being serially connected to the first thin film transistor 71a.

[0033] The second switch 73 is located at the left side of the data line D1 and has two thin film transistors. Specifically, the second switch 73 includes the third thin film transistor 73a whose source or data is connected to the data line D1 and whose gate is connected to the corresponding scanning line G1, and the fourth thin film transistor 73b whose gate is connected to the corresponding scanning line G1, the fourth thin film transistor being serially connected to the third thin film transistor 73a. Here, the second switch 73 may be configured of a single thin film transistor.

[0034] The liquid crystal display constructed as above, is driven by a driving signal having the waveform of FIG. 9B. Referring to FIG. 9B, during one horizontal period, the first scanning line G1 receives a 'high' signal while the second scanning line G2 receives the 'high' signal during the section (a) corresponding to the first half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (b), i.e., the second half of the horizontal period but receives a 'low' signal during the section (c) and the second half of the horizontal period but receives a 'low' signal during the second half of the horizontal period but receives a 'low' signal during the second half of the horizontal period but receives a 'low' signal during the second half of the horizontal period but receives a 'low' signal during the second half of the horizontal per

45

25

40

45

50

riod. When the 'high' signal is applied to both of the first and second scanning lines G1 and G2, the thin film transistors constructing the first and second switches 71 and 83 are all turned on, to deliver a video signal to the first and second pixel electrodes 71c and 73c. When the 'high' signal is applied to the first scanning line G1 and the 'low' signal is applied to the second scanning line G2, the second thin film transistor of the first switch 71 is turned off so that the video signal is not delivered to the first pixel electrode 71c, being sent to only the first pixel electrode 71c. In this manner, a corresponding image is display, moving from the upper portion to the lower portion of the liquid crystal panel.

[0035] FIG. 10A shows a fourth configuration of a liquid crystal display suitable for use with the present invention, and FIG. 10B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 10A. Referring to FIG. 10A, the liquid crystal display having this fourth configuration has a difference from the third configuration in the connection points of the gates of the first and second thin film transistors 71 a and 71 b constructing the first switch 71. That is, the gate of the first thin film transistor 71a of the first switch 71 is connected to the scanning line G2 next to the corresponding scanning line G1 in the fourth configuration, while the gate of the second thin film transistor 71 b of the first switch 71 is connected to the scanning line G2 in the third configuration.

[0036] Specifically, the first switch 71 in this fourth configuration includes the first thin film transistor 71a whose source or drain is connected to the data line D1 and whose gate is connected to the next scanning line G2, and the second thin film transistor 71b whose gate is connected to the corresponding scanning line G1, the second thin film transistor 71b being serially connected to the first thin film transistor 71a. Accordingly, upon application of a driving signal having the waveform of FIG. 10B to the scanning lines, a corresponding video signal can be selectively supplied to the pixels respectively placed at the left and right sides of the data line D1. The image corresponding to the video signal is displayed, moving from the upper portion to the lower portion of the liquid crystal panel.

[0037] FIG. 11A shows a fifth configuration of a liquid crystal display suitable for use with the present invention, and FIG. 11B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 11A. The fifth configuration has a difference from the first to fourth configurations in the location where the thin film transistors constructing the first and second switches are formed.

[0038] In the first to fourth configurations, the thin film transistors and pixel electrodes are located at portions where the data lines D1, D2, ..., Dn-1, Dn intersect the scanning lines G1, G2, ..., Gn-1, Gn, sequentially, starting from the first intersecting portion where the first scanning line intersects the data lines to the (n-1)th intersecting portion where the (n-1)th scanning line intersects the

data lines. The thin film transistors and the pixel electrodes are not formed at the portion where the nth scanning line intersects the data lines.

[0039] In the fifth configuration, on the other hand, the thin film transistors and the pixel electrodes are not placed at the portion where the first scanning line intersects the data lines, but located at the portions, sequentially starting from the second intersecting portion where the second scanning line intersect the data lines to the nth intersecting portion where the nth scanning line intersects the data line.

[0040] In addition, one of the four thin film transistors, formed at the portion where (n-1)th scanning line intersects the data lines, is connected to the (n-1)th scanning line in the fifth configuration, while it is connected to the nth scanning line in the first to fourth configurations. When a driving signal having the waveform of FIG. 11B is applied to the scanning lines of the liquid crystal display of the fifth configuration, a corresponding image is displayed, moving from the lower portion to the upper portion of the liquid crystal panel. The scanning lines are provided with the driving signal, in one horizontal period being split into two sections (a) and (b), as shown in FIG. 11B, so that the video signal can be selectively applied to the pixels respectively located at the left and right sides of each data line.

[0041] There is described below the fifth configuration of the liquid crystal display in detail. Referring to FIG. 11A, the plurality of scanning lines G1, G2,..., Gn-1, Gn are arranged in one direction, and the plurality of data lines D1, D2,..., Dn-1, Dn intersect the scanning lines. The first and second switches 71 and 73 are formed at the left and right sides of each data line, respectively. Each of the first and second switches 71 and 73 consists of thin film transistors, each thin film transistor being an N-type or P-type thin film transistor. The gate of the second thin film transistor 71 b of the first switch 71 located at the left of the data line D1 is connected to the (n-1)th scanning line, and the gate of its first thin film transistor 71a is connected to the nth scanning line. The second switch 73 formed at the right side of each data line includes the third and fourth thin film transistors both of which are connected to the nth scanning line. Here, the second switch 73 can be configured of a single thin film transistor.

[0042] There is explained below in more detail the operation of the liquid crystal display having the fifth configuration with reference to the portion "X" of FIG. 11A. As shown in FIG. 11B, the scanning line Gn receives a 'high' signal during one horizontal period, and the previous scanning line Gn-1 receives the 'high' signal during only the first half section (a) thereof. During the period where both of the corresponding scanning line Gn and previous scanning line Gn-1 are in the 'high state', the thin film transistors constructing the first and second switches 71 and 73 are all turned on, to deliver a corresponding video signal to the first and second pixel electrodes 71c and 73c.

25

40

45

[0043] When a 'low' signal is applied to the previous scanning line Gn-1 during the second half section (b) of the horizontal period, the second thin film transistor of the first switch 71 is turned off, to transmit no video signal to the first pixel electrode 71 c. At this time, the switch 73 located at the right side of the data line is held in turnon state, to deliver the video signal to the second pixel electrode 73c. As described above, the video signal can be selectively transmitted to the pixels respectively formed at the left and right sides of each data line, resulting in reduction in the total number of the data lines by half.

[0044] FIG. 12A shows a sixth configuration of a liquid crystal display suitable for use with the present invention, and FIG. 12B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 12A. The sixth configuration has a difference from the fifth configuration in the connection points of the gates of the first and second thin film transistors 71a and 71b constructing the first switch 71. That is, the gate of the first thin film transistor 71a is connected to the (n-1)th scanning line Gn-1 and that of the second thin film transistor 71b is connected to the nth scanning line Gn in the sixth configuration: whereas the gate of the first thin film transistor 71a is connected to the nth scanning line Gn and that of the second thin film transistor 71b is connected to the (n-1)th scanning line in the fifth configuration. Here, the second switch 73 has the same arrangement as that of the fifth configuration.

[0045] Upon application of the driving signal shown in FIG. 12B to the scanning lines, a video signal from a corresponding data line can be selectively delivered to the pixels located at the left and right of that data line. Further, a corresponding image is displayed, moving from the lower portion to the upper portion of the liquid crystal panel as in the fifth configuration.

[0046] FIG. 13A shows a seventh configuration of a liquid crystal display suitable for use with the present invention, and FIG. 13B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 13A. The liquid crystal display having this seventh configuration is constructed in such a manner that, as shown in FIG. 13A, the first and second switches are located at the right and left sides of each data line, respectively. That is, the liquid crystal display having this seventh configuration includes the plurality of scanning lines G1, G2, ..., Gn-1, Gn arranged in one direction, the plurality of data lines D1, D2, ..., Dn-1, Dn intersecting the scanning lines, the first and second switches 71 and 73 formed at both sides of each data line and controlled by a corresponding scanning line and the scanning line previous thereto, and the first and second pixel electrodes 73a and 73c respectively connected to the first and second switches 71 and 73.

[0047] This is described below in more detail with reference to the portion "X" of FIG. 13A. The first switch 71 includes the first thin film transistor 71a whose source or drain is connected to the data line D1 and whose gate is

connected to the corresponding scanning line Gn, and the second thin film transistor 71b whose gate is connected to the previous scanning line Gn-1, the second thin film transistor being serially connected to the first thin film transistor. The second switches 73 includes the third thin film transistor 73a whose source or drain is connected to the data line D1 and whose gate is connected to the corresponding scanning line Gn, and the fourth thin film transistor 73b whose gate is connected to the corresponding scanning line Gn, the fourth thin film transistor 73b being serially connected to the third thin film transistor 73a. The second switch 73 can be configured of only the third thin film transistor 73a. When a driving signal with the waveform of FIG. 13B is applied to the scanning lines of the liquid crystal display constructed as above, a corresponding image is displayed, moving from the lower portion to the upper portion of the liquid crystal panel. This is the same operation as that of the fifth and sixth configurations.

[0048] FIG. 14A shows an eighth configuration of a liquid crystal display suitable for use with the present invention, and FIG. 14B shows the waveform of a driving signal applied to the scanning lines of the liquid crystal display of FIG. 14A. The eighth configuration of the present invention has a difference from the seventh configuration in the connection points of the gates of the first and second thin film transistors 71 a and 71 b constructing the first switch 71. That is, the first switch 71 according to the eighth configuration of the invention includes the first thin film transistor 71 whose source or drain is connected to the data line D1 and whose gate is connected to the scanning line Gn-1 previous to the corresponding scanning line Gn, and a second thin film transistor 71b whose gate is connected to the corresponding scanning line Gn, the second thin film transistor 71b being connected to the first thin film transistor 71a. Here, the second switch 73 has the same arrangement as that of the second switch 73 according to the seventh configuration. [0049] When a driving signal with the waveform of FIG. 14B is applied to the scanning lines of the liquid crystal display according to the eighth configuration, constructed as above, an image is displayed, moving from the lower portion to the upper portion of the liquid crystal panel. As described above, the liquid crystal display used with the present invention can deliver a video signal to the pixels located at the left and right sides of each data line, resulting in reduction in the total number of the data lines by half. This also decreases the number of the source drivers each of which applies a driving signal to each data lines by half.

[0050] There is explained below a circuit for driving the liquid crystal display.

[0051] First of all, there is needed a source driver having a configuration for satisfying the liquid crystal display used with the invention with the reduced number of the data lines. That is, the source driver for driving the liquid crystal display used with the present invention is required to be able to handle video signals corresponding to 768

25

40

45

lines in total in case of 384 data lines. For this, the source driver may be configured as shown in FIG. 15A. FIG. 15A shows a source driver suitable for use with the present invention. The source driver of FIG. 15A includes a sampling latch having cells twice the number of that of the sampling latch of a conventional source driver. This is because the source driver should process image data corresponding to 784 lines though it drives the 384 data lines.

[0052] Referring to FIG. 15A, this source driver includes: a 128-clock shift register 151 for shifting a horizontal synchronous signal pulse depending on a source pulse clock HCLK to output a latch clock; a first sampling latch 152 for sampling and latching digital R, G, and B data corresponding to odd-numbered column lines among the 768 column lines according to the latch clock sent from the shift register 151; a second sampling latch 152a for sampling and latching digital R, G, and B data corresponding to even-numbered column lines among the 768 lines; a holding latch 153 for receiving and latching the data items, respectively stored in the first and second sampling latches 152 and 152, according to first and second load signals LDO and LDE, respectively; a D/A converter 154 for converting the digital R, G, and B data corresponding to the odd-numbered column lines or the digital data corresponding to the even-numbered column lines, stored in the holding latch 153, into analog data signals; and an amplifier 155 for amplifying the currents of the analog R, G, and B data signals corresponding to the odd-numbered columns or the analog data signals corresponding to the even-numbered columns, supplied by the D/A converter 154.

[0053] This source driver has the first sampling latch 152 which samples and latches the image data corresponding to the odd-numbered column lines among the 768 lines in total, and the second sampling latch 152a which samples and latches the image data corresponding to the even-numbered column lines. With one horizontal period, being divided into two sections, the R, G, and B data corresponding to the odd-numbered column lines is sampled and latched by the first sampling latch 152 during the first half of the horizontal period (it may not be the exact one-half), and the R, G, and B data corresponding to the even-numbered column lines is sampled and latched by the second sampling latch 152a during the second half. By doing so, the R, G, and B data of the 768 column lines can be sampled.

[0054] The digital video signals latched by the first and second sampling latches 152 and 152a, being divided into the odd-numbered column line data and the even-numbered column data, are sequentially transmitted to the holding latch 153. Specifically, the image data stored in the first sampling latch 152 is loaded in the holding latch 153 according to the first load signal LDO whereas the image data stored in the second sampling latch 152a is loaded into the holding latch 153 according to the second load signal LDE. The digital R, G, and B data loaded into the holding latch 153 is converted into the analog

signal by the D/A converter 154, to be amplified by the amplifier 155. The R, G, and B data corresponding to the odd-numbered column lines is applied to the liquid crystal panel to be displayed during the first half of the horizontal period, and the R, G, and B data of the even-numbered column lines is applied to the panel to be displayed during the second half.

[0055] FIG. 15B shows the operation waveforms of the source driver of FIG. 15A. It can be known from the FIG. 15B that the sampled odd-numbered column data and the sampled even-numbered column data are loaded into the holding latch 153 during one horizontal period. FIG. 16A shows another source driver suitable for use with the present invention. The source driver of FIG. 16A has first and second sampling latches 162 and 162a, first and second holding latches 163 and 163a, first and second D/A converters 164 and 164a and first and second amplifiers 165 and 165a for the purpose of applying image data to the liquid crystal panel, dividing it into odd-numbered column data and even-numbered column data, during one horizontal period. Further, this other source driver includes a switch 166 for selectively delivering the outputs of the two amplifiers 165 and 165a to the data lines.

[0056] The first sampling latch 162 samples image data corresponding to the odd-numbered column lines while the second latch 162a sampled image data of the evennumbered column lines. The image data of the odd-numbered column lines latched by the first sampling latch 162 is loaded into the first holding latch 163 according to a load signal LD. On the other hand, the image data of the even-numbered column lines latched by the second sampling latch 162a is loaded into the second holding latch 163a according to the load signal LD. The digital image data stored in the first holding latch 163 is converted by the first D/A converter 164 into analog signals while the image data stored in the second holding latch 163a is converted by the second D/A converter 164a into analog signals. Here, the first and second D/A converters 164 and 164a convert the image data corresponding to the odd-numbered column lines and the image data of the even-numbered column lines into the analog signals, respectively.

[0057] The converted analog video signals corresponding to the odd-numbered and even-numbered column lines are amplified by the first and second amplifiers 165 and 165a, respectively. During the first half of the horizontal period, the analog video signals corresponding to the odd-numbered column lines are applied to the data lines under the operation of the switch 166. During the second half, on the other hand, the analog video signals corresponding to the even-numbered column lines are applied to the data lines according to the switch 166. Here, the switch 166 electrically connects the outputs of the first amplifier 165 to the data lines D1, D2, ..., Dn-1, Dn during the first half of the horizontal period while it electrically connects the outputs of the second amplifier 165a to the data lines during the second half.

[0058] As described above, this other source driver consists of two sampling latches, holding latches, D/A converters and amplifiers, to thereby apply the video signals corresponding to 2n column lines using n column lines.

[0059] There is explained below a gate driver for driving the liquid crystal display according to the present invention. FIG. 17A shows a gate driver according to a first embodiment of the present invention. Referring to FIG. 17A, the gate driver includes a shift register 171, a logic circuit 172, a level shifter 173 and an output buffer 174. The shift register 171 shifts a vertical synchronous signal pulse VSYNC depending on a gate pulse clock VCLK. The logic circuit 172 consists of a plurality of 3-input ORgates OR1, OR2, ..., ORn each of which selectively receives three outputs of the shift register 171 and logically operates them.

[0060] According to a predetermined embodiment of the present invention, the first 3-input OR-gate OR1 receives outputs S1, S3 and S4 from S1 to Sn of the shift register 171, the second one receives outputs S3, S5 and S6, and the third one receives outputs S5, S7 and S8. Each of the fourth 3-input OR-gate to the final one also receives three outputs of the shift registers 171 in this manner. The level shifter 173 sequentially level-shifts a signal applied to the scanning lines to send the level-shifted signals to the output buffer 174. Accordingly, the plural scanning lines connected to the output buffer 174 are sequentially enabled. The operation of the gate driver according to the first embodiment of the present invention is described below with reference to FIG. 17B.

[0061] Referring to FIG. 17B, the first scanning line G1 receives the output waveform of the first OR-gate OR1, and the second scanning line G2 receives the output waveform of the second OR-gate OR2. The first scanning line to the last one are sequentially enabled in this manner. Here, each of the signals applied to the scanning lines G1, G2, ..., Gn-1, Gn repeats 'high' and 'low' states during one horizontal period. This is the same as the waveform of one of the driving signals shown in FIGS. 7B to 10B.

[0062] Meanwhile, the OR-gates shown in FIG. 17A may receive the outputs of the shift register 171 in a different manner. For example, the first OR-gate receives the outputs S1 and S2, the second OR-gate receives the outputs S1, S3 and S4, the third one receives outputs S3, S5 and S6 and so forth. Each of the fourth OR-gate to the last one receives three outputs of the shift register according to this rule. In this case, the driving signal applied to the scanning lines has waveforms G1', G2' and G3' shown in the lower portion of FIG. 17B.

[0063] As described above, a liquid crystal display used with the present invention which transmits two video signals to two pixels, respectively, during one horizontal period by the gate driver and source driver constructed as above can reduce the total number of the data lines, resulting in decrease in the number of the source drivers. However, the line time during which a video signal is de-

livered to each pixel is reduced because two video signals are needed to be sent to two pixels during one horizontal period. This requires the analog circuit to have the operation speed twice that of the conventional circuit. This problem remarkably appears in dot inversion. Accordingly, the video signal is written into the pixel electrodes in such a manner shown in FIG. 18.

[0064] The video signals are written in the order indicated by numbers shown in FIG. 18. he is precharged at the moment when is is written because both of is and an are positive signals. Thus, charging can be carried out during only one-half of one horizontal period. os and an require longer time for charging and discharging since their polarities are opposite to those of re and an. Accordingly, during the blanking time between writing of n and an and writing of an and an, the charging and discharging time is reduced by data line precharge or charge sharing between the data lines. There is no writing time problem with t because it is precharged during be is written. However, there may be a problem in writing of ma. To solve this, the magnitudes of the 'high' and 'low' sections (a) and (b) of the driving signal applied to the scanning lines during one horizontal period are controlled to secure the time required for writing T.

[0065] The gate driving circuit according to the present invention, in combination with the used source driver and liquid crystal display, has the following advantages. First of all, one data line can selectively deliver a video signal to two pixels located at the left and right sides thereof, resulting in reduction in the number of the data lines by half. This also decreases the number of the source drivers by half. Accordingly, it is possible to reduce the size of the display and the cost for manufacturing it. Moreover, more images can be displayed in the same size than in the conventional display, realizing a high resolution.

[0066] It will be apparent to those skilled in the art that various modifications and variations can be made in the used liquid crystal display and circuits for driving the same while the gate driver circuit is not departing from the scope of the invention as defined in the appended claims.

Claims

40

45

 A gate driver for driving scanning lines of a liquid crystal display including first and second plates and liquid crystal being sealed therebetween, the gate driver comprising:

a shift register (171) for shifting a vertical synchronous signal pulse depending on a gate pulse clock;

a logic circuit (172) for selectively receiving a plurality of output signals of the shift register (171), logically operating on them and outputting them, wherein the logical operations performed by said logic circuit on the plurality of output sig-

30

40

45

50

nals of the shift register (171) are OR functions among subsets of said plurality of output signals; a level shifter (173) for shifting the output of the logic circuit to a predetermined level, so as to sequentially output it as a plurality of level-shifted signals, each level-shifted signal being in either a first state or a second state, with one of the first state or the second state being a high state and the other of the first state or the second state being a low state; and an output buffer (174) for sequentially applying each level-shifted signal to a scanning line, wherein a horizontal period is divided into a first period and a second period immediately preceding or subsequent the first period, and wherein the gate driver is adapted to supply a pair of adjacent scan lines with level-shifted signals in the first state in the first period, and the gate driver is further adapted to supply one of the scan lines in the pair with a level-shifted signal in the first state and the other scan line in the pair with a level-shifted signal in the second state in the second period.

2. The gate driver as claimed in claim 1, wherein the logic circuit comprises OR-gates, wherein each ORgate is a 3-input OR-gate.

Patentansprüche

1. Gatter-Treiber zum Antreiben von Abtastzeilen einer Flüssigkeitskristallanzeige, enthaltend erste und zweite Platten und einen Flüssigkeitskristall, der dazwischen eingeschlossen ist, wobei der Gatter-Treiber umfasst:

> ein Schieberegister (171) zum Verschieben eines vertikalen synchronen Signalimpulses in Abhängigkeit eines Gatter-Impulstaktes; eine logische Schaltung (172) zum selektiven Empfangen einer Mehrzahl von Ausgabesignalen des Schieberegisters (171), zum Ausführen von logischen Operationen an diesen und zum Ausgeben dieser, wobei die logischen Operationen, die von der logischen Schaltung an der Mehrzahl von Ausgabesignalen des Schieberegisters (171) ausgerührt werden, ODER-Funktionen unter Teilsätzen der Mehrzahl von Ausgabesignalen sind;

> einen Pegelumsetzer (173) zum Umsetzen der Ausgabe der logischen Schaltung auf einen vorab definierten Pegel, um diese in Form einer Mehrzahl von pegelumgesetzten Signalen sequenziell auszugeben, wobei sich jedes pegelumgesetzte Signal in einem ersten Zustand oder einem zweiten Zustand befindet, wobei eines des ersten Zustands oder des zweiten Zu

dere des ersten Zustands oder des zweiten Zustands ein Low-Zustand ist; und einen Ausgabepuffer (174) zum sequenziellen Anlegen jedes pegelumgesetzten Signals an ein Abtastzeile, wobei eine horizontale Periode in eine erste Periode und eine zweite Periode eingeteilt wird, die der ersten Periode direkt vorangeht oder direkt auf diese folgt, und wobei der Gatter-Treiber eingerichtet ist, um ein Paar benachbarter Abtastzeilen mit pegelumgesetzten

stands ein High-Zustand ist und wobei das an-

Signalen im ersten Zustand in der ersten Periode zu versorgen, und wobei der Gatter-Treiber ferner eingerichtet ist, um eine der Abtastzeilen in dem Paar mit einem pegelumgesetzten Signal im ersten Zustand und die andere Abtastzeile in dem Paar mit einem pegelumgesetzten Signal im zweiten Zustand in der zweiten Periode zu versorgen.

2. Gatter-Treiber nach Anspruch 1, wobei die logische Schaltung Oder-glatter umfasst, wobei jedes ODER-Gatter ein ODER-Gatter mit drei Eingängen ist.

Revendications

Circuit d'attaque de grille pour commander les lignes de balayage d'un affichage à cristaux liquides incluant des première et seconde plaques et un cristal liquide scellé entre elles, le circuit d'attaque de grille comprenant:

> un registre à décalage (171) pour décaler une impulsion de signal synchrone verticale en fonction de l'horloge d'impulsion de grille ;

> un circuit logique (172) pour recevoir sélectivement une pluralité de signaux de sortie du registre à décalage (171), agissant logiquement sur eux et les produisant en sortie, dans lequel les opérations logiques effectuées par ledit circuit logique sur la pluralité de signaux de sortie du registre à décalage (171) sont des fonctions OU parmi les sous-ensembles de ladite pluralité de signaux de sortie;

> un dispositif de décalage de niveau (173) pour décaler la sortie du circuit logique à un niveau prédéterminé, de sorte à la produire en séquence sous la fore d'une pluralité de signaux à niveau décalé, chaque signal à niveau décalé étant soit dans un premier état, soit dans un second état, l'un du premier état ou du second état étant un état élevé et l'autre du premier état ou du second état étant un état bas ; et

> un tampon de sortie (174) pour appliquer en séquence chaque signal à niveau décalé à une ligne de balayage, dans lequel une période horizontale est divisée en une première période et

une seconde période précédant ou suivant immédiatement la première période, et dans lequel le circuit d'attaque de grille est adapté pour fournir à une paire de lignes de balayage adjacentes des signaux à niveau décalé dans le premier état dans la première période, et le circuit d'attaque de grille est en outre adapté pour fournir à l'une des lignes de balayage dans la paire un signal à niveau décalé dans le premier état et à l'autre ligne de balayage dans la paire un signal à niveau décalé dans le second état dans la seconde période.

10

 Circuit d'attaque de grille selon la revendication 1, dans lequel le circuit logique comprend des grilles OU, chaque grille OU étant une grille OU à trois entrées.

15

20

25

30

35

40

45

50

55

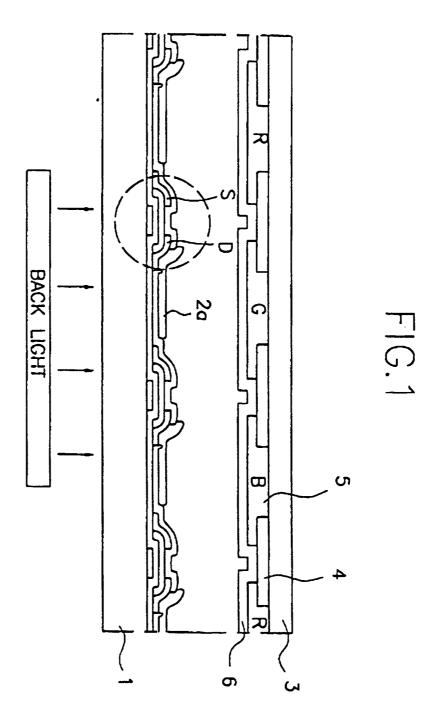


FIG.2

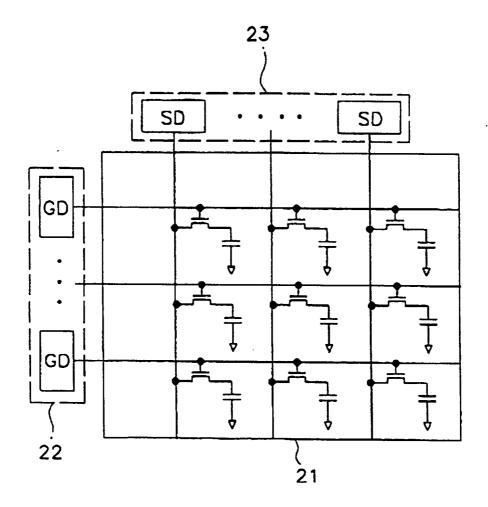
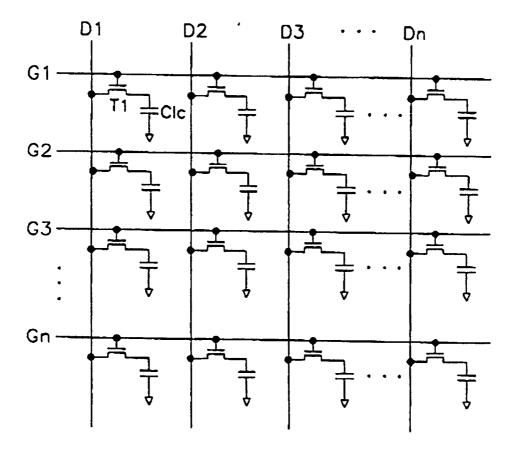



FIG.3

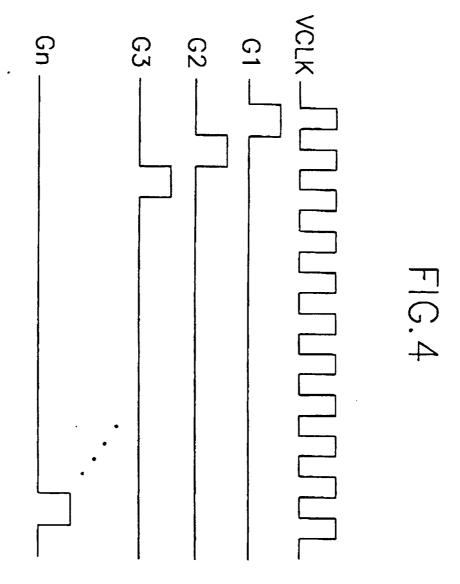
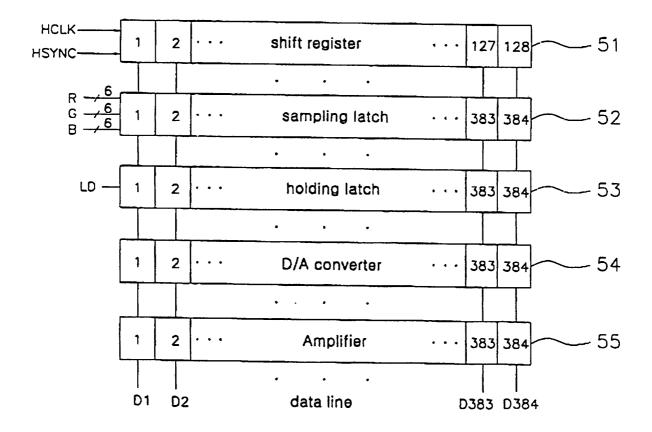
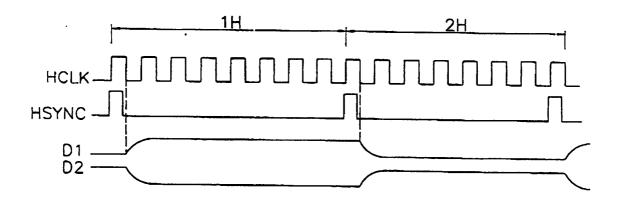
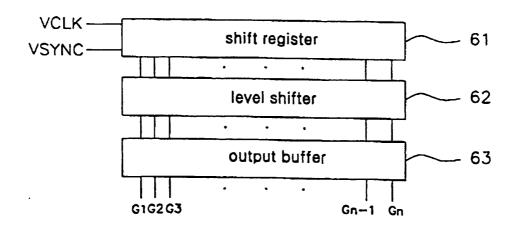
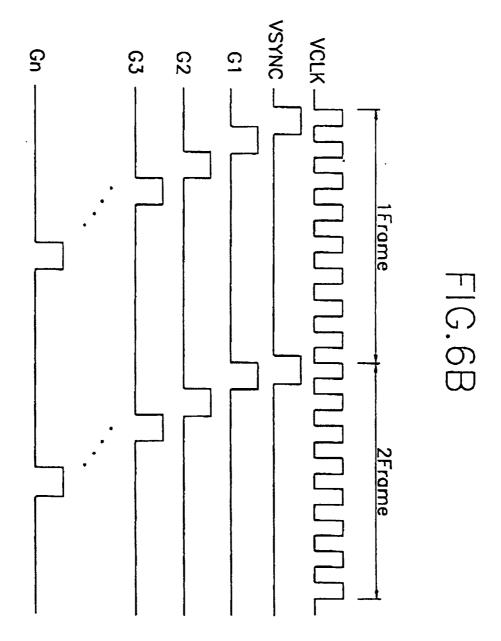
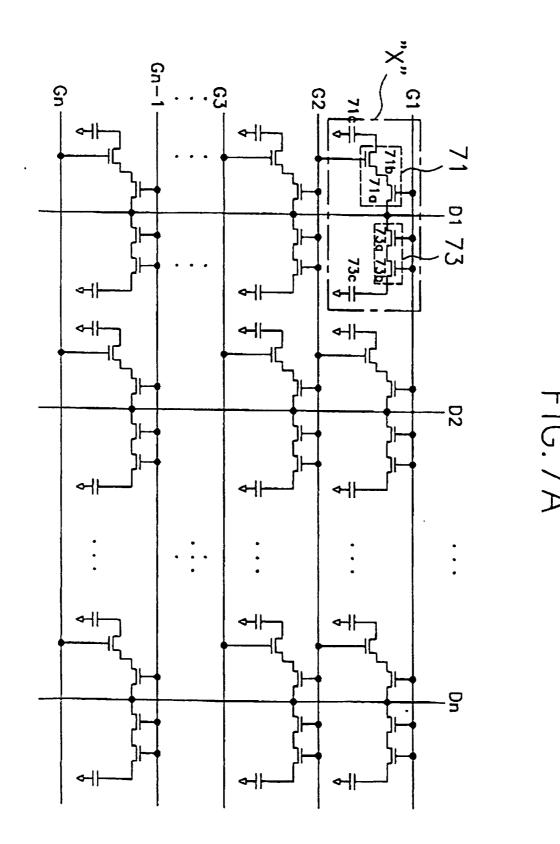
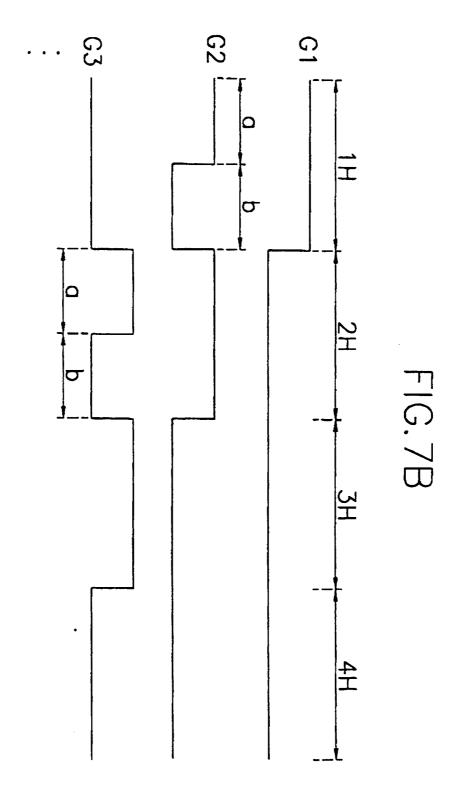
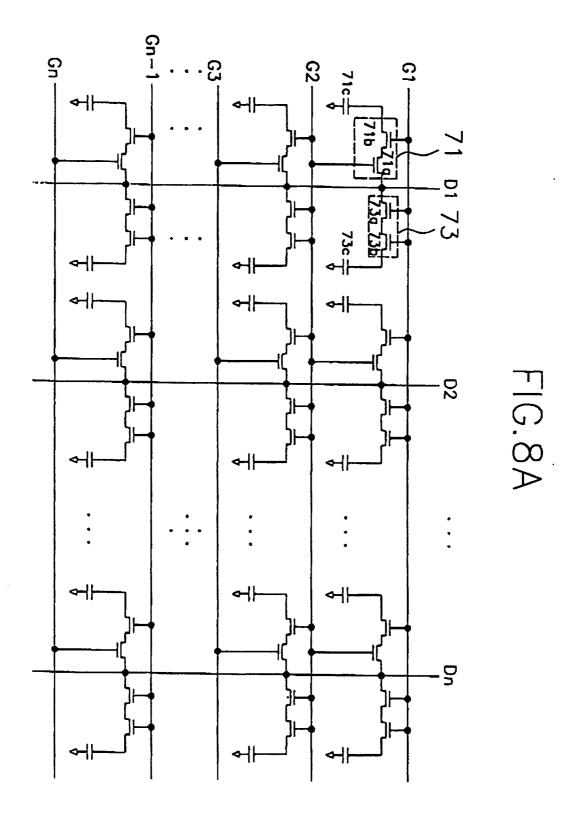
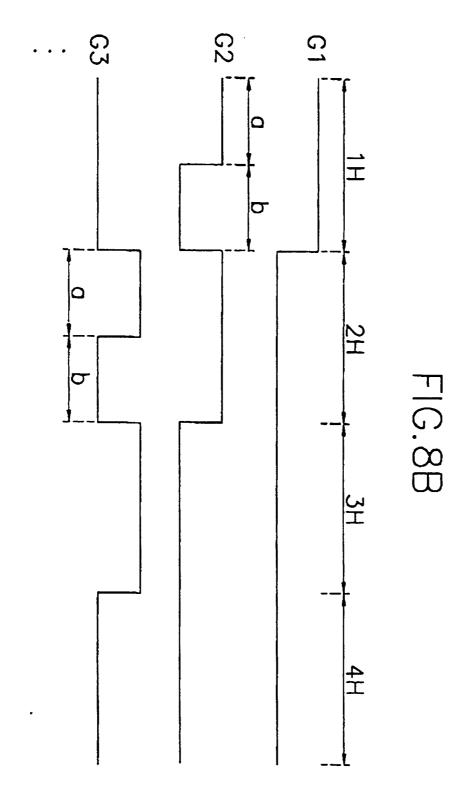



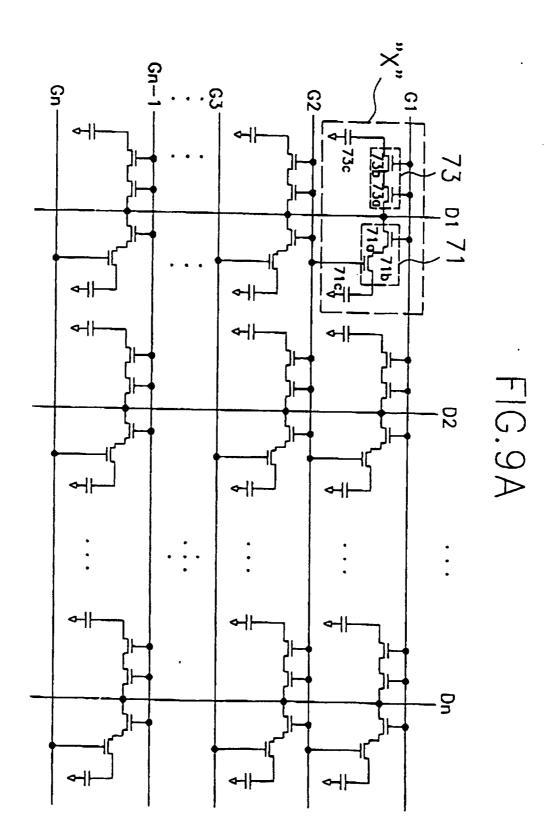
FIG.5A

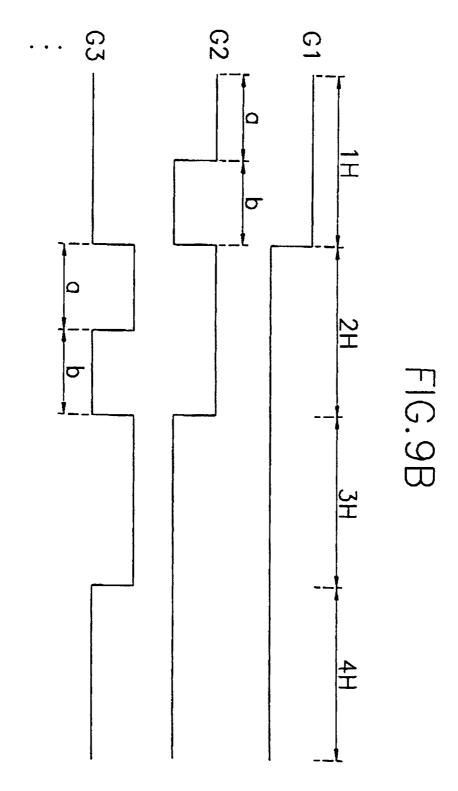
FIG.5B

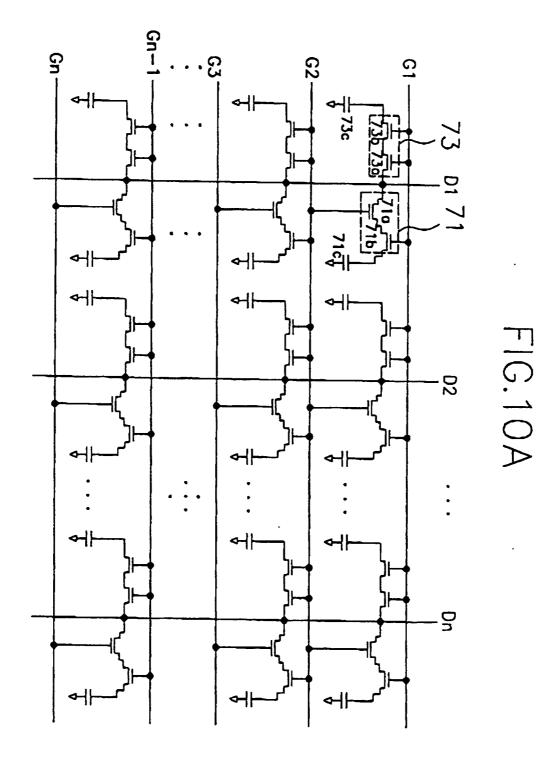






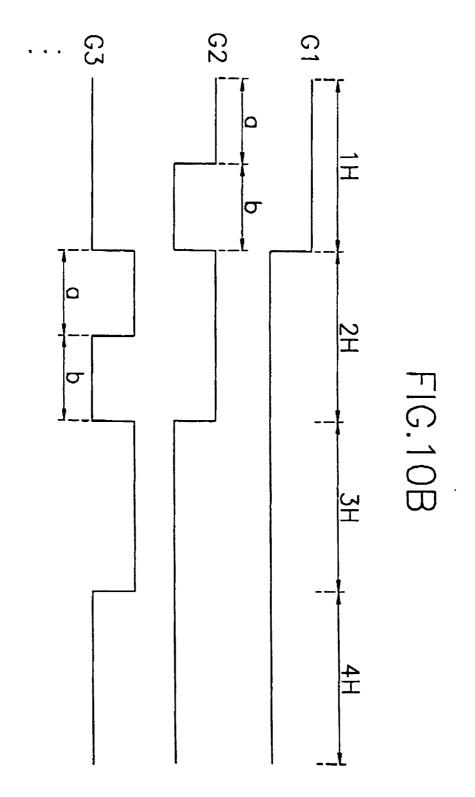

FIG.6A

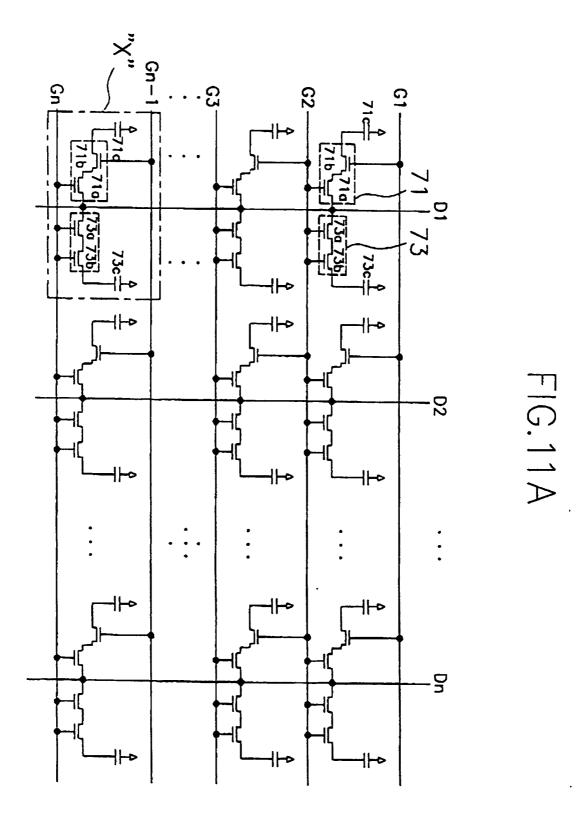


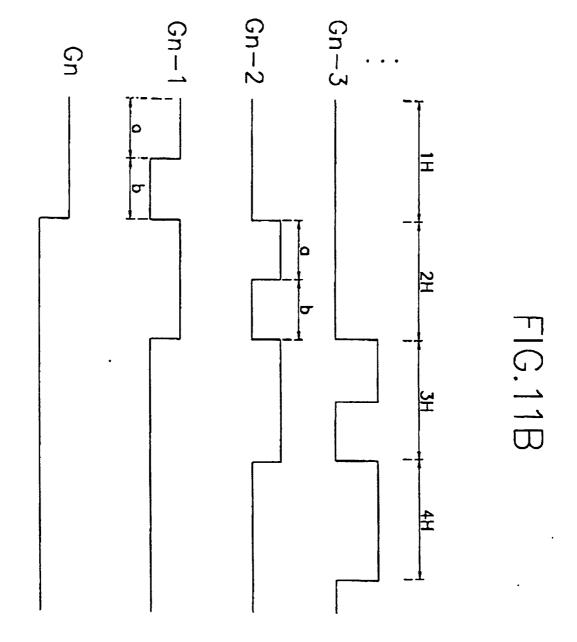




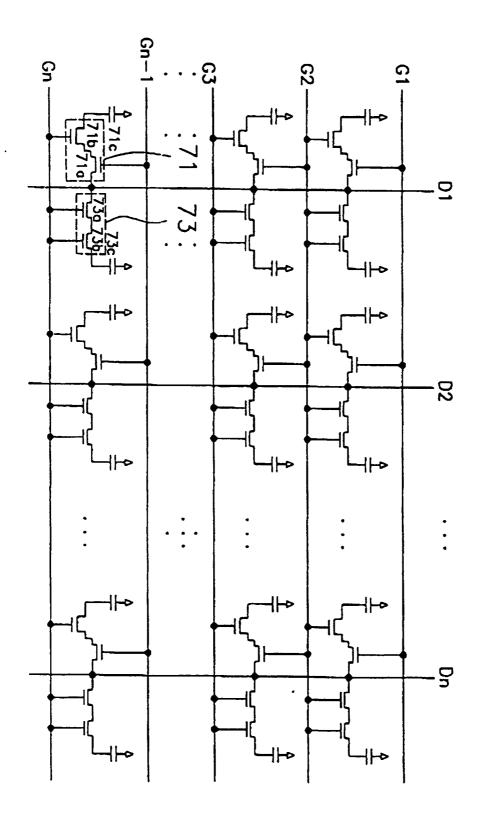
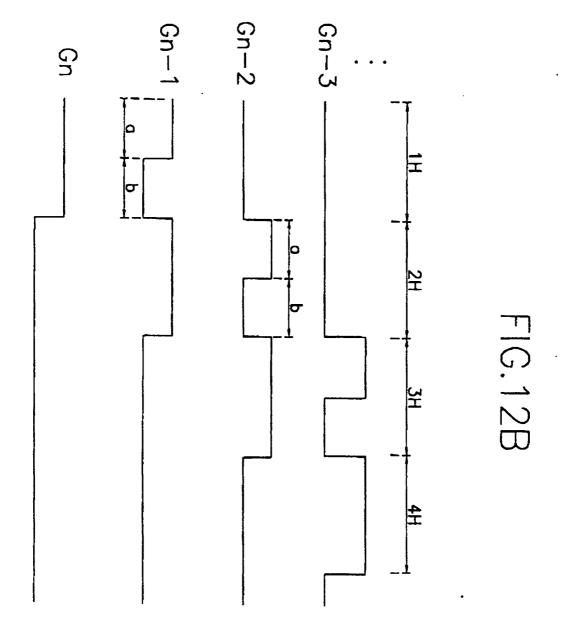
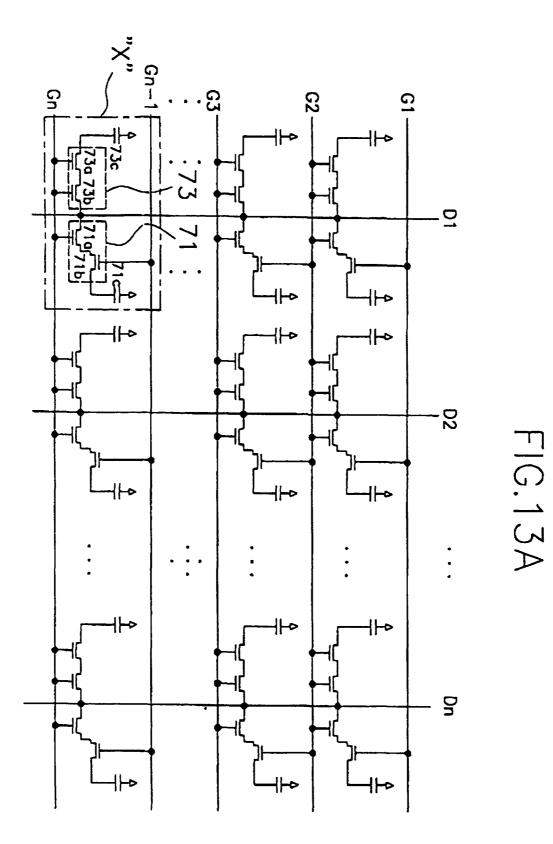
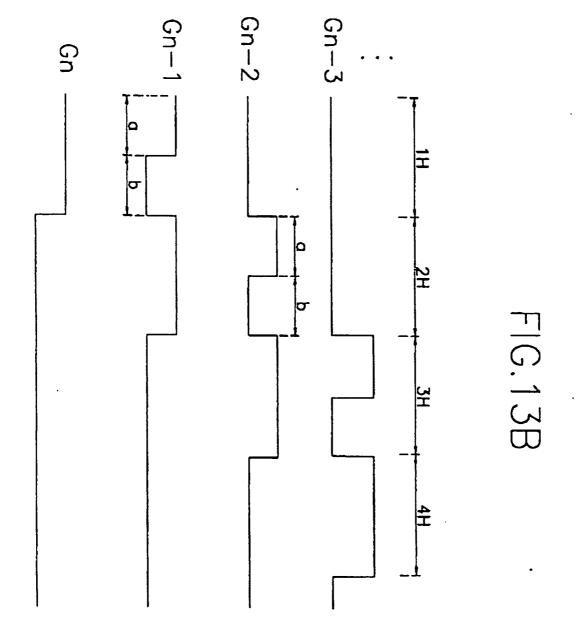


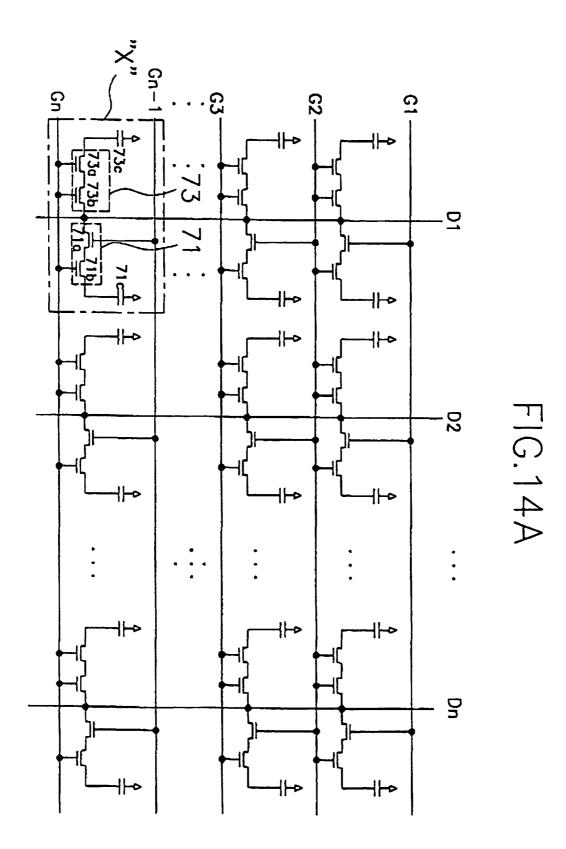


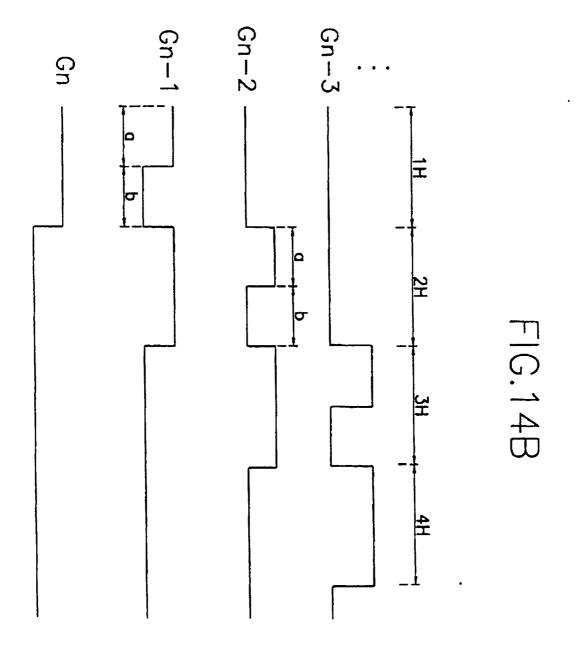


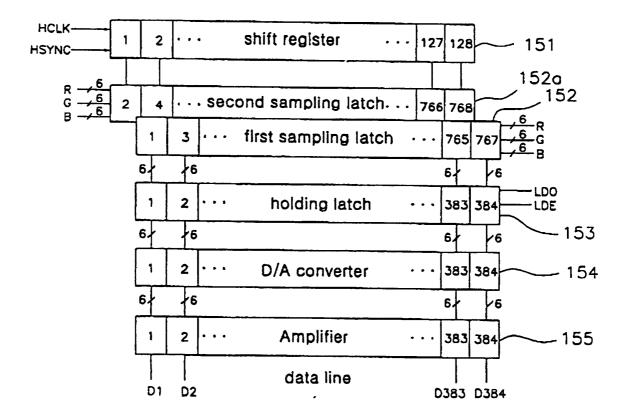


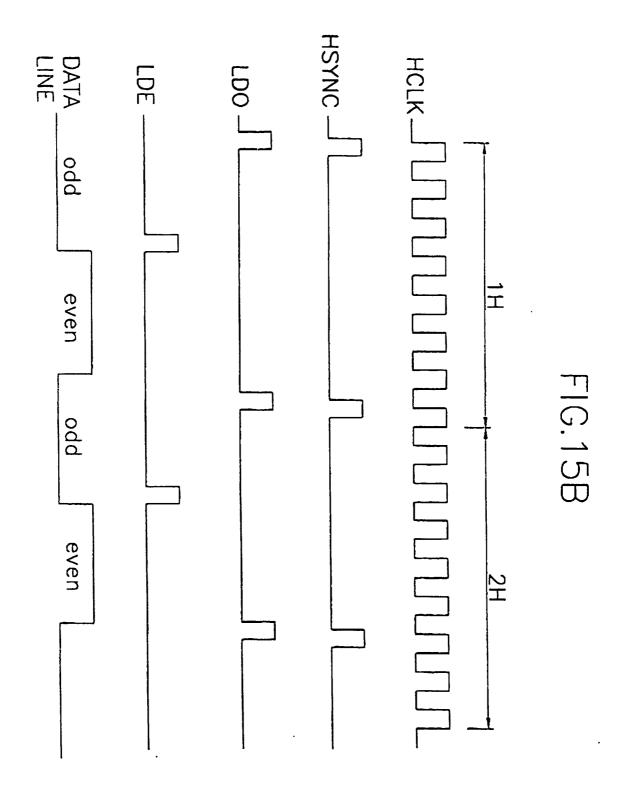
27

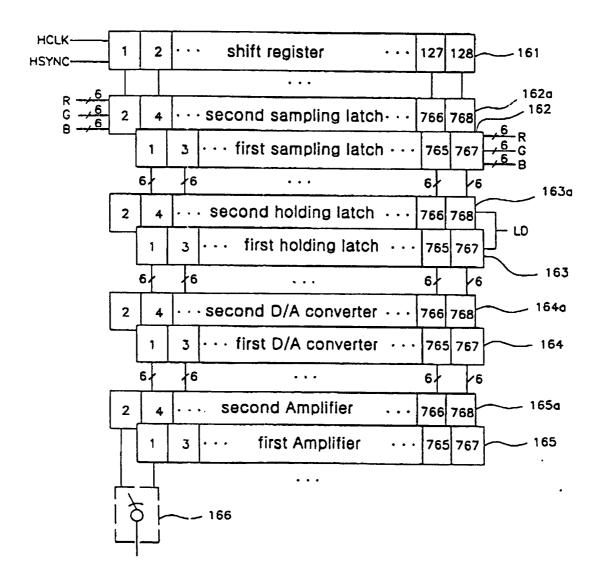





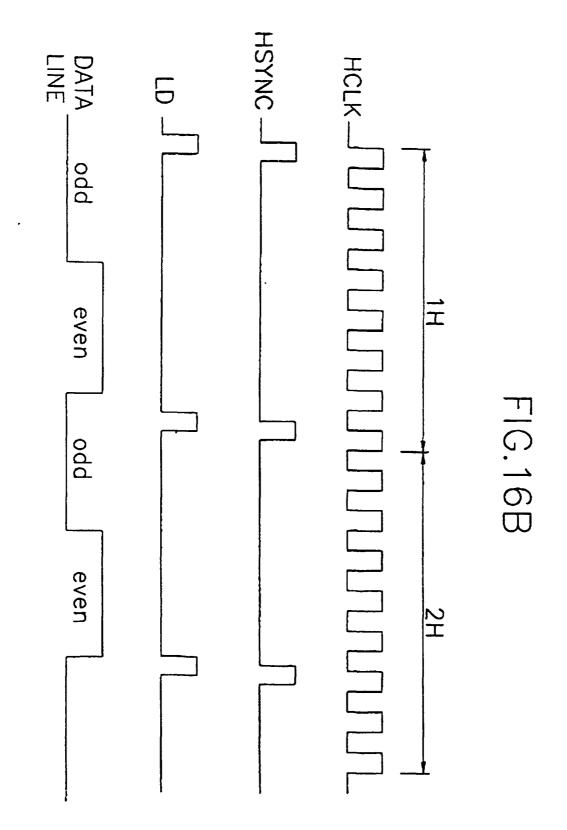

FIG.12A


29








FIG.15A

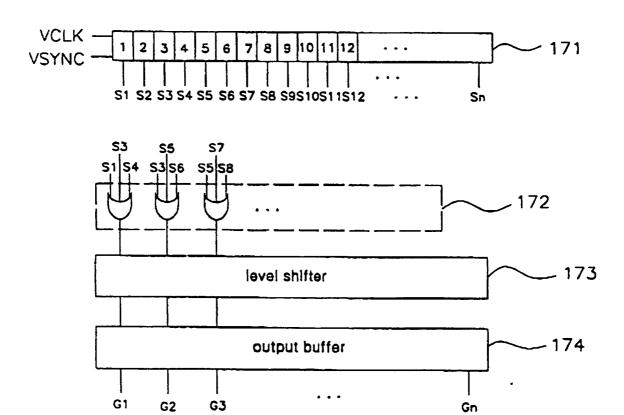


FIG.16A

FIG.17A

FIG.17B

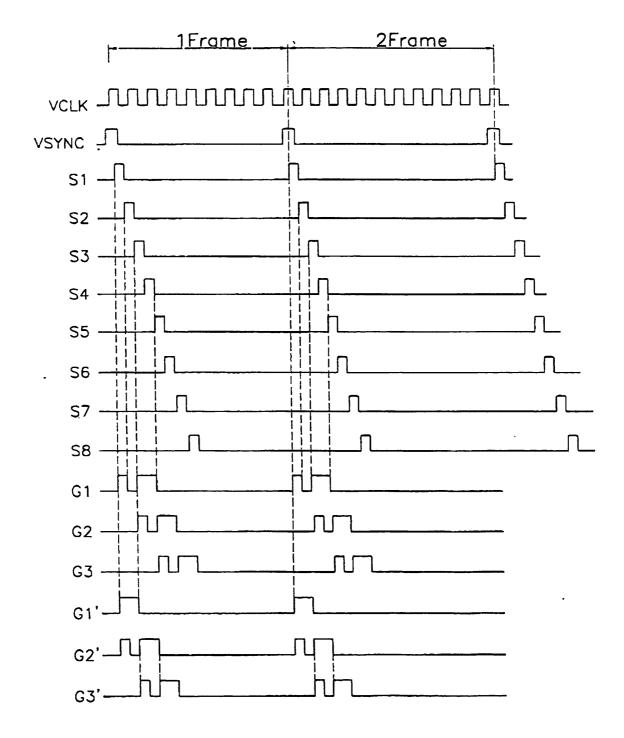
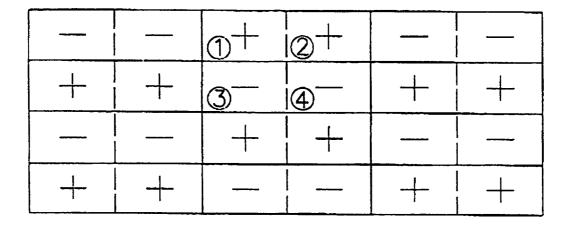



FIG.18

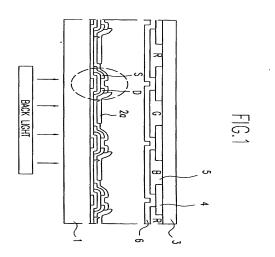
EP 1 061 498 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5568163 A [0012]
- US 5883609 A [0013]
- JP 10090650 A [0013]


- US 6157361 A [0013]
- US 5850216 A [0013]

专利名称(译)	用于液晶显示器的栅极驱动器		
公开(公告)号	EP1061498B1	公开(公告)日	2012-10-10
申请号	EP2000112043	申请日	2000-06-02
[标]申请(专利权)人(译)	KWON OH KYONG		
申请(专利权)人(译)	KWON , OH-KYONG		
当前申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
[标]发明人	KWON OH KYONG		
发明人	KWON, OH-KYONG		
IPC分类号	G09G3/36 G02F1/133 G09F9/30 G09G3/20		
CPC分类号	G09G3/3677 G09G3/3614 G09G3/3648 G09G3/3659 G09G3/3688 G09G2300/0814 G09G2310/0251 G09G2310/027 G09G2310/0297 G09G2310/06		
优先权	1019990020721 1999-06-04 KR		
其他公开文献	EP1061498A2 EP1061498A3		
外部链接	Espacenet		

摘要(译)

提供一种液晶显示器的栅极驱动器,具有更高的分辨率并且能够以低成本制造。一种栅极驱动器,用于将视频信号施加到液晶显示器的数据线,包括第一和第二板以及密封在其间的液晶,栅极驱动器包括:移位寄存器,用于根据栅极脉冲时钟移位垂直同步信号脉冲,a逻辑电路,用于有选择地接收移位寄存器的多个输出信号,逻辑运算它们并输出它们;电平移位器,用于将逻辑电路的输出移位到预定电平,以顺序输出它;输出缓冲器,用于将电平移位信号顺序地施加到扫描线。

