(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第4676418号 (P4676418)

(45) 発行日 平成23年4月27日(2011.4.27)

(24) 登録日 平成23年2月4日(2011.2.4)

(51) Int.Cl.	F I	
GO2F 1/133	(2006.01) GO2F	1/133 5 3 5
GO9G 3/20	(2006.01) GO2F	1/133 5 7 5
GO9G 3/34	(2006.01) GO9G	3/20 6 1 1 A
GO9G 3/36	(2006.01) GO9G	3/20 6 1 2 U
	GO9G	3/20 6 4 1 C
		請求項の数 16 (全 18 頁) 最終頁に続く
(21) 出願番号	特願2006-332213 (P2006-332213)	(73) 特許権者 501426046
(22) 出願日	平成18年12月8日 (2006.12.8)	エルジー ディスプレイ カンパニー リ
(65) 公開番号	特開2007-183608 (P2007-183608A)	ミテッド
(43) 公開日	平成19年7月19日 (2007.7.19)	大韓民国 ソウル, ヨンドゥンポーク, ヨ
審査請求日	平成18年12月8日 (2006.12.8)	イドードン 20
(31) 優先権主張番号	10-2005-0133936	(74) 代理人 100110423
(32) 優先日	平成17年12月29日 (2005.12.29)	弁理士 曾我 道治
(33) 優先権主張国	韓国 (KR)	(74) 代理人 100084010
		弁理士 古川 秀利
		(74) 代理人 100094695
		弁理士 鈴木 憲七
		(74) 代理人 100111648
		弁理士 梶並 順
		最終頁に続く

(54) 【発明の名称】液晶表示装置の駆動装置及び駆動方法

(57)【特許請求の範囲】

【請求項1】

複数のゲートライン及び複数のデータラインによって定義される領域ごとに形成された 液晶セルを含む液晶パネルと、

前記各データラインにビデオ信号を供給するためのデータドライバーと、

前記各ゲートラインにスキャン信号を供給するためのゲートドライバーと、

前記データ及びゲートドライバーを制御し、<u>一フレームの入力データを複数の領域に分割し、各分割領域のデータに対する平均値から</u>算出された全体平均値と、最大平均値及び 最小平均値と、外部から設定されて入力される最小ディミングカーブ値及び最大ディミン グカーブ値を用いて各分割領域のディミングカーブを再設定して複数のディミング信号を 生成するタイミングコントローラと、

前記複数のディミング信号によって複数のLED(Light Emitting Diode)群を発光させ、前記液晶パネルに光を照射するLEDバックライトユニットと、を備えることを特徴とする液晶表示装置の駆動装置。

【請求項2】

前記タイミングコントローラは、

前記入力データを整列して前記データドライバーに供給するデータ処理部と、

前記データ及びゲートドライバーをそれぞれ制御するための制御信号を生成する制御信号生成部と、

前記複数のディミング信号を生成するLED制御信号生成部と

を備えることを特徴とする請求項1に記載の液晶表示装置の駆動装置。

【請求項3】

前記 L E D制御信号生成部は、

単位ピクセルにそれぞれ供給される前記入力データの最大階調値を検出する単位ピクセル別最大値検出部と、

前記各分割領域の単位ピクセル別最大階調値の平均値を算出する領域別平均値算出部と

前記領域別平均値から<u>前記</u>最大平均値及び<u>前記</u>最小平均値を検出する最大/最小平均値 検出部と、

前記領域別平均値の前記全体平均値を算出する全体平均値算出部と、

前記最小ディミングカーブ値及び最大ディミングカーブ値と、前記全体平均値、前記最大平均値及び前記最小平均値を用いて前記ディミングカーブを再設定するディミングカーブ設定部と、

前記ディミングカーブ設定部によって再設定された前記ディミングカーブを用いて、前記領域別平均値に対応する前記複数のディミング信号を生成するディミング信号生成部と を備えることを特徴とする請求項2に記載の液晶表示装置の駆動装置。

【請求項4】

前記ディミングカーブ設定部は、 { ((最大ディミングカーブ値・最小ディミングカーブ値)/全体分割領域数)×((最大平均値・最小平均値)/全体平均値)+最小ディミングカーブ値}によって前記ディミングカーブを再設定することを特徴とする請求項3に記載の液晶表示装置の駆動装置。

【請求項5】

前記 L E D制御信号生成部は、

前記入力データを輝度成分と色差成分とに分離する輝度/色分離部と、

単位ピクセルにそれぞれ供給される輝度成分を検出する単位ピクセル別輝度検出部と、 <u>前記各分割</u>領域の単位ピクセル別輝度成分の平均輝度を算出する領域別平均輝度算出部 上、

前記領域別平均輝度から最大平均輝度及び最小平均輝度を検出する最大/最小平均輝度検出部と、

前記領域別平均輝度の全体平均輝度を算出する全体平均輝度算出部と、

前記最小ディミングカーブ値及び<u>前記</u>最大ディミングカーブ値と、前記全体平均輝度、前記最大平均輝度及び前記最小平均輝度を用いて前記ディミングカーブを再設定するディミングカーブ設定部と、

前記ディミングカーブ設定部によって再設定された前記ディミングカーブに基づいて、 前記領域別平均輝度によって前記複数のディミング信号を生成するディミング信号生成部 と

を備えることを特徴とする請求項2に記載の液晶表示装置の駆動装置。

【請求項6】

前記ディミングカーブ設定部は、 { ((最大ディミングカーブ値-最小ディミングカーブ値)/全体分割領域数)×((最大平均輝度-最小平均輝度)/全体平均輝度)+最小ディミングカーブ値)によって前記ディミングカーブを再設定することを特徴とする請求項5に記載の液晶表示装置の駆動装置。

【請求項7】

前記ディミングカーブ設定部によって設定されるディミングカーブは、入力データに基づいて、最大ディミングカーブ値、最小ディミングカーブ値と最大ディミングカーブ値との間の所定の値の何れか一つに設定されることを特徴とする請求項4または6に記載の液晶表示装置の駆動装置。

【請求項8】

前記LEDバックライトユニットは、

前記各分割領域に対応する複数のLED群から構成された分割LEDアレイと、

10

20

30

40

前記複数のディミング信号によって前記複数のLED群をそれぞれ発光させるためのLED制御部と、を備えることを特徴とする請求項3または5に記載の液晶表示装置の駆動装置。

【請求項9】

前記LED制御部は、所定の周期を有するクロック信号をカウントし、前記複数のディミング信号にそれぞれ対応する複数のパルス幅変調信号を生成し、生成された複数のパルス幅変調信号によって前記各LED群をそれぞれ発光させる複数のパルス幅変調部を備えることを特徴とする請求項8に記載の液晶表示装置の駆動装置。

【請求項10】

複数のゲートライン及び複数のデータラインによって定義される領域ごとに形成された 液晶セルを含む液晶パネルの駆動方法において、

-フレームの入力データを複数の領域に分割し、各分割領域のデータに対する平均値から算出された全体平均値と、最大平均値及び最小平均値と、外部から設定されて入力される最小ディミングカーブ値及び最大ディミングカーブ値を用いて各分割領域のディミングカーブを再設定して複数のディミング信号を生成する段階と、

前記ゲートラインにスキャン信号を供給し、前記スキャン信号に同期するように前記入 カデータをビデオ信号に変換して前記データラインに供給する段階と、

前記複数のディミング信号によって複数のLED群を発光させ、前記液晶パネルに光を 照射する段階と

を含むことを特徴とする液晶表示装置の駆動方法。

【請求項11】

前記複数のディミング信号を生成する段階は、

単位ピクセルにそれぞれ供給される前記入力データの最大階調値を検出する段階と、

前記各分割領域の単位ピクセル別最大階調値の平均値を算出する段階と、

前記領域別平均値から前記最大平均値及び前記最小平均値を検出する段階と、

前記領域別平均値の前記全体平均値を算出する段階と、

前記最小ディミングカーブ値及び<u>前記</u>最大ディミングカーブ値と、前記全体平均値、前記最大平均値及び前記最小平均値を用いて前記ディミングカーブを再設定する段階と、

前記再設定された前記ディミングカーブを用いて、前記領域別平均値に対応する前記複数のディミング信号を生成する段階と

を含むことを特徴とする請求項10に記載の液晶表示装置の駆動方法。

【請求項12】

前記ディミングカーブを再設定する段階は、 { ((最大ディミングカーブ値-最小ディミングカーブ値)/全体分割領域数)×((最大平均値-最小平均値)/全体平均値)+ 最小ディミングカーブ値}によって前記ディミングカーブを再設定することを特徴とする 請求項11に記載の液晶表示装置の駆動方法。

【請求項13】

前記複数のディミング信号を生成する段階は、

前記入力データを輝度成分と色差成分とに分離する段階と、

単位ピクセルにそれぞれ供給される輝度成分を検出する段階と、

前記各分割領域の単位ピクセル別輝度成分の平均輝度を算出する段階と、

前記領域別平均輝度から最大平均輝度及び最小平均輝度を検出する段階と、

前記領域別平均輝度の全体平均輝度を算出する段階と、

前記最小ディミングカーブ値及び<u>前記</u>最大ディミングカーブ値と、前記全体平均輝度、前記最大平均輝度及び前記最小平均輝度を用いて前記ディミングカーブを再設定する段階と、

前記再設定されたディミングカーブを用いて、前記領域別平均輝度に対応する前記複数のディミング信号を生成する段階と

を含むことを特徴とする請求項10に記載の液晶表示装置の駆動方法。

【請求項14】

20

10

30

40

20

30

50

前記ディミングカーブを再設定する段階は、 { ((最大ディミングカーブ値-最小ディミングカーブ値)/全体分割領域数)×((最大平均輝度-最小平均輝度)/全体平均輝度)+最小ディミングカーブ値}によって前記ディミングカーブを再設定することを特徴とする請求項13に記載の液晶表示装置の駆動方法。

【請求項15】

前記<u>再</u>設定されるディミングカーブは、入力データによって、最大ディミングカーブ値、最小ディミングカーブ値、最小ディミングカーブ値と最大ディミングカーブ値との間の所定の値の何れか一つに設定されることを特徴とする請求項12または14に記載の液晶表示装置の駆動方法。

【請求項16】

前記複数のLED群を発光させる段階は、

所定の周期を有するクロック信号をカウントし、前記複数のディミング信号にそれぞれ 対応する複数のパルス幅変調信号を生成する段階と、

生成された複数のパルス幅変調信号を、前記各分割領域に対応するように配置された前記複数の LED群にそれぞれ供給して発光させる段階と、を含むことを特徴とする請求項11または13に記載の液晶表示装置の駆動方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、液晶表示装置の駆動装置に関するもので、特に、画像の輝度を部分的に強調できる液晶表示装置の駆動装置及び駆動方法に関するものである。

【背景技術】

[0002]

通常、液晶表示装置は、マトリックス状に配列された多数の液晶セルと、これら液晶セルにそれぞれ供給されるビデオ信号を切り替えるための多数の制御用スイッチとから構成された液晶パネルによって、バックライトユニットから供給される光の透過量が調節されることで、画面に所望の画像を表示する。

[0003]

バックライトユニットは、小型化、薄型化、軽量化の趨勢にある。この趨勢に合わせ、バックライトユニットとしては、蛍光ランプの代りに、消費電力、重さ、輝度などにおいて有利な発光ダイオード(Light Emitting Diode:以下、LEDという)を用いたものが提案された。

[0004]

図 1 は、従来の L E D バックライトユニットを用いた液晶表示装置の駆動装置を概略的に示す図である。

[0005]

図1に示すように、従来の液晶表示装置の駆動装置は、n個のゲートライン $GL1 \sim GLn$ 及びm個のデータライン $DL1 \sim DLm$ によって定義される領域ごとに形成された液晶セルを含む液晶パネル 2 と、各データライン $DL1 \sim DLm$ にアナログビデオ信号を供給するためのデータドライバー 4 と、各ゲートライン $GL1 \sim GLn$ にスキャン信号を供給するためのゲートドライバー 6 と、データドライバー 4 及びゲートドライバー 6 を制御し、入力データRGBを用いてディミング信号 DS を生成するタイミングコントローラ 8 と、ディミング信号 DS によって複数のDS と、液晶パネル 2 に光を照射するDS にカフライトユニット DS 1 のとを備えている。

[0006]

液晶パネル2は、互いに対向して合着されたトランジスタアレイ基板及びカラーフィルターアレイ基板と、二つのアレイ基板の間でセルギャップを一定に維持させるためのスペーサーと、スペーサーによって保たれた液晶空間に充填される液晶とを備えている。

[0007]

上記のような液晶パネル2は、n個のゲートラインGL1~GLn及びm個のデータラ

インDL1~DLmによって定義される領域に形成されたTFTと、TFTに接続される液晶セルと、を備えている。TFTは、ゲートラインGL1~GLnからのスキャン信号に応答して、データラインDL1~DLmからのアナログビデオ信号を液晶セルに供給する。液晶セルは、液晶を挟んで対面する共通電極と、TFTに接続された画素電極とから構成されるので、等価的に液晶キャパシタC1cとして表示される。この液晶セルは、液晶キャパシタC1cに充電されたアナログビデオ信号を、次のアナログビデオ信号が充電されるまで維持させるためのストレージキャパシタCstを含む。

[0008]

タイミングコントローラ8は、外部から入力されるデータRGBを液晶パネル2の駆動に合わせて整列し、整列されたデータRGBをデータドライバー4に供給する。また、タイミングコントローラ8は、外部から入力されるドットクロックDCLK、データイネーブル信号DE、水平及び垂直同期信号Hsync,Vsyncを用いてデータ制御信号DCS及びゲート制御信号GCSを生成し、データドライバー4及びゲートドライバー6それぞれの駆動タイミングを制御する。

[0009]

また、タイミングコントローラ8は、入力されるデータRGBを用いてLEDバックライトユニット10を制御するためのディミング信号DSを生成する。

[0010]

具体的に、タイミングコントローラ8は、入力されるデータRGBの平均輝度を検出する。そして、タイミングコントローラ8は、図2に示すように、LEDバックライトユニット10の輝度特性によって設定されたディミングカーブAで、検出された平均輝度Avgに対応するディミング値を抽出し、ディミング信号DSを生成する。図2において、X軸は、入力データRGBの平均輝度Avgを示し、Y軸は、ディミングカーブAに対応するディミング値を示す。ここで、ディミングカーブAは、LEDの輝度特性に従って高い階調になるに従いディミング値が増加する。

[0011]

また、図1に示すように、ゲートドライバー6は、タイミングコントローラ8から供給されるゲート制御信号GCSによってスキャン信号、すなわち、ゲートハイ信号を順次発生するシフトレジスタを含む。このゲートドライバー6は、ゲートハイ信号を液晶パネル2の各ゲートラインGLに順次供給し、ゲートラインGLに接続されたTFTをターンオンする。

[0012]

データドライバー4は、タイミングコントローラ8から供給されるデータ制御信号DCSによって、タイミングコントローラ8から供給されるデータ信号Dataをアナログビデオ信号に変換し、ゲートラインGLにスキャン信号が供給される一水平周期ごとに一水平ライン分のアナログビデオ信号を各データラインDLに供給する。すなわち、データドライバー4は、データ信号Dataの階調値によって所定レベルを有するガンマ電圧を選択し、選択されたガンマ電圧を各データラインDL1~DLmに供給する。このとき、データドライバー4は、極性制御信号POLに応答して、各データラインDLに供給されるアナログビデオ信号の極性を反転させる。

[0013]

LEDバックライトユニット10は、複数のLEDによって構成されたLEDアレイ12と、タイミングコントローラ8からのディミング信号DSによって複数のLEDを発光させるためのLED制御部14と、を備えている。

[0014]

LED制御部14は、ディミング信号DSに対応するパルス幅変調信号Vpwmを生成してLEDアレイ12に供給する。

[0015]

LEDアレイ12は、液晶パネル2の背面に対向して配置され、反復的に配置された複数の赤色、緑色及び青色LEDを含む。

10

20

30

40

[0016]

複数のLEDは、LED制御部14から供給されるパルス幅変調信号Vpwmによって発光し、液晶パネル2に光を照射する。

[0017]

上記のような従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置は、各ゲートラインGLにスキャン信号を供給し、スキャン信号に同期するように入力データRGBをアナログビデオ信号に変換して各データラインDLに供給し、液晶セルを駆動する。そして、従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置は、予め設定された一つのディミングカーブAにおいて入力データRGBの平均輝度によって生成されたディミング信号DSに対応するパルス幅変調信号Vpwmで複数のLEDを発光させ、液晶セルに光を照射する。これによって、従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置は、アナログビデオ信号によって駆動された液晶セルを通してLEDバックライトユニット10から照射される光透過率を調節し、入力データに対応する画像を液晶パネル2に表示する。

【発明の開示】

【発明が解決しようとする課題】

[0018]

しかしながら、従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置は、入力データRGBの平均輝度によって、予め設定された一つのディミングカーブAでディミング信号DSを生成するため、LEDバックライトユニットを用いて液晶パネル2に表示される画像の輝度を部分的に強調することができないという問題点があった。

[0019]

また、従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置は、予め設定された一つのディミングカーブA内でLEDバックライトユニットの輝度が決定されるため、入力データRGBによる輝度可変に限界があり、消費電力が多いという問題点があった。

[0020]

本発明は上記の問題点を解決するためのもので、その目的は、画像の輝度を部分的に強調できる液晶表示装置の駆動装置及び駆動方法を提供することにある。

本発明の他の目的は、画質を改善できるとともに、消費電力を減少できる液晶表示装置の駆動装置及び駆動方法を提供することにある。

【課題を解決するための手段】

[0021]

[0022]

 10

20

30

40

カーブを再設定して複数のディミング信号を生成する段階と、前記ゲートラインにスキャン信号を供給し、前記スキャン信号に同期するように前記入力データをビデオ信号に変換して前記データラインに供給する段階と、前記複数のディミング信号によって複数のLED群を発光させ、前記液晶パネルに光を照射する段階とを含むことを特徴とする。

【発明の効果】

[0023]

本発明に係る液晶表示装置の駆動装置及び駆動方法は、フレーム単位で各単位ピクセルに供給される入力データRGBの最大階調値または輝度によって、最大ディミングカーブ値と最小ディミングカーブ値との間にマッピングされる新しいディミングカーブを再設定することで、LEDバックライトユニットで陰極線管のように画像の輝度を部分的に強調できるとともに、画質改善及び消費電力減少などの効果がある。

10

20

【発明を実施するための最良の形態】

[0024]

以下、本発明の実施の形態に係る液晶表示装置の駆動装置及び駆動方法について、添付の図面に基づいて詳細に説明する。

[0025]

図3は、本発明の実施の形態に係る液晶表示装置の駆動装置を概略的に示す図である。

[0026]

図3に示すように、本発明の実施の形態に係る液晶表示装置の駆動装置は、複数のゲートラインGL1~GLn及び複数のデータラインDL1~DLmによって定義される領域 ごとに形成された液晶セルを含む液晶パネル102と、各データラインDL1~DLmに アナログビデオ信号を供給するためのデータドライバー104と、各ゲートラインGL1~GLnにスキャン信号を供給するためのゲートドライバー106と、データドライバー104及びゲートドライバー106を制御し、入力データRGBによってディミングカーブ(Dimming Curve)を再設定して複数のディミング信号DSnを生成する タイミングコントローラ108と、各ディミング信号DSnによって複数のLED群をそれぞれ発光させ、液晶パネル102に光を照射するLEDバックライトユニット110とを備えている。

[0027]

液晶パネル102は、互いに対向して合着されたトランジスタアレイ基板及びカラーフィルターアレイ基板と、二つのアレイ基板の間でセルギャップを一定に維持させるためのスペーサーと、スペーサーによって保たれた液晶空間に充填される液晶とを備えている。

30

[0028]

上記のような液晶パネル102は、n個のゲートラインGL1~GLn及びm個のデータラインDL1~DLmによって定義される領域に形成されたTFTと、TFTに接続される液晶セルとを備えている。ここで、各液晶セルは、少なくとも3個のサブピクセルを有し、少なくとも3個のサブピクセルが一つの単位ピクセルを構成する。

[0029]

TFTは、ゲートラインGL1~GLnからのスキャン信号に応答して、データライン DL1~DLmからのアナログビデオ信号を液晶セルに供給する。液晶セルは、液晶を挟んで対面する共通電極と、TFTに接続された画素電極とから構成されるので、等価的に液晶キャパシタC1cとして表示される。この液晶セルは、液晶キャパシタC1cに充電されたアナログビデオ信号を、次のアナログビデオ信号が充電されるまで維持させるためのストレージキャパシタCstを含む。

40

[0030]

タイミングコントローラ 1 0 8 は、図 4 に示すように、外部から入力されるデータR G B をデータドライバー 1 0 4 に供給するデータ処理部 1 2 0 と、データドライバー 1 0 4 及びゲートドライバー 1 0 6 を制御するための制御信号 D C S ,G C S を生成する制御信号生成部 1 2 2 と、 L E D バックライトユニット 1 1 0 を制御するための複数のディミング信号 D S n を生成する L E D 制御信号生成部 1 2 4 とを備えている。

[0031]

データ処理部120は、入力データRGBを液晶パネル102を駆動するために適切に整列し、整列されたデータ信号Dataをバスラインを通してデータドライバー104に供給する。

[0032]

制御信号生成部122は、ドットクロックDCLK、データイネーブル信号DE、水平及び垂直同期信号Hsync,Vsyncを用いて、ソーススタートパルス(Source Start Pulse:SSP)、ソースシフトクロック(Source Shift Clock:SSC)、極性信号(Polarity:POL)及びソース出力イネーブル信号SOEを含むデータ制御信号DCSを生成してデータドライバー104に供給する。

[0033]

また、制御信号生成部122は、データイネーブル信号DE、水平及び垂直同期信号Hsync,Vsyncを用いて、ゲートスタートパルス(Gate Start Pulse:GSP)、ゲートシフトクロック(Gate Shift Clock:GSC)及びゲート出力信号(Gate Output Enable:GOE)を含むゲート制御信号GCSを生成してゲートドライバー106に供給する。

[0034]

LED制御信号生成部124は、図5に示すように、単位ピクセル別最大値検出部210、領域別平均値算出部220、最大/最小平均値検出部230、全体平均値算出部240、ディミングカーブ設定部250及びディミング信号生成部260を備えている。

【0035】

単位ピクセル別最大値検出部210は、フレーム単位で液晶パネル102の各単位ピクセルに供給される入力データRGBの最大階調値を単位ピクセル別最大値MAXpとして検出する。単位ピクセル別最大値MAXpは、領域別平均値算出部220に供給される。例えば、一つの単位ピクセルに印加される赤色、緑色及び青色データRGBが・255、250、245′である場合、単位ピクセルの最大値MAXpは・255′になる。

[0036]

領域別平均値算出部 2 2 0 は、図 6 に示すように、一フレームを n 個の領域に分割し、分割された各領域の平均値を検出する。すなわち、領域別平均値算出部 2 2 0 は、単位ピクセル別最大値検出部 2 1 0 から各分割領域に供給される単位ピクセル別最大値 M A X p を累積し、各領域別平均値 A v g _ N を算出する。各領域別平均値 A v g _ N は、最大/最小平均値検出部 2 3 0、全体平均値算出部 2 4 0 及びディミング信号生成部 2 6 0 にそれぞれ供給される。

[0037]

最大/最小平均値検出部230は、領域別平均値算出部220から供給される各領域別平均値Avg_Nから最大平均値Avg_max及び最小平均値(Avg_min)を検出してディミングカーブ生成部250に供給する。

[0038]

全体平均値算出部240は、領域別平均値算出部220から供給される各領域別平均値Avg_Nを累積し、一フレームの全体平均値Avg_totalを検出する。一フレームの全体平均値Avg_totalを検出する。一フレームの全体平均値Avg_totalは、ディミングカーブ生成部250に供給される。

[0039]

ディミングカーブ生成部 2 5 0 は、下記の式 1 のように、総分割領域数 N 、全体平均値 A v g _ t o t a l 、最大平均値 A v g _ m a x 及び最小平均値 A v g _ m i n を用いて入力される最小及び最大ディミングカーブ値 D i m _ m i n ,D i m _ m a x の間にマッピングされる新しいディミングカーブ D i m _ c u r v e を設定する。

[0040]

10

20

30

【数1】

$$Dim_{curve} = \frac{Dim_{max} - Dim_{min}}{N} \times \frac{Avg_{max} - Avg_{min}}{Avg_{total}} + Dim_{min}$$
(1)

[0041]

式 1 の '(A v g $_$ m a x - A v g $_$ m i n) / A v g $_$ t o t a 1 'において、最大平均値 A v g $_$ m a x と最小平均値 A v g $_$ m i n との差は、現在の画像の輝度特性を示す要素であり、画像の部分的なピークを駆動する駆動条件に比例する。また、一フレームの全体平均値 A v g $_$ t o t a 1 は、画像が全体として明るい場合、画像の明るさを暗くしなければならないので、画像の部分的なピークを駆動する駆動条件に反比例する。

[0042]

最小及び最大ディミングカーブ値Dim_min,Dim_maxは、図7に示すように、LEDバックライトユニット110の最小輝度特性及び最大輝度特性によってそれぞれ設定される。

[0043]

以下、式1によって最小及び最大ディミングカーブ値Dim_max,Dim_minの間にマッピングされる新しいディミングカーブDim_curveの誘導過程を整理する。

[0044]

式 1 で新しいディミングカープ D i m __ c u r v e を設定するための'(A v g __ m a x - A v g __ m i n) / A v g __ t o t a l 'の範囲は、下記の式 2 で示される。

[0045]

【数2】

$$\frac{Avg.\max - Avg.\min}{(Avg.1 + Avg.2 + ... + Avg.\max + Avg.\min + ... + Avg.N)} \le \frac{Avg.\max - Avg.\min}{Avg.\max + Avg.\min} \le N$$
(2)

[0046]

式 2 において、'(Avg_max-Avg_min)/Avg_total'の最大値はnになる。

[0047]

また、各分割領域別平均が全て'0'であるとき、全体平均値Avg_totalが'0'になり、'0'をハードウェアで具現すると、'(Avg_max-Avg_min)/Avg total'は'1'に処理される。

[0048]

そして、'(Avg_max-Avg_min)/Avg_totalの最小値は、最小平均値(Avg_min)が最大平均値(Avg_max)になるときに'0'になる

[0049]

したがって、'(Avg_max-Avg_min)/Avg_total'に総分割数nを乗算してノーマライズ(Normalize)すると、下記の式3のようになる。

[0050]

【数3】

$$0 \le \frac{Avg_max - Avg_min}{Avg_total \times N} \le 1$$
(3)

[0051]

50

10

20

30

20

50

そして、式3に、最大ディミングカーブ値Dim_maxと最小ディミングカーブ値D im_minとの差を乗算すると、下記の式4のようになる。

[0052]

【数4】

$$0 \le \frac{Dim \max_{max} - Dim \min_{min}}{N} \times \frac{Avg \max_{max} - Avg \min_{min}}{Avg total} \le Dim \max_{max} - Dim \min_{(4)}$$

[0053]

また、新しいディミングカーブ Dim_curve が最大ディミングカーブ値 Dim_ maxと最小ディミングカーブ値Dim_minとの間にマッピングされるように、式4 に最小ディミングカーブ値 Dim_minを掛け算すると、下記の式 5 のようになる。

[0054]【数5】

$$Dim_{\min} \le \frac{Dim_{\max} - Dim_{\min}}{N} \times \frac{Avg_{\max} - Avg_{\min}}{Avg_{total}} + Dim_{\min} \le Dim_{\max}$$
(5)

[0055]

例えば、図9に示すように、24分割された液晶パネル102にフルホワイト(Ful 1 White)画像が表示される場合、ディミングカーブ生成部250によって設定さ れるディミングカーブDim_curveは、下記の式6のような最小ディミングカーブ 値 D i m _ m i n となる。

[0056]

【数6】

$$Dim_curve = \frac{Dim_max - Dim_min}{24} \times \frac{255 - 255}{255} + Dim_min$$

$$\therefore \quad Dim_{curve} = Dim_{min}$$
(6)

[0057]

また、図10に示すように、24分割された液晶パネル102の一つの分割領域にホワ イト画像が表示され、残りの分割領域にブラック画像が表示される場合、ディミングカー ブ生成部250によって設定されるディミングカーブDim_curveは、下記の式7 のような最大ディミングカーブ値 Dim maxとなる。

[0058]

【数7】

$$Dim_curve = \frac{Dim_max - Dim_min}{24} \times \frac{255 - 0}{255/24} + Dim_min$$

$$\therefore \quad Dim_{curve} = Dim_{max}$$
 (7)

[0059]

また、図11に示すように、24分割された液晶パネル102の4個の分割領域にホワ イト画像が表示され、残りの分割領域にブラック画像が表示される場合、ディミングカー ブ生成部250によって設定されるディミングカーブDim_curveは、下記の式8 のように、最大ディミングカーブ値 Dim max と最小ディミングカーブ値 Dim m

30

40

50

inとの間の値になるようにマッピングされたものである。

[0060]

【数8】

$$Dim_curve = \frac{Dim_max - Dim_min}{24} \times \frac{255 - 0}{\frac{255 \times 4}{24}} + Dim_min$$

$$\therefore Dim_curve = \frac{Dim_max}{4} + \frac{3 \times Dim_min}{4}$$
(8)

[0061]

ディミング信号生成部 2 6 0 は、ディミングカーブ生成部 2 5 0 から再設定されて供給されるディミングカーブ D i m_c u r v e を用いて、領域別平均値算出部 2 2 0 から供給される各領域別平均値 A v g_N に対応する n 個のディミング信号 D S n を生成し、これを L E D バックライトユニット 1 1 0 に供給する。

[0062]

上記のようなLED制御信号生成部124は、フレーム単位に入力データRGBを分析し、図8に示すような輝度分布に基づいて、最大ディミングカーブ値Dim_maxと最小ディミングカーブ値Dim_minとの間にマッピングされる新しいディミングカーブDim_curveをフレーム単位で再設定する。そして、LED制御信号生成部124は、新しいディミングカーブDim_curveに各分割領域の平均値Avg_Nをマッピングさせ、各分割領域の明るさを調節するためのn個のディミング信号DSnを生成する。このように、新しいディミングカーブDim_curveは、LEDバックライトユニット110で陰極線管(CRT)のように画像を部分的に強調できるように設定される

[0063]

また、図3に示すように、ゲートドライバー106は、タイミングコントローラ108からのゲート制御信号GCSによって、スキャン信号、すなわち、ゲートハイ信号を順次発生するシフトレジスタを含む。このゲートドライバー106は、ゲートハイ信号を液晶パネル102の各ゲートラインGLに順次供給し、ゲートラインGLに接続されたTFTをターンオンさせる。

[0064]

データドライバー104は、タイミングコントローラ108から供給されるデータ制御信号DCSによって、タイミングコントローラ108から整列されたデータ信号Dataをアナログビデオ信号に変換し、ゲートラインGLにスキャン信号が供給される一水平周期ごとに一水平ライン分のアナログビデオ信号を各データラインDLに供給する。すなわち、データドライバー104は、データ信号Dataの階調値によって所定レベルを有するガンマ電圧を選択し、選択されたガンマ電圧を各データラインDL1~DLmに供給する。このとき、データドライバー104は、極性制御信号POLに対応して、各データラインDLに供給されるアナログビデオ信号の極性を反転させる。

[0065]

L E D バックライトユニット 1 1 0 は、 n 個の L E D 群から構成された n 分割 L E D アレイ 1 1 2 と、タイミングコントローラ 1 0 8 からの n 個のディミング信号 D S n によって n 個の L E D 群をそれぞれ発光させるための L E D 制御部 1 1 4 とを備えている。

[0066]

LED制御部114は、n個のディミング信号DSnにそれぞれ対応するパルス幅変調信号Vpwm_Nを生成し、これをn分割LEDアレイ112に供給する。

20

30

40

50

[0067]

このために、LED制御部114は、図12に示すように、クロック発生部310及びカウンター320によって構成された複数のパルス幅変調部300を備えている。

[0068]

クロック発生部 3 1 0 は、所定の周期を有するクロック信号 C L K を発生してカウンター 3 2 0 に供給する。

[0069]

カウンター320は、クロック発生部310からのクロック信号CLKをディミング信号DSnだけカウントし、図13に示すように、複数のディミング信号DSnにそれぞれ対応する複数のパルス幅変調信号Vpwm_Nを生成する。

[0070]

n分割LEDアレイ112は、液晶パネル102の背面に対向するようにn個の分割領域に配置されたn個のLED群を含む。

[0071]

n個のLED群は、それぞれ反復的に配置された複数の赤色、緑色及び青色LEDを含むように各分割領域に配置される。

[0072]

各LED群に配置されたLEDは、LED制御部114から供給されるパルス幅変調信号Vpwm_Nによって発光し、各分割領域に対応する液晶パネル102の背面に光を照射する。

[0073]

上記のような本発明の実施の形態に係る液晶表示装置の駆動装置は、各ゲートラインGLにスキャン信号を供給し、スキャン信号に同期するように入力データRGBをアナログビデオ信号に変換して各データラインDLに供給し、液晶セルを駆動する。また、本発明の実施の形態に係る液晶表示装置の駆動装置は、入力データRGBに基づいて新しいディミングカーブDim_curveを再設定し、各分割領域の平均値Avg_Nに基づいて複数のディミング信号DSnを生成し、複数のディミング信号DSnによって複数のLED群を発光させて各分割領域に対応する液晶パネル102に光を照射する。これによって、本発明の実施の形態に係る液晶表示装置の駆動装置は、LEDバックライトユニット110から照射されアナログビデオ信号によって駆動された液晶セルを通過する光の光透過率を調節し、入力データに対応する画像を液晶パネル102に表示する。

[0074]

上記のような本発明は、図9に示すようにフルホワイト画像である場合、ディミングカープDim_curveが最小ディミングカーブ値Dim_minに設定されるので、最も低いディミングカーブでLEDバックライトユニット110を制御することで消費電力を減少できる。すなわち、本発明は、フルホワイト画像である場合、画面が全体的に明るいので、低いディミング値を有するようにディミングカーブDim_curveを設定してLEDバックライトユニット110を制御する。

[0075]

また、本発明は、図10のように一つの分割領域のみがホワイトである場合(空間的なピーク画面)、式7によって最大ディミングカーブ値Dim_maxがディミングカーブ Dim_curveに設定されるので、最も高いディミングカーブでLEDバックライトユニット110を制御することで画像の輝度を部分的に強調できる。すなわち、本発明は、空間的なピーク画面が表示される場合、ピーク部分を最大限に明るくディミングして陰極線管のように明暗対比を増加できる。このとき、低い階調に対応する最大ディミングカーブDim_max及び最小ディミングカーブDim_minがほぼ同一であるため、暗い領域のディミングはほぼ同一になる。

[0076]

そして、本発明は、図11のように一つ以上の分割領域のみがホワイトである場合、式 8によってディミングカープDim_curveを最大ディミングカーブ値Dim_ma x と最小ディミングカーブ値 D i m _ m i n との間に設定して L E D バックライトユニット 1 1 0 を制御することで、画像の輝度を部分的に強調して画質を向上できる。

[0077]

図 1 4 は、図 4 に示したLED制御信号生成部の他の実施の形態を示すブロック図である。

[0078]

図14に示すように、LED制御信号生成部124は、輝度/色分離部400、単位ピクセル別輝度検出部410、領域別平均輝度算出部420、最大/最小平均輝度検出部430、全体平均輝度算出部440、ディミングカーブ設定部450及びディミング信号生成部460を備えている。

[0079]

輝度 / 色分離部 4 0 0 は、入力データ R G B を輝度成分 Y 及び色差成分 U , V に分離する。ここで、輝度成分 Y 及び色差成分 U , V は、下記の式 9 乃至 1 1 によって求められる

[0080]

$$Y = 0$$
 . 2 9 9 x R i + 0 . 5 8 7 x G i + 0 . 1 1 4 x B i (9)
 $U = 0$. 4 9 3 x (B i - Y) (10)
 $V = 0$. 8 8 7 x (R i - Y) (11)

[0081]

単位ピクセル別輝度検出部410は、輝度/色分離部400から液晶パネル102の各単位ピクセルに供給される輝度成分Ypを検出する。

[0082]

領域別平均輝度算出部420は、図6に示すように、一フレームをn個の領域に分割し、単位ピクセル別輝度検出部410から供給される単位ピクセル別輝度成分Ypから各分割領域の平均輝度YAVg_Nを検出する。すなわち、領域別平均輝度算出部420は、各分割領域の全ての単位ピクセル別輝度成分Ypを累積して各領域別平均輝度YAVg_Nを算出する。各領域別平均輝度YAVg_Nは、最大/最小平均輝度検出部430、全体平均輝度算出部440及びディミング信号生成部460にそれぞれ供給される。

[0083]

最大/最小平均輝度検出部430は、領域別平均輝度算出部420から供給される各領域別平均輝度 Y A v g __ N のうち最大平均輝度 Y A v g __ m a x 及び最小平均輝度 Y A v g __ m i n を検出し、それらをディミングカーブ生成部450に供給する。

[0084]

全体平均輝度算出部440は、領域別平均輝度算出部420から供給される各領域別平均輝度YAVg_Nを累積し、一フレームの全体平均輝度YAVg_totalを検出する。一フレームの全体平均輝度YAVg_totalは、ディミングカーブ生成部450に供給される。

[0085]

ディミングカーブ生成部450は、下記の式12のように、総分割領域数N、全体平均輝度値YAvg_total、最大平均輝度値YAvg_max及び最小平均輝度値YAvg_minを用いて入力される最小及び最大ディミングカーブ値Dim_min,Dim_maxの間にマッピングされる新しいディミングカープDim_curveを設定する。

[0086]

【数9】

$$Dim_{curve} = \frac{Dim_{max} - Dim_{min}}{N} \times \frac{YAvg_{max} - YAvg_{min}}{YAvg_{total}} + Dim_{min}$$
(1.2)

[0087]

10

20

30

ディミング信号生成部 4 6 0 は、ディミングカーブ生成部 4 5 0 から再設定されて供給されるディミングカーブ D i m_c u r v e で、領域別平均輝度算出部 4 2 0 から供給される各領域別平均輝度値 Y A v g_N に対応する n 個のディミング信号 D S n を生成して L E D バックライトユニット 1 1 0 に供給する。

[0088]

上記のようなLED制御信号生成部124は、フレーム単位の入力データRGBを分析し、輝度分布によって、図8に示すように、最大ディミングカーブ値Dim_maxと最小ディミングカーブ値Dim_minとの間にマッピングされる新しいディミングカーブDim_curveをフレーム単位で再設定する。そして、LED制御信号生成部124は、新しいディミングカーブDim_curveに各分割領域の平均輝度YAvg_Nをマッピングさせ、各分割領域の明るさを調節するためのn個のディミング信号DSnを生成する。ここで、新しいディミングカーブDim_curveは、LEDバックライトユニット10で陰極線管(CRT)のように画像を部分的に強調できるように設定される。

[0089]

以上説明した本発明は、上述した実施の形態及び添付の図面によって限定されるものではなく、本発明の技術的思想から逸脱しない範囲内で多様な置換、変形及び変更が可能であることは、本発明の属する技術分野で通常の知識を有する者にとって明らかであろう。

【図面の簡単な説明】

[0090]

【図1】従来のLEDバックライトユニットを用いた液晶表示装置の駆動装置を概略的に示す図である。

【図2】従来のLEDバックライトユニットを制御するためのディミングカーブを示すグラフである。

【図3】本発明の実施の形態に係る液晶表示装置の駆動装置を概略的に示す図である。

【図4】図3に示したタイミングコントローラのブロック図である。

【図5】図4に示した本発明の第1実施の形態に係るLED制御信号生成部のブロック図である。

【図 6 】図 5 に示した領域別平均値を算出するための液晶パネルの分割領域を示す図である。

【図7】図5に示したディミングカーブ設定部に供給される最小及び最大ディミングカー ブ値を示すグラフである。

【図8】図5に示したディミングカーブ設定部に再設定されるディミングカーブを示すグラフである。

【図9】図5に示したディミングカーブ設定部によってディミングカーブを再設定するための画像の例を示す図である。

【図10】図5に示したディミングカーブ設定部によってディミングカーブを再設定するための画像の他の例を示す図である。

【図11】図5に示したディミングカーブ設定部によってディミングカーブを再設定する ための画像の他の例を示す図である。

【図12】図3に示したLED制御部のブロック図である。

【図13】図12に示したLED制御部で生成される複数のパルス幅変調信号を示す波形図である。

【図14】図4に示した本発明の第2実施の形態に係るLED制御信号生成部のブロック図である。

【符号の説明】

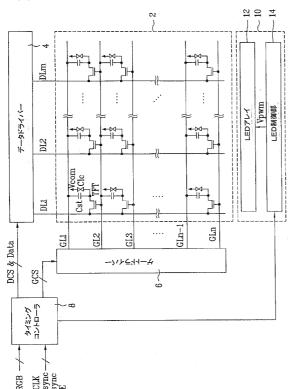
[0091]

104 データドライバー 106 ゲートドライバー

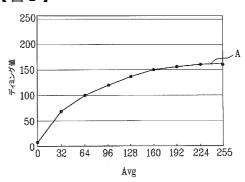
108 タイミングコントローラ

112 LEDアレイ

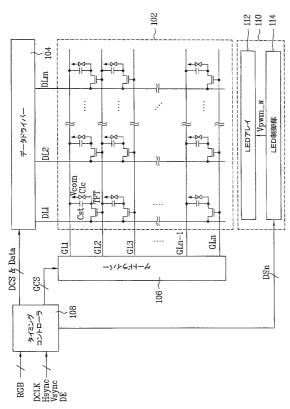
1 1 4 L E D 制御部

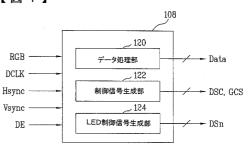

10

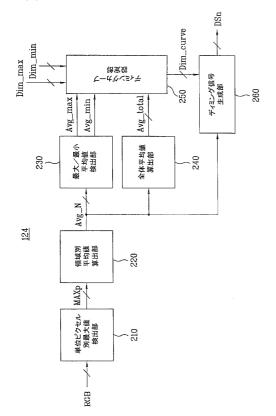
20


30

40

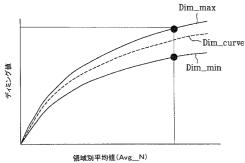

【図1】


【図2】


【図3】

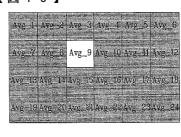
【図4】

【図5】


【図6】

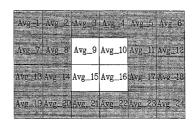
Avg_1	Avg_2	Avg_3	Avg_4	Avg_5	Avg_6
Avg_7	Avg_8	Avg_9	Avg_10	Avg_11	Avg_12
Avg_13	Avg_14	Avg_15	Avg_16	Avg_17	Avg_18
Avg_19	Avg_20	Avg_21	Avg_22	Avg_23	Avg_24

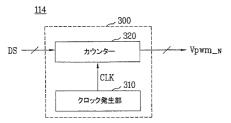
【図7】

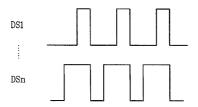

【図8】

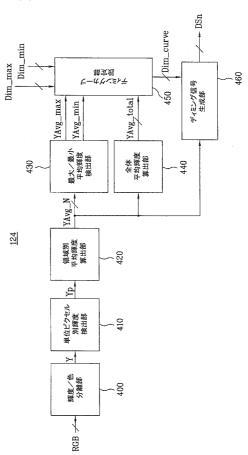
【図9】

Avg_1	Avg_2	Avg_3	Avg_4	Avg_5	Avg_6
Avg_7	Avg_8	Avg_9	Avg_10	Avg_11	Avg_12
Avg_13	Avg_14	Avg_15	Avg_16	Avg_17	Avg_18
Avg_19	Avg_20	Avg_21	Avg_22	Avg_23	Avg_24
ホワイト					


【図10】


【図11】


ホワイト


【図12】

【図13】

【図14】

フロントページの続き

(51) Int.CI. FI

G 0 9 G 3/34 J

G 0 9 G 3/36

(72)発明者 權 耕準

大韓民国ソウル鍾路區弼雲洞24インドン・ヴィラ 401

審査官 藤田 都志行

(56)参考文献 特開2005-338857(JP,A)

特開2005-338848(JP,A)

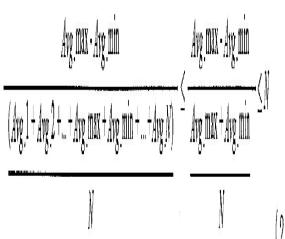
(58)調査した分野(Int.CI., DB名)

G02F 1/133

G 0 9 G 3 / 2 0

G 0 9 G 3 / 3 4

G 0 9 G 3 / 3 6



专利名称(译)	液晶显示装置的驱动装置和驱动方法				
公开(公告)号	JP4676418B2	公开(公告)日	2011-04-27		
申请号	JP2006332213	申请日	2006-12-08		
[标]申请(专利权)人(译)	乐金显示有限公司				
申请(专利权)人(译)	Eruji飞利浦杜迪股份有限公司				
当前申请(专利权)人(译)	Eruji显示有限公司				
[标]发明人	權耕準				
发明人	權耕準				
IPC分类号	G02F1/133 G09G3/20 G09G3/34 G09G3/36				
CPC分类号	G09G3/3426 G09G2320/064 G09G2320/0646 G09G2360/16				
FI分类号	G02F1/133.535 G02F1/133.575 G09G3/20.611.A G09G3/20.612.U G09G3/20.641.C G09G3/34.J G09G3/36				
F-TERM分类号	2H093/NA65 2H093/NC13 2H093/NC14 2H093/NC16 2H093/NC42 2H093/NC49 2H093/NC52 2H093 /ND03 2H093/ND39 2H093/ND54 2H193/ZA04 2H193/ZG03 2H193/ZG14 2H193/ZG43 2H193/ZG48 2H193/ZH23 2H193/ZH57 5C006/AA16 5C006/AA22 5C006/AF45 5C006/AF51 5C006/AF64 5C006 /AF69 5C006/BB16 5C006/BB29 5C006/BF22 5C006/EA01 5C006/FA47 5C006/FA54 5C080/AA10 5C080/BB05 5C080/CC03 5C080/DD26 5C080/EE29 5C080/EE30 5C080/FF11 5C080/JJ02 5C080 /JJ04 5C080/JJ05				
代理人(译)	英年古河 Kajinami秩序				
优先权	1020050133936 2005-12-29 KR				
其他公开文献	JP2007183608A				
外部链接	Espacenet				

摘要(译)

要解决的问题:提供一种用于驱动液晶显示装置的装置和方法,其能够 部分地强调图像的亮度,改善图像质量并减少电力消耗。

ŽSOLUTION:用于驱动液晶显示装置的装置包括:液晶单元102,具有 形成在由多条栅极线GL1至GLn和多条数据线DL1至DLm限定的各个区域 中的液晶单元,数据驱动器104用于向数据线DL1至DLm提供视频信号的 栅极驱动器106,用于向栅极线GL1至GLn提供扫描信号的栅极驱动器 106,用于控制栅极和数据驱动器104,106的定时控制器108,并产生多 个调光信号DSn通过根据输入数据RGB重置调光曲线,并且发光二极管 背光单元110用于使发光二极管组根据多个调光信号DSn发光,以将光照 射到液晶显示面板102.Ž

